File size: 37,079 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
"""
    This file is part of ComfyUI.
    Copyright (C) 2024 Comfy

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""

import psutil
import logging
from enum import Enum
from comfy.cli_args import args
import torch
import sys
import platform

class VRAMState(Enum):
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2

# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
cpu_state = CPUState.GPU

total_vram = 0

xpu_available = False
torch_version = ""
try:
    torch_version = torch.version.__version__
    xpu_available = (int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) <= 4)) and torch.xpu.is_available()
except:
    pass

lowvram_available = True
if args.deterministic:
    logging.info("Using deterministic algorithms for pytorch")
    torch.use_deterministic_algorithms(True, warn_only=True)

directml_enabled = False
if args.directml is not None:
    import torch_directml
    directml_enabled = True
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index)))
    # torch_directml.disable_tiled_resources(True)
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.

try:
    import intel_extension_for_pytorch as ipex
    _ = torch.xpu.device_count()
    xpu_available = torch.xpu.is_available()
except:
    xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available())

try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
        import torch.mps
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

def is_intel_xpu():
    global cpu_state
    global xpu_available
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
    global directml_enabled
    global cpu_state
    if directml_enabled:
        global directml_device
        return directml_device
    if cpu_state == CPUState.MPS:
        return torch.device("mps")
    if cpu_state == CPUState.CPU:
        return torch.device("cpu")
    else:
        if is_intel_xpu():
            return torch.device("xpu", torch.xpu.current_device())
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
        elif is_intel_xpu():
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            mem_total_torch = mem_reserved
            mem_total = torch.xpu.get_device_properties(dev).total_memory
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))

try:
    logging.info("pytorch version: {}".format(torch_version))
except:
    pass

try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
else:
    try:
        import xformers
        import xformers.ops
        XFORMERS_IS_AVAILABLE = True
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
        try:
            XFORMERS_VERSION = xformers.version.__version__
            logging.info("xformers version: {}".format(XFORMERS_VERSION))
            if XFORMERS_VERSION.startswith("0.0.18"):
                logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                logging.warning("Please downgrade or upgrade xformers to a different version.\n")
                XFORMERS_ENABLED_VAE = False
        except:
            pass
    except:
        XFORMERS_IS_AVAILABLE = False

def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
    return False

ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

VAE_DTYPES = [torch.float32]

try:
    if is_nvidia():
        if int(torch_version[0]) >= 2:
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
                ENABLE_PYTORCH_ATTENTION = True
            if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
                VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
except:
    pass

if is_intel_xpu():
    VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES

if args.cpu_vae:
    VAE_DTYPES = [torch.float32]


if ENABLE_PYTORCH_ATTENTION:
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)

if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
    lowvram_available = True
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
elif args.highvram or args.gpu_only:
    vram_state = VRAMState.HIGH_VRAM

FORCE_FP32 = False
FORCE_FP16 = False
if args.force_fp32:
    logging.info("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

if args.force_fp16:
    logging.info("Forcing FP16.")
    FORCE_FP16 = True

if lowvram_available:
    if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
        vram_state = set_vram_to


if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED

if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED

logging.info(f"Set vram state to: {vram_state.name}")

DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    logging.info("Disabling smart memory management")

def get_torch_device_name(device):
    if hasattr(device, 'type'):
        if device.type == "cuda":
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
        else:
            return "{}".format(device.type)
    elif is_intel_xpu():
        return "{} {}".format(device, torch.xpu.get_device_name(device))
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))

try:
    logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
except:
    logging.warning("Could not pick default device.")


current_loaded_models = []

def module_size(module):
    module_mem = 0
    sd = module.state_dict()
    for k in sd:
        t = sd[k]
        module_mem += t.nelement() * t.element_size()
    return module_mem

class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.device = model.load_device
        self.weights_loaded = False
        self.real_model = None
        self.currently_used = True

    def model_memory(self):
        return self.model.model_size()

    def model_offloaded_memory(self):
        return self.model.model_size() - self.model.loaded_size()

    def model_memory_required(self, device):
        if device == self.model.current_loaded_device():
            return self.model_offloaded_memory()
        else:
            return self.model_memory()

    def model_load(self, lowvram_model_memory=0, force_patch_weights=False):
        patch_model_to = self.device

