File size: 23,546 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
"""
    This file is part of ComfyUI.
    Copyright (C) 2024 Comfy

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""

import torch
import copy
import inspect
import logging
import uuid
import collections
import math

import comfy.utils
import comfy.float
import comfy.model_management
import comfy.lora
from comfy.comfy_types import UnetWrapperFunction

def string_to_seed(data):
    crc = 0xFFFFFFFF
    for byte in data:
        if isinstance(byte, str):
            byte = ord(byte)
        crc ^= byte
        for _ in range(8):
            if crc & 1:
                crc = (crc >> 1) ^ 0xEDB88320
            else:
                crc >>= 1
    return crc ^ 0xFFFFFFFF

def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None):
    to = model_options["transformer_options"].copy()

    if "patches_replace" not in to:
        to["patches_replace"] = {}
    else:
        to["patches_replace"] = to["patches_replace"].copy()

    if name not in to["patches_replace"]:
        to["patches_replace"][name] = {}
    else:
        to["patches_replace"][name] = to["patches_replace"][name].copy()

    if transformer_index is not None:
        block = (block_name, number, transformer_index)
    else:
        block = (block_name, number)
    to["patches_replace"][name][block] = patch
    model_options["transformer_options"] = to
    return model_options

def set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=False):
    model_options["sampler_post_cfg_function"] = model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
    if disable_cfg1_optimization:
        model_options["disable_cfg1_optimization"] = True
    return model_options

def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_cfg1_optimization=False):
    model_options["sampler_pre_cfg_function"] = model_options.get("sampler_pre_cfg_function", []) + [pre_cfg_function]
    if disable_cfg1_optimization:
        model_options["disable_cfg1_optimization"] = True
    return model_options

def wipe_lowvram_weight(m):
    if hasattr(m, "prev_comfy_cast_weights"):
        m.comfy_cast_weights = m.prev_comfy_cast_weights
        del m.prev_comfy_cast_weights
    m.weight_function = None
    m.bias_function = None

class LowVramPatch:
    def __init__(self, key, patches):
        self.key = key
        self.patches = patches
    def __call__(self, weight):
        intermediate_dtype = weight.dtype
        if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
            intermediate_dtype = torch.float32
            return comfy.float.stochastic_rounding(comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype), weight.dtype, seed=string_to_seed(self.key))

        return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)

def get_key_weight(model, key):
    set_func = None
    convert_func = None
    op_keys = key.rsplit('.', 1)
    if len(op_keys) < 2:
        weight = comfy.utils.get_attr(model, key)
    else:
        op = comfy.utils.get_attr(model, op_keys[0])
        try:
            set_func = getattr(op, "set_{}".format(op_keys[1]))
        except AttributeError:
            pass

        try:
            convert_func = getattr(op, "convert_{}".format(op_keys[1]))
        except AttributeError:
            pass

        weight = getattr(op, op_keys[1])
        if convert_func is not None:
            weight = comfy.utils.get_attr(model, key)

    return weight, set_func, convert_func

class ModelPatcher:
    def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
        self.size = size
        self.model = model
        if not hasattr(self.model, 'device'):
            logging.debug("Model doesn't have a device attribute.")
            self.model.device = offload_device
        elif self.model.device is None:
            self.model.device = offload_device

        self.patches = {}
        self.backup = {}
        self.object_patches = {}
        self.object_patches_backup = {}
        self.model_options = {"transformer_options":{}}
        self.model_size()
        self.load_device = load_device
        self.offload_device = offload_device
        self.weight_inplace_update = weight_inplace_update
        self.patches_uuid = uuid.uuid4()

        if not hasattr(self.model, 'model_loaded_weight_memory'):
            self.model.model_loaded_weight_memory = 0

        if not hasattr(self.model, 'lowvram_patch_counter'):
            self.model.lowvram_patch_counter = 0

        if not hasattr(self.model, 'model_lowvram'):
            self.model.model_lowvram = False

    def model_size(self):
        if self.size > 0:
            return self.size
        self.size = comfy.model_management.module_size(self.model)
        return self.size

    def loaded_size(self):
        return self.model.model_loaded_weight_memory

    def lowvram_patch_counter(self):
        return self.model.lowvram_patch_counter

    def clone(self):
        n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
        n.patches = {}
        for k in self.patches:
            n.patches[k] = self.patches[k][:]
        n.patches_uuid = self.patches_uuid

        n.object_patches = self.object_patches.copy()
        n.model_options = copy.deepcopy(self.model_options)
        n.backup = self.backup
        n.object_patches_backup = self.object_patches_backup
        return n

    def is_clone(self, other):
        if hasattr(other, 'model') and self.model is other.model:
            return True
        return False

    def clone_has_same_weights(self, clone):
        if not self.is_clone(clone):
            return False

        if len(self.patches) == 0 and len(clone.patches) == 0:
            return True

        if self.patches_uuid == clone.patches_uuid:
            if len(self.patches) != len(clone.patches):
                logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.")
            else:
                return True

    def memory_required(self, input_shape):
        return self.model.memory_required(input_shape=input_shape)

    def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
        if disable_cfg1_optimization:
            self.model_options["disable_cfg1_optimization"] = True

    def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
        self.model_options = set_model_options_post_cfg_function(self.model_options, post_cfg_function, disable_cfg1_optimization)

    def set_model_sampler_pre_cfg_function(self, pre_cfg_function, disable_cfg1_optimization=False):
        self.model_options = set_model_options_pre_cfg_function(self.model_options, pre_cfg_function, disable_cfg1_optimization)

    def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction):
        self.model_options["model_function_wrapper"] = unet_wrapper_function

    def set_model_denoise_mask_function(self, denoise_mask_function):
        self.model_options["denoise_mask_function"] = denoise_mask_function

