Spaces:
Running
on
L40S
Running
on
L40S
#---------------------------------------------------------------------------------------------------------------------# | |
# Comfyroll Studio custom nodes by RockOfFire and Akatsuzi https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes | |
# for ComfyUI https://github.com/comfyanonymous/ComfyUI | |
#---------------------------------------------------------------------------------------------------------------------# | |
# based on https://github.com/LEv145/images-grid-comfy-plugin | |
import os | |
import folder_paths | |
from PIL import Image, ImageFont | |
import torch | |
import numpy as np | |
import re | |
from pathlib import Path | |
import typing as t | |
from dataclasses import dataclass | |
from .functions_xygrid import create_images_grid_by_columns, Annotation | |
from ..categories import icons | |
def tensor_to_pillow(image: t.Any) -> Image.Image: | |
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) | |
def pillow_to_tensor(image: Image.Image) -> t.Any: | |
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0) | |
def find_highest_numeric_value(directory, filename_prefix): | |
highest_value = -1 # Initialize with a value lower than possible numeric values | |
# Iterate through all files in the directory | |
for filename in os.listdir(directory): | |
if filename.startswith(filename_prefix): | |
try: | |
# Extract numeric part of the filename | |
numeric_part = filename[len(filename_prefix):] | |
numeric_str = re.search(r'\d+', numeric_part).group() | |
numeric_value = int(numeric_str) | |
# Check if the current numeric value is higher than the highest found so far | |
if numeric_value > highest_value: | |
highest_value = int(numeric_value) | |
except ValueError: | |
# If the numeric part is not a valid integer, ignore the file | |
continue | |
return highest_value | |
#---------------------------------------------------------------------------------------------------------------------# | |
class CR_XYList: | |
def INPUT_TYPES(s): | |
return {"required":{ | |
"index": ("INT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 1.0,}), | |
"list1": ("STRING", {"multiline": True, "default": "x"}), #"forceInput": True}), | |
"x_prepend": ("STRING", {"multiline": False, "default": ""}), | |
"x_append": ("STRING", {"multiline": False, "default": ""}), | |
"x_annotation_prepend": ("STRING", {"multiline": False, "default": ""}), | |
"list2": ("STRING", {"multiline": True, "default": "y"}), | |
"y_prepend": ("STRING", {"multiline": False, "default": ""}), | |
"y_append": ("STRING", {"multiline": False, "default": ""}), | |
"y_annotation_prepend": ("STRING", {"multiline": False, "default": ""}), | |
} | |
} | |
RETURN_TYPES = ("STRING", "STRING", "STRING", "STRING", "BOOLEAN", "STRING", ) | |
RETURN_NAMES = ("X", "Y", "x_annotation", "y_annotation", "trigger", "show_help", ) | |
FUNCTION = "cross_join" | |
CATEGORY = icons.get("Comfyroll/XY Grid") | |
def cross_join(self, list1, list2, x_prepend, x_append, x_annotation_prepend, | |
y_prepend, y_append, y_annotation_prepend, index): | |
# Index values for all XY nodes start from 1 | |
index -=1 | |
trigger = False | |
#listx = list1.split(",") | |
#listy = list2.split(",") | |
listx = re.split(r',(?=(?:[^"]*"[^"]*")*[^"]*$)', list1) | |
listy = re.split(r',(?=(?:[^"]*"[^"]*")*[^"]*$)', list2) | |
listx = [item.strip() for item in listx] | |
listy = [item.strip() for item in listy] | |
lenx = len(listx) | |
leny = len(listy) | |
grid_size = lenx * leny | |
x = index % lenx | |
y = int(index / lenx) | |
x_out = x_prepend + listx[x] + x_append | |
y_out = y_prepend + listy[y] + y_append | |
x_ann_out = "" | |