        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())

        load_weights = not self.weights_loaded

        if self.model.loaded_size() > 0:
            use_more_vram = lowvram_model_memory
            if use_more_vram == 0:
                use_more_vram = 1e32
            self.model_use_more_vram(use_more_vram)
        else:
            try:
                self.real_model = self.model.patch_model(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, load_weights=load_weights, force_patch_weights=force_patch_weights)
            except Exception as e:
                self.model.unpatch_model(self.model.offload_device)
                self.model_unload()
                raise e

        if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and self.real_model is not None:
            with torch.no_grad():
                self.real_model = ipex.optimize(self.real_model.eval(), inplace=True, graph_mode=True, concat_linear=True)

        self.weights_loaded = True
        return self.real_model

    def should_reload_model(self, force_patch_weights=False):
        if force_patch_weights and self.model.lowvram_patch_counter() > 0:
            return True
        return False

    def model_unload(self, memory_to_free=None, unpatch_weights=True):
        if memory_to_free is not None:
            if memory_to_free < self.model.loaded_size():
                freed = self.model.partially_unload(self.model.offload_device, memory_to_free)
                if freed >= memory_to_free:
                    return False
        self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
        self.model.model_patches_to(self.model.offload_device)
        self.weights_loaded = self.weights_loaded and not unpatch_weights
        self.real_model = None
        return True

    def model_use_more_vram(self, extra_memory):
        return self.model.partially_load(self.device, extra_memory)

    def __eq__(self, other):
        return self.model is other.model

def use_more_memory(extra_memory, loaded_models, device):
    for m in loaded_models:
        if m.device == device:
            extra_memory -= m.model_use_more_vram(extra_memory)
            if extra_memory <= 0:
                break

def offloaded_memory(loaded_models, device):
    offloaded_mem = 0
    for m in loaded_models:
        if m.device == device:
            offloaded_mem += m.model_offloaded_memory()
    return offloaded_mem

WINDOWS = any(platform.win32_ver())

EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
if WINDOWS:
    EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 #Windows is higher because of the shared vram issue

if args.reserve_vram is not None:
    EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024
    logging.debug("Reserving {}MB vram for other applications.".format(EXTRA_RESERVED_VRAM / (1024 * 1024)))

def extra_reserved_memory():
    return EXTRA_RESERVED_VRAM

def minimum_inference_memory():
    return (1024 * 1024 * 1024) * 0.8 + extra_reserved_memory()

def unload_model_clones(model, unload_weights_only=True, force_unload=True):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    if len(to_unload) == 0:
        return True

    same_weights = 0
    for i in to_unload:
        if model.clone_has_same_weights(current_loaded_models[i].model):
            same_weights += 1

    if same_weights == len(to_unload):
        unload_weight = False
    else:
        unload_weight = True

    if not force_unload:
        if unload_weights_only and unload_weight == False:
            return None
    else:
        unload_weight = True

    for i in to_unload:
        logging.debug("unload clone {} {}".format(i, unload_weight))
        current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)

    return unload_weight

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = []
    can_unload = []
    unloaded_models = []

    for i in range(len(current_loaded_models) -1, -1, -1):
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
                can_unload.append((-shift_model.model_offloaded_memory(), sys.getrefcount(shift_model.model), shift_model.model_memory(), i))
                shift_model.currently_used = False

    for x in sorted(can_unload):
        i = x[-1]
        memory_to_free = None
        if not DISABLE_SMART_MEMORY:
            free_mem = get_free_memory(device)
            if free_mem > memory_required:
                break
            memory_to_free = memory_required - free_mem
        logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}")
        if current_loaded_models[i].model_unload(memory_to_free):
            unloaded_model.append(i)

    for i in sorted(unloaded_model, reverse=True):
        unloaded_models.append(current_loaded_models.pop(i))

    if len(unloaded_model) > 0:
        soft_empty_cache()
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
    return unloaded_models

def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
    global vram_state

    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required + extra_reserved_memory())
    if minimum_memory_required is None:
        minimum_memory_required = extra_mem
    else:
        minimum_memory_required = max(inference_memory, minimum_memory_required + extra_reserved_memory())

    models = set(models)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)
        loaded = None

        try:
            loaded_model_index = current_loaded_models.index(loaded_model)
        except:
            loaded_model_index = None