    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

    def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
        self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index)

    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

    def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)

    def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

    def set_model_input_block_patch(self, patch):
        self.set_model_patch(patch, "input_block_patch")

    def set_model_input_block_patch_after_skip(self, patch):
        self.set_model_patch(patch, "input_block_patch_after_skip")

    def set_model_output_block_patch(self, patch):
        self.set_model_patch(patch, "output_block_patch")

    def add_object_patch(self, name, obj):
        self.object_patches[name] = obj

    def get_model_object(self, name):
        if name in self.object_patches:
            return self.object_patches[name]
        else:
            if name in self.object_patches_backup:
                return self.object_patches_backup[name]
            else:
                return comfy.utils.get_attr(self.model, name)

    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
        if "model_function_wrapper" in self.model_options:
            wrap_func = self.model_options["model_function_wrapper"]
            if hasattr(wrap_func, "to"):
                self.model_options["model_function_wrapper"] = wrap_func.to(device)

    def model_dtype(self):
        if hasattr(self.model, "get_dtype"):
            return self.model.get_dtype()

    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        p = set()
        model_sd = self.model.state_dict()
        for k in patches:
            offset = None
            function = None
            if isinstance(k, str):
                key = k
            else:
                offset = k[1]
                key = k[0]
                if len(k) > 2:
                    function = k[2]

            if key in model_sd:
                p.add(k)
                current_patches = self.patches.get(key, [])
                current_patches.append((strength_patch, patches[k], strength_model, offset, function))
                self.patches[key] = current_patches

        self.patches_uuid = uuid.uuid4()
        return list(p)

    def get_key_patches(self, filter_prefix=None):
        model_sd = self.model_state_dict()
        p = {}
        for k in model_sd:
            if filter_prefix is not None:
                if not k.startswith(filter_prefix):
                    continue
            bk = self.backup.get(k, None)
            weight, set_func, convert_func = get_key_weight(self.model, k)
            if bk is not None:
                weight = bk.weight
            if convert_func is None:
                convert_func = lambda a, **kwargs: a

            if k in self.patches:
                p[k] = [(weight, convert_func)] + self.patches[k]
            else:
                p[k] = [(weight, convert_func)]
        return p

    def model_state_dict(self, filter_prefix=None):
        sd = self.model.state_dict()
        keys = list(sd.keys())
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
        return sd

    def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
        if key not in self.patches:
            return

        weight, set_func, convert_func = get_key_weight(self.model, key)
        inplace_update = self.weight_inplace_update or inplace_update

        if key not in self.backup:
            self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update)

        if device_to is not None:
            temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
        else:
            temp_weight = weight.to(torch.float32, copy=True)
        if convert_func is not None:
            temp_weight = convert_func(temp_weight, inplace=True)

        out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key)
        if set_func is None:
            out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
            if inplace_update:
                comfy.utils.copy_to_param(self.model, key, out_weight)
            else:
                comfy.utils.set_attr_param(self.model, key, out_weight)
        else:
            set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))

    def _load_list(self):
        loading = []
        for n, m in self.model.named_modules():
            params = []
            skip = False
            for name, param in m.named_parameters(recurse=False):
                params.append(name)
            for name, param in m.named_parameters(recurse=True):
                if name not in params:
                    skip = True # skip random weights in non leaf modules
                    break
            if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
                loading.append((comfy.model_management.module_size(m), n, m, params))
        return loading

    def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
        mem_counter = 0
        patch_counter = 0
        lowvram_counter = 0
        loading = self._load_list()

        load_completely = []
        loading.sort(reverse=True)
        for x in loading:
            n = x[1]
            m = x[2]
            params = x[3]
            module_mem = x[0]

            lowvram_weight = False

            if not full_load and hasattr(m, "comfy_cast_weights"):
                if mem_counter + module_mem >= lowvram_model_memory:
                    lowvram_weight = True
                    lowvram_counter += 1
                    if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
                        continue

            weight_key = "{}.weight".format(n)
            bias_key = "{}.bias".format(n)

            if lowvram_weight:
                if weight_key in self.patches:
                    if force_patch_weights:
                        self.patch_weight_to_device(weight_key)
                    else:
                        m.weight_function = LowVramPatch(weight_key, self.patches)
                        patch_counter += 1
                if bias_key in self.patches:
                    if force_patch_weights:
                        self.patch_weight_to_device(bias_key)
                    else:
                        m.bias_function = LowVramPatch(bias_key, self.patches)
                        patch_counter += 1

