Spaces:
Running
on
L40S
Running
on
L40S
File size: 4,964 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import base64
import io
import json
from pathlib import Path
from typing import Optional
import folder_paths
import torch
from ..log import log
from ..utils import tensor2pil
# region processors
def process_tensor(tensor):
log.debug(f"Tensor: {tensor.shape}")
image = tensor2pil(tensor)
b64_imgs = []
for im in image:
buffered = io.BytesIO()
im.save(buffered, format="PNG")
b64_imgs.append(
"data:image/png;base64,"
+ base64.b64encode(buffered.getvalue()).decode("utf-8")
)
return {"b64_images": b64_imgs}
def process_list(anything):
text = []
if not anything:
return {"text": []}
first_element = anything[0]
if (
isinstance(first_element, list)
and first_element
and isinstance(first_element[0], torch.Tensor)
):
text.append(
"List of List of Tensors: "
f"{first_element[0].shape} (x{len(anything)})"
)
elif isinstance(first_element, torch.Tensor):
text.append(
f"List of Tensors: {first_element.shape} (x{len(anything)})"
)
else:
text.append(f"Array ({len(anything)}): {anything}")
return {"text": text}
def process_dict(anything):
text = []
if "samples" in anything:
is_empty = (
"(empty)" if torch.count_nonzero(anything["samples"]) == 0 else ""
)
text.append(f"Latent Samples: {anything['samples'].shape} {is_empty}")
else:
text.append(json.dumps(anything, indent=2))
return {"text": text}
def process_bool(anything):
return {"text": ["True" if anything else "False"]}
def process_text(anything):
return {"text": [str(anything)]}
# endregion
class MTB_Debug:
"""Experimental node to debug any Comfy values.
support for more types and widgets is planned.
"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {"output_to_console": ("BOOLEAN", {"default": False})},
}
RETURN_TYPES = ()
FUNCTION = "do_debug"
CATEGORY = "mtb/debug"
OUTPUT_NODE = True
def do_debug(self, output_to_console: bool, **kwargs):
output = {
"ui": {"b64_images": [], "text": []},
# "result": ("A"),
}
processors = {
torch.Tensor: process_tensor,
list: process_list,
dict: process_dict,
bool: process_bool,
}
if output_to_console:
for k, v in kwargs.items():
log.info(f"{k}: {v}")
for anything in kwargs.values():
processor = processors.get(type(anything), process_text)
processed_data = processor(anything)
for ui_key, ui_value in processed_data.items():
output["ui"][ui_key].extend(ui_value)
return output
class MTB_SaveTensors:
"""Save torch tensors (image, mask or latent) to disk.
useful to debug things outside comfy.
"""
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "mtb/debug"
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"filename_prefix": ("STRING", {"default": "ComfyPickle"}),
},
"optional": {
"image": ("IMAGE",),
"mask": ("MASK",),
"latent": ("LATENT",),
},
}
FUNCTION = "save"
OUTPUT_NODE = True
RETURN_TYPES = ()
CATEGORY = "mtb/debug"
def save(
self,
filename_prefix,
image: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
latent: Optional[torch.Tensor] = None,
):
(
full_output_folder,
filename,
counter,
subfolder,
filename_prefix,
) = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
full_output_folder = Path(full_output_folder)
if image is not None:
image_file = f"{filename}_image_{counter:05}.pt"
torch.save(image, full_output_folder / image_file)
# np.save(full_output_folder/ image_file, image.cpu().numpy())
if mask is not None:
mask_file = f"{filename}_mask_{counter:05}.pt"
torch.save(mask, full_output_folder / mask_file)
# np.save(full_output_folder/ mask_file, mask.cpu().numpy())
if latent is not None:
# for latent we must use pickle
latent_file = f"{filename}_latent_{counter:05}.pt"
torch.save(latent, full_output_folder / latent_file)
# pickle.dump(latent, open(full_output_folder/ latent_file, "wb"))
# np.save(full_output_folder / latent_file,
# latent[""].cpu().numpy())
return f"{filename_prefix}_{counter:05}"
__nodes__ = [MTB_Debug, MTB_SaveTensors]
|