        if loaded_model_index is not None:
            loaded = current_loaded_models[loaded_model_index]
            if loaded.should_reload_model(force_patch_weights=force_patch_weights): #TODO: cleanup this model reload logic
                current_loaded_models.pop(loaded_model_index).model_unload(unpatch_weights=True)
                loaded = None
            else:
                loaded.currently_used = True
                models_already_loaded.append(loaded)

        if loaded is None:
            if hasattr(x, "model"):
                logging.info(f"Requested to load {x.model.__class__.__name__}")
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem + offloaded_memory(models_already_loaded, d), d, models_already_loaded)
                free_mem = get_free_memory(d)
                if free_mem < minimum_memory_required:
                    logging.info("Unloading models for lowram load.") #TODO: partial model unloading when this case happens, also handle the opposite case where models can be unlowvramed.
                    models_to_load = free_memory(minimum_memory_required, d)
                    logging.info("{} models unloaded.".format(len(models_to_load)))
                else:
                    use_more_memory(free_mem - minimum_memory_required, models_already_loaded, d)
        if len(models_to_load) == 0:
            return

    logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")

    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) #unload clones where the weights are different
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)

    for loaded_model in models_already_loaded:
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)

    for loaded_model in models_to_load:
        weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded
        if weights_unloaded is not None:
            loaded_model.weights_loaded = not weights_unloaded

    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.1 + extra_mem, device, models_already_loaded)

    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM) and not force_full_load:
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
            lowvram_model_memory = max(64 * (1024 * 1024), (current_free_mem - minimum_memory_required), min(current_free_mem * 0.4, current_free_mem - minimum_inference_memory()))
            if model_size <= lowvram_model_memory: #only switch to lowvram if really necessary
                lowvram_model_memory = 0

        if vram_set_state == VRAMState.NO_VRAM:
            lowvram_model_memory = 64 * 1024 * 1024

        cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights)
        current_loaded_models.insert(0, loaded_model)


    devs = set(map(lambda a: a.device, models_already_loaded))
    for d in devs:
        if d != torch.device("cpu"):
            free_mem = get_free_memory(d)
            if free_mem > minimum_memory_required:
                use_more_memory(free_mem - minimum_memory_required, models_already_loaded, d)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def loaded_models(only_currently_used=False):
    output = []
    for m in current_loaded_models:
        if only_currently_used:
            if not m.currently_used:
                continue

        output.append(m.model)
    return output

def cleanup_models(keep_clone_weights_loaded=False):
    to_delete = []
    for i in range(len(current_loaded_models)):
        #TODO: very fragile function needs improvement
        num_refs = sys.getrefcount(current_loaded_models[i].model)
        if num_refs <= 2:
            if not keep_clone_weights_loaded:
                to_delete = [i] + to_delete
            #TODO: find a less fragile way to do this.
            elif sys.getrefcount(current_loaded_models[i].real_model) <= 3: #references from .real_model + the .model
                to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x

def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except: #Old pytorch doesn't have .itemsize
            pass
    return dtype_size

def unet_offload_device():
    if vram_state == VRAMState.HIGH_VRAM:
        return get_torch_device()
    else:
        return torch.device("cpu")

def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
    if DISABLE_SMART_MEMORY:
        return cpu_dev

    model_size = dtype_size(dtype) * parameters

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

def maximum_vram_for_weights(device=None):
    return (get_total_memory(device) * 0.88 - minimum_inference_memory())

def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
    if model_params < 0:
        model_params = 1000000000000000000000
    if args.fp32_unet:
        return torch.float32
    if args.fp64_unet:
        return torch.float64
    if args.bf16_unet:
        return torch.bfloat16
    if args.fp16_unet:
        return torch.float16
    if args.fp8_e4m3fn_unet:
        return torch.float8_e4m3fn
    if args.fp8_e5m2_unet:
        return torch.float8_e5m2

    fp8_dtype = None
    try:
        for dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
            if dtype in supported_dtypes:
                fp8_dtype = dtype
                break
    except:
        pass

    if fp8_dtype is not None:
        if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
            return fp8_dtype

        free_model_memory = maximum_vram_for_weights(device)
        if model_params * 2 > free_model_memory:
            return fp8_dtype

    for dt in supported_dtypes:
        if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params):
            if torch.float16 in supported_dtypes:
                return torch.float16
        if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params):
            if torch.bfloat16 in supported_dtypes:
                return torch.bfloat16