                m.prev_comfy_cast_weights = m.comfy_cast_weights
                m.comfy_cast_weights = True
            else:
                if hasattr(m, "comfy_cast_weights"):
                    if m.comfy_cast_weights:
                        wipe_lowvram_weight(m)

                if full_load or mem_counter + module_mem < lowvram_model_memory:
                    mem_counter += module_mem
                    load_completely.append((module_mem, n, m, params))

        load_completely.sort(reverse=True)
        for x in load_completely:
            n = x[1]
            m = x[2]
            params = x[3]
            if hasattr(m, "comfy_patched_weights"):
                if m.comfy_patched_weights == True:
                    continue

            for param in params:
                self.patch_weight_to_device("{}.{}".format(n, param), device_to=device_to)

            logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
            m.comfy_patched_weights = True

        for x in load_completely:
            x[2].to(device_to)

        if lowvram_counter > 0:
            logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
            self.model.model_lowvram = True
        else:
            logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
            self.model.model_lowvram = False
            if full_load:
                self.model.to(device_to)
                mem_counter = self.model_size()

        self.model.lowvram_patch_counter += patch_counter
        self.model.device = device_to
        self.model.model_loaded_weight_memory = mem_counter

    def patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
        for k in self.object_patches:
            old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
            if k not in self.object_patches_backup:
                self.object_patches_backup[k] = old

        if lowvram_model_memory == 0:
            full_load = True
        else:
            full_load = False

        if load_weights:
            self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load)
        return self.model

    def unpatch_model(self, device_to=None, unpatch_weights=True):
        if unpatch_weights:
            if self.model.model_lowvram:
                for m in self.model.modules():
                    wipe_lowvram_weight(m)

                self.model.model_lowvram = False
                self.model.lowvram_patch_counter = 0

            keys = list(self.backup.keys())

            for k in keys:
                bk = self.backup[k]
                if bk.inplace_update:
                    comfy.utils.copy_to_param(self.model, k, bk.weight)
                else:
                    comfy.utils.set_attr_param(self.model, k, bk.weight)

            self.backup.clear()

            if device_to is not None:
                self.model.to(device_to)
                self.model.device = device_to
            self.model.model_loaded_weight_memory = 0

            for m in self.model.modules():
                if hasattr(m, "comfy_patched_weights"):
                    del m.comfy_patched_weights

        keys = list(self.object_patches_backup.keys())
        for k in keys:
            comfy.utils.set_attr(self.model, k, self.object_patches_backup[k])

        self.object_patches_backup.clear()

    def partially_unload(self, device_to, memory_to_free=0):
        memory_freed = 0
        patch_counter = 0
        unload_list = self._load_list()
        unload_list.sort()
        for unload in unload_list:
            if memory_to_free < memory_freed:
                break
            module_mem = unload[0]
            n = unload[1]
            m = unload[2]
            params = unload[3]

            lowvram_possible = hasattr(m, "comfy_cast_weights")
            if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
                move_weight = True
                for param in params:
                    key = "{}.{}".format(n, param)
                    bk = self.backup.get(key, None)
                    if bk is not None:
                        if not lowvram_possible:
                            move_weight = False
                            break

                        if bk.inplace_update:
                            comfy.utils.copy_to_param(self.model, key, bk.weight)
                        else:
                            comfy.utils.set_attr_param(self.model, key, bk.weight)
                        self.backup.pop(key)

                weight_key = "{}.weight".format(n)
                bias_key = "{}.bias".format(n)
                if move_weight:
                    m.to(device_to)
                    if lowvram_possible:
                        if weight_key in self.patches:
                            m.weight_function = LowVramPatch(weight_key, self.patches)
                            patch_counter += 1
                        if bias_key in self.patches:
                            m.bias_function = LowVramPatch(bias_key, self.patches)
                            patch_counter += 1

                        m.prev_comfy_cast_weights = m.comfy_cast_weights
                        m.comfy_cast_weights = True
                    m.comfy_patched_weights = False
                    memory_freed += module_mem
                    logging.debug("freed {}".format(n))

        self.model.model_lowvram = True
        self.model.lowvram_patch_counter += patch_counter
        self.model.model_loaded_weight_memory -= memory_freed
        return memory_freed

    def partially_load(self, device_to, extra_memory=0):
        self.unpatch_model(unpatch_weights=False)
        self.patch_model(load_weights=False)
        full_load = False
        if self.model.model_lowvram == False:
            return 0
        if self.model.model_loaded_weight_memory + extra_memory > self.model_size():
            full_load = True
        current_used = self.model.model_loaded_weight_memory
        self.load(device_to, lowvram_model_memory=current_used + extra_memory, full_load=full_load)
        return self.model.model_loaded_weight_memory - current_used

    def current_loaded_device(self):
        return self.model.device

    def calculate_weight(self, patches, weight, key, intermediate_dtype=torch.float32):
        print("WARNING the ModelPatcher.calculate_weight function is deprecated, please use: comfy.lora.calculate_weight instead")
        return comfy.lora.calculate_weight(patches, weight, key, intermediate_dtype=intermediate_dtype)