File size: 7,510 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
## ComfyUI-to-Python-Extension
![banner](images/comfyui_to_python_banner.png)

The `ComfyUI-to-Python-Extension` is a powerful tool that translates [ComfyUI](https://github.com/comfyanonymous/ComfyUI) workflows into executable Python code. Designed to bridge the gap between ComfyUI's visual interface and Python's programming environment, this script facilitates the seamless transition from design to code execution. Whether you're a data scientist, a software developer, or an AI enthusiast, this tool streamlines the process of implementing ComfyUI workflows in Python.

**Convert this:**

![SDXL UI Example](images/SDXL-UI-Example.jpg)


**To this:**

```
import random
import torch
import sys

sys.path.append("../")
from nodes import (
    VAEDecode,
    KSamplerAdvanced,
    EmptyLatentImage,
    SaveImage,
    CheckpointLoaderSimple,
    CLIPTextEncode,
)


def main():
    with torch.inference_mode():
        checkpointloadersimple = CheckpointLoaderSimple()
        checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint(
            ckpt_name="sd_xl_base_1.0.safetensors"
        )

        emptylatentimage = EmptyLatentImage()
        emptylatentimage_5 = emptylatentimage.generate(
            width=1024, height=1024, batch_size=1
        )

        cliptextencode = CLIPTextEncode()
        cliptextencode_6 = cliptextencode.encode(
            text="evening sunset scenery blue sky nature, glass bottle with a galaxy in it",
            clip=checkpointloadersimple_4[1],
        )

        cliptextencode_7 = cliptextencode.encode(
            text="text, watermark", clip=checkpointloadersimple_4[1]
        )

        checkpointloadersimple_12 = checkpointloadersimple.load_checkpoint(
            ckpt_name="sd_xl_refiner_1.0.safetensors"
        )

        cliptextencode_15 = cliptextencode.encode(
            text="evening sunset scenery blue sky nature, glass bottle with a galaxy in it",
            clip=checkpointloadersimple_12[1],
        )

        cliptextencode_16 = cliptextencode.encode(
            text="text, watermark", clip=checkpointloadersimple_12[1]
        )

        ksampleradvanced = KSamplerAdvanced()
        vaedecode = VAEDecode()
        saveimage = SaveImage()

        for q in range(10):
            ksampleradvanced_10 = ksampleradvanced.sample(
                add_noise="enable",
                noise_seed=random.randint(1, 2**64),
                steps=25,
                cfg=8,
                sampler_name="euler",
                scheduler="normal",
                start_at_step=0,
                end_at_step=20,
                return_with_leftover_noise="enable",
                model=checkpointloadersimple_4[0],
                positive=cliptextencode_6[0],
                negative=cliptextencode_7[0],
                latent_image=emptylatentimage_5[0],
            )

            ksampleradvanced_11 = ksampleradvanced.sample(
                add_noise="disable",
                noise_seed=random.randint(1, 2**64),
                steps=25,
                cfg=8,
                sampler_name="euler",
                scheduler="normal",
                start_at_step=20,
                end_at_step=10000,
                return_with_leftover_noise="disable",
                model=checkpointloadersimple_12[0],
                positive=cliptextencode_15[0],
                negative=cliptextencode_16[0],
                latent_image=ksampleradvanced_10[0],
            )

            vaedecode_17 = vaedecode.decode(
                samples=ksampleradvanced_11[0], vae=checkpointloadersimple_12[2]
            )

            saveimage_19 = saveimage.save_images(
                filename_prefix="ComfyUI", images=vaedecode_17[0]
            )


if __name__ == "__main__":
    main()
```
## Potential Use Cases
- Streamlining the process for creating a lean app or pipeline deployment that uses a ComfyUI workflow
- Creating programmatic experiments for various prompt/parameter values
- Creating large queues for image generation (For example, you could adjust the script to generate 1000 images without clicking ctrl+enter 1000 times)
- Easily expanding or iterating on your architecture in Python once a foundational workflow is in place in the GUI

## V1.3.0 Release Notes
- Generate .py file directly from the ComfyUI Web App

![Save As Script](images/save_as_script.png)

## V1.2.1 Release Notes
- Dynamically change `comfyui_to_python.py` parameters with CLI arguments
- Hotfix to handle nodes that accept kwargs.

## V1.2.0 Release Notes
- Updates to adhere to latest changes from `ComfyUI`

## V1.0.0 Release Notes
- **Use all the custom nodes!**
    - Custom nodes are now supported. If you run into any issues with code execution, first ensure that the each node works as expected in the GUI. If it works in the GUI, but not in the generated script, please submit an issue.


## Installation


1. Navigate to your `ComfyUI/custom_nodes` directory

2. Clone this repo
    ```bash
    git clone https://github.com/pydn/ComfyUI-to-Python-Extension.git
    ```

    After cloning the repo, your `ComfyUI` directory should look like this:
    ```
    /comfy
    /comfy_extras
    /custom_nodes
    --/ComfyUI-to-Python-Extension
    /input
    /models
    /output
    /script_examples
    /web
    .gitignore
    LICENSE
    README.md
    comfyui_screenshot.png
    cuda_mollac.py
    execution.py
    extra_model_paths.yaml.example
    folder_paths.py
    latent_preview.py
    main.py
    nodes.py
    requirements.txt
    server.py
    ```

## Web App Use
1. Launch ComfyUI

2. Load your favorite workflow and click `Save As Script`

![Save As Script](images/save_as_script.png)

3. Type your desired file name into the pop up screen.

4. Move .py file from your downloads folder to your `ComfyUI` directory.

5. Now you can execute the newly created .py file to generate images without launching a server.

## CLI Usage
1. Navigate to the `ComfyUI-to-Python-Extension` folder and install requirements
    ```bash
    pip install -r requirements.txt
    ```

2. Launch ComfyUI, click the gear icon over `Queue Prompt`, then check `Enable Dev mode Options`. **THE SCRIPT WILL NOT WORK IF YOU DO NOT ENABLE THIS OPTION!**

![Enable Dev Mode Options](images/dev_mode_options.jpg)

3. Load up your favorite workflows, then click the newly enabled `Save (API Format)` button under Queue Prompt

4. Move the downloaded .json workflow file to your `ComfyUI/ComfyUI-to-Python-Extension` folder

5. If needed, add arguments when executing `comfyui_to_python.py` to update the default `input_file` and `output_file` to match your .json workflow file and desired .py file name. By default, the script will look for a file called `workflow_api.json`. You can also update the `queue_size` variable to your desired number of images that you want to generate in a single script execution. By default, the scripts will generate 10 images. Run `python comfyui_to_python.py --help` for more details.

6a. Run the script with default arguments:
   ```bash
   python comfyui_to_python.py
   ```
6b. Run the script with optional arguments:
   ```bash
   python comfyui_to_python.py --input_file "workflow_api (2).json" --output_file my_workflow.py --queue_size 100
   ```

7. After running `comfyui_to_python.py`, a new .py file will be created in the current working directory. If you made no changes, look for `workflow_api.py`.

8. Now you can execute the newly created .py file to generate images without launching a server.