    for dt in supported_dtypes:
        if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params, manual_cast=True):
            if torch.float16 in supported_dtypes:
                return torch.float16
        if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params, manual_cast=True):
            if torch.bfloat16 in supported_dtypes:
                return torch.bfloat16

    return torch.float32

# None means no manual cast
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
    if weight_dtype == torch.float32 or weight_dtype == torch.float64:
        return None

    fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
    if fp16_supported and weight_dtype == torch.float16:
        return None

    bf16_supported = should_use_bf16(inference_device)
    if bf16_supported and weight_dtype == torch.bfloat16:
        return None

    fp16_supported = should_use_fp16(inference_device, prioritize_performance=True)
    for dt in supported_dtypes:
        if dt == torch.float16 and fp16_supported:
            return torch.float16
        if dt == torch.bfloat16 and bf16_supported:
            return torch.bfloat16

    return torch.float32

def text_encoder_offload_device():
    if args.gpu_only:
        return get_torch_device()
    else:
        return torch.device("cpu")

def text_encoder_device():
    if args.gpu_only:
        return get_torch_device()
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
        if should_use_fp16(prioritize_performance=False):
            return get_torch_device()
        else:
            return torch.device("cpu")
    else:
        return torch.device("cpu")

def text_encoder_initial_device(load_device, offload_device, model_size=0):
    if load_device == offload_device or model_size <= 1024 * 1024 * 1024:
        return offload_device

    if is_device_mps(load_device):
        return offload_device

    mem_l = get_free_memory(load_device)
    mem_o = get_free_memory(offload_device)
    if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l:
        return load_device
    else:
        return offload_device

def text_encoder_dtype(device=None):
    if args.fp8_e4m3fn_text_enc:
        return torch.float8_e4m3fn
    elif args.fp8_e5m2_text_enc:
        return torch.float8_e5m2
    elif args.fp16_text_enc:
        return torch.float16
    elif args.fp32_text_enc:
        return torch.float32

    if is_device_cpu(device):
        return torch.float16

    return torch.float16


def intermediate_device():
    if args.gpu_only:
        return get_torch_device()
    else:
        return torch.device("cpu")

def vae_device():
    if args.cpu_vae:
        return torch.device("cpu")
    return get_torch_device()

def vae_offload_device():
    if args.gpu_only:
        return get_torch_device()
    else:
        return torch.device("cpu")

def vae_dtype(device=None, allowed_dtypes=[]):
    global VAE_DTYPES
    if args.fp16_vae:
        return torch.float16
    elif args.bf16_vae:
        return torch.bfloat16
    elif args.fp32_vae:
        return torch.float32

    for d in allowed_dtypes:
        if d == torch.float16 and should_use_fp16(device, prioritize_performance=False):
            return d
        if d in VAE_DTYPES:
            return d

    return VAE_DTYPES[0]

def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"

def supports_dtype(device, dtype): #TODO
    if dtype == torch.float32:
        return True
    if is_device_cpu(device):
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False

def supports_cast(device, dtype): #TODO
    if dtype == torch.float32:
        return True
    if dtype == torch.float16:
        return True
    if directml_enabled: #TODO: test this
        return False
    if dtype == torch.bfloat16:
        return True
    if is_device_mps(device):
        return False
    if dtype == torch.float8_e4m3fn:
        return True
    if dtype == torch.float8_e5m2:
        return True
    return False

def pick_weight_dtype(dtype, fallback_dtype, device=None):
    if dtype is None:
        dtype = fallback_dtype
    elif dtype_size(dtype) > dtype_size(fallback_dtype):
        dtype = fallback_dtype

    if not supports_cast(device, dtype):
        dtype = fallback_dtype

    return dtype

def device_supports_non_blocking(device):
    if is_device_mps(device):
        return False #pytorch bug? mps doesn't support non blocking
    if is_intel_xpu():
        return False
    if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
        return False
    if directml_enabled:
        return False
    return True

def device_should_use_non_blocking(device):
    if not device_supports_non_blocking(device):
        return False
    return False
    # return True #TODO: figure out why this causes memory issues on Nvidia and possibly others

