File size: 10,728 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import math
from dataclasses import dataclass

import torch
from torch import Tensor, nn

from .math import attention, rope
import comfy.ops
import comfy.ldm.common_dit


class EmbedND(nn.Module):
    def __init__(self, dim: int, theta: int, axes_dim: list):
        super().__init__()
        self.dim = dim
        self.theta = theta
        self.axes_dim = axes_dim

    def forward(self, ids: Tensor) -> Tensor:
        n_axes = ids.shape[-1]
        emb = torch.cat(
            [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
            dim=-3,
        )

        return emb.unsqueeze(1)


def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
    """
    Create sinusoidal timestep embeddings.
    :param t: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an (N, D) Tensor of positional embeddings.
    """
    t = time_factor * t
    half = dim // 2
    freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)

    args = t[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    if torch.is_floating_point(t):
        embedding = embedding.to(t)
    return embedding

class MLPEmbedder(nn.Module):
    def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
        super().__init__()
        self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
        self.silu = nn.SiLU()
        self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device)

    def forward(self, x: Tensor) -> Tensor:
        return self.out_layer(self.silu(self.in_layer(x)))


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, dtype=None, device=None, operations=None):
        super().__init__()
        self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))

    def forward(self, x: Tensor):
        return comfy.ldm.common_dit.rms_norm(x, self.scale, 1e-6)


class QKNorm(torch.nn.Module):
    def __init__(self, dim: int, dtype=None, device=None, operations=None):
        super().__init__()
        self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
        self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple:
        q = self.query_norm(q)
        k = self.key_norm(k)
        return q.to(v), k.to(v)


class SelfAttention(nn.Module):
    def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads

        self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
        self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
        self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)


@dataclass
class ModulationOut:
    shift: Tensor
    scale: Tensor
    gate: Tensor


class Modulation(nn.Module):
    def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None):
        super().__init__()
        self.is_double = double
        self.multiplier = 6 if double else 3
        self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)

    def forward(self, vec: Tensor) -> tuple:
        out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)

        return (
            ModulationOut(*out[:3]),
            ModulationOut(*out[3:]) if self.is_double else None,
        )


class DoubleStreamBlock(nn.Module):
    def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=None, device=None, operations=None):
        super().__init__()

        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        self.num_heads = num_heads
        self.hidden_size = hidden_size
        self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
        self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)

        self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.img_mlp = nn.Sequential(
            operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
            nn.GELU(approximate="tanh"),
            operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
        )

        self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
        self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)

        self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.txt_mlp = nn.Sequential(
            operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
            nn.GELU(approximate="tanh"),
            operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
        )

    def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor):
        img_mod1, img_mod2 = self.img_mod(vec)
        txt_mod1, txt_mod2 = self.txt_mod(vec)

        # prepare image for attention
        img_modulated = self.img_norm1(img)
        img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
        img_qkv = self.img_attn.qkv(img_modulated)
        img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)

        # prepare txt for attention
        txt_modulated = self.txt_norm1(txt)
        txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
        txt_qkv = self.txt_attn.qkv(txt_modulated)
        txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)

        # run actual attention
        attn = attention(torch.cat((txt_q, img_q), dim=2),
                         torch.cat((txt_k, img_k), dim=2),
                         torch.cat((txt_v, img_v), dim=2), pe=pe)

        txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]

        # calculate the img bloks
        img = img + img_mod1.gate * self.img_attn.proj(img_attn)
        img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)

        # calculate the txt bloks
        txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
        txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)

        if txt.dtype == torch.float16:
            txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)

        return img, txt


class SingleStreamBlock(nn.Module):
    """
    A DiT block with parallel linear layers as described in
    https://arxiv.org/abs/2302.05442 and adapted modulation interface.
    """

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qk_scale: float = None,
        dtype=None,
        device=None,
        operations=None
    ):
        super().__init__()
        self.hidden_dim = hidden_size
        self.num_heads = num_heads
        head_dim = hidden_size // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
        # qkv and mlp_in
        self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
        # proj and mlp_out
        self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)

        self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)

        self.hidden_size = hidden_size
        self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)

        self.mlp_act = nn.GELU(approximate="tanh")
        self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)

    def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
        mod, _ = self.modulation(vec)
        x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
        qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)

        q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k = self.norm(q, k, v)

        # compute attention
        attn = attention(q, k, v, pe=pe)
        # compute activation in mlp stream, cat again and run second linear layer
        output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
        x += mod.gate * output
        if x.dtype == torch.float16:
            x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
        return x


class LastLayer(nn.Module):
    def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
        super().__init__()
        self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
        self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))

    def forward(self, x: Tensor, vec: Tensor) -> Tensor:
        shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
        x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
        x = self.linear(x)
        return x