def force_channels_last():
    if args.force_channels_last:
        return True

    #TODO
    return False

def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
    if device is None or weight.device == device:
        if not copy:
            if dtype is None or weight.dtype == dtype:
                return weight
        return weight.to(dtype=dtype, copy=copy)

    r = torch.empty_like(weight, dtype=dtype, device=device)
    r.copy_(weight, non_blocking=non_blocking)
    return r

def cast_to_device(tensor, device, dtype, copy=False):
    non_blocking = device_supports_non_blocking(device)
    return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy)


def xformers_enabled():
    global directml_enabled
    global cpu_state
    if cpu_state != CPUState.GPU:
        return False
    if is_intel_xpu():
        return False
    if directml_enabled:
        return False
    return XFORMERS_IS_AVAILABLE


def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False

    return XFORMERS_ENABLED_VAE

def pytorch_attention_enabled():
    global ENABLE_PYTORCH_ATTENTION
    return ENABLE_PYTORCH_ATTENTION

def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
        if is_nvidia(): #pytorch flash attention only works on Nvidia
            return True
        if is_intel_xpu():
            return True
    return False

def force_upcast_attention_dtype():
    upcast = args.force_upcast_attention
    try:
        macos_version = tuple(int(n) for n in platform.mac_ver()[0].split("."))
        if (14, 5) <= macos_version <= (15, 2):  # black image bug on recent versions of macOS
            upcast = True
    except:
        pass
    if upcast:
        return torch.float32
    else:
        return None

def get_free_memory(dev=None, torch_free_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
        elif is_intel_xpu():
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
            mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
            mem_free_total = mem_free_xpu + mem_free_torch
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total

def cpu_mode():
    global cpu_state
    return cpu_state == CPUState.CPU

def mps_mode():
    global cpu_state
    return cpu_state == CPUState.MPS

def is_device_type(device, type):
    if hasattr(device, 'type'):
        if (device.type == type):
            return True
    return False

def is_device_cpu(device):
    return is_device_type(device, 'cpu')

def is_device_mps(device):
    return is_device_type(device, 'mps')

def is_device_cuda(device):
    return is_device_type(device, 'cuda')

def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
    global directml_enabled

    if device is not None:
        if is_device_cpu(device):
            return False

    if FORCE_FP16:
        return True

    if device is not None:
        if is_device_mps(device):
            return True

    if FORCE_FP32:
        return False

    if directml_enabled:
        return False

    if mps_mode():
        return True

    if cpu_mode():
        return False

    if is_intel_xpu():
        return True

    if torch.version.hip:
        return True

    props = torch.cuda.get_device_properties(device)
    if props.major >= 8:
        return True

    if props.major < 6:
        return False

    #FP16 is confirmed working on a 1080 (GP104) and on latest pytorch actually seems faster than fp32
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            if WINDOWS or manual_cast:
                return True
            else:
                return False #weird linux behavior where fp32 is faster

    if manual_cast:
        free_model_memory = maximum_vram_for_weights(device)
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
            return True

    if props.major < 7:
        return False

    #FP16 is just broken on these cards
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
    if device is not None:
        if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
            return False

    if device is not None:
        if is_device_mps(device):
            return True

    if FORCE_FP32:
        return False

    if directml_enabled:
        return False

    if mps_mode():
        return True

    if cpu_mode():
        return False

    if is_intel_xpu():
        return True

    props = torch.cuda.get_device_properties(device)
    if props.major >= 8:
        return True

    bf16_works = torch.cuda.is_bf16_supported()

    if bf16_works or manual_cast:
        free_model_memory = maximum_vram_for_weights(device)
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
            return True

    return False

def supports_fp8_compute(device=None):
    if not is_nvidia():
        return False

    props = torch.cuda.get_device_properties(device)
    if props.major >= 9:
        return True
    if props.major < 8:
        return False
    if props.minor < 9:
        return False

    if int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) < 3):
        return False

    if WINDOWS:
        if (int(torch_version[0]) == 2 and int(torch_version[2]) < 4):
            return False

    return True

def soft_empty_cache(force=False):
    global cpu_state
    if cpu_state == CPUState.MPS:
        torch.mps.empty_cache()
    elif is_intel_xpu():
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

def unload_all_models():
    free_memory(1e30, get_torch_device())


def resolve_lowvram_weight(weight, model, key): #TODO: remove
    print("WARNING: The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.")
    return weight

#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()