y_ann_out = "" | |
if index + 1 == grid_size: | |
x_ann_out = [x_annotation_prepend + item + ";" for item in listx] | |
y_ann_out = [y_annotation_prepend + item + ";" for item in listy] | |
x_ann_out = "".join([str(item) for item in x_ann_out]) | |
y_ann_out = "".join([str(item) for item in y_ann_out]) | |
trigger = True | |
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/XY-Grid-Nodes#cr-xy-list" | |
return (x_out, y_out, x_ann_out, y_ann_out, trigger, show_help, ) | |
#---------------------------------------------------------------------------------------------------------------------# | |
class CR_XYInterpolate: | |
def INPUT_TYPES(s): | |
gradient_profiles = ["Lerp"] | |
return {"required": {"x_columns":("INT", {"default": 5.0, "min": 0.0, "max": 9999.0, "step": 1.0,}), | |
"x_start_value": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 0.01,}), | |
"x_step": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 9999.0, "step": 0.01,}), | |
"x_annotation_prepend": ("STRING", {"multiline": False, "default": ""}), | |
"y_rows":("INT", {"default": 5.0, "min": 0.0, "max": 9999.0, "step": 1.0,}), | |
"y_start_value": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 0.01,}), | |
"y_step": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 9999.0, "step": 0.01,}), | |
"y_annotation_prepend": ("STRING", {"multiline": False, "default": ""}), | |
"index": ("INT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 1.0,}), | |
"gradient_profile": (gradient_profiles,) | |
} | |
} | |
RETURN_TYPES = ("FLOAT", "FLOAT", "STRING", "STRING", "BOOLEAN", "STRING", ) | |
RETURN_NAMES = ("X", "Y", "x_annotation", "y_annotation", "trigger", "show_help", ) | |
FUNCTION = "gradient" | |
CATEGORY = icons.get("Comfyroll/XY Grid") | |
def gradient(self, x_columns, x_start_value, x_step, x_annotation_prepend, | |
y_rows, y_start_value, y_step, y_annotation_prepend, | |
index, gradient_profile): | |
# Index values for all XY nodes start from 1 | |
index -=1 | |
trigger = False | |
grid_size = x_columns * y_rows | |
x = index % x_columns | |
y = int(index / x_columns) | |
x_float_out = round(x_start_value + x * x_step, 3) | |
y_float_out = round(y_start_value + y * y_step, 3) | |
x_ann_out = "" | |
y_ann_out = "" | |
if index + 1 == grid_size: | |
for i in range(0, x_columns): | |
x = index % x_columns | |
x_float_out = x_start_value + i * x_step | |
x_float_out = round(x_float_out, 3) | |
x_ann_out = x_ann_out + x_annotation_prepend + str(x_float_out) + "; " | |
for j in range(0, y_rows): | |
y = int(index / x_columns) | |
y_float_out = y_start_value + j * y_step | |
y_float_out = round(y_float_out, 3) | |
y_ann_out = y_ann_out + y_annotation_prepend + str(y_float_out) + "; " | |
x_ann_out = x_ann_out[:-1] | |
y_ann_out = y_ann_out[:-1] | |
print(x_ann_out,y_ann_out) | |
trigger = True | |
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/XY-Grid-Nodes#cr-xy-interpolate" | |
return (x_float_out, y_float_out, x_ann_out, y_ann_out, trigger, show_help, ) | |
#---------------------------------------------------------------------------------------------------------------------# | |
class CR_XYIndex: | |
def INPUT_TYPES(s): | |
gradient_profiles = ["Lerp"] | |
return {"required": {"x_columns":("INT", {"default": 5.0, "min": 0.0, "max": 9999.0, "step": 1.0,}), | |
"y_rows":("INT", {"default": 5.0, "min": 0.0, "max": 9999.0, "step": 1.0,}), | |
"index": ("INT", {"default": 0.0, "min": 0.0, "max": 9999.0, "step": 1.0,}), | |
} | |
} | |
RETURN_TYPES = ("INT", "INT", "STRING", ) | |
RETURN_NAMES = ("x", "y", "show_help", ) | |
FUNCTION = "index" | |
CATEGORY = icons.get("Comfyroll/XY Grid") | |
def index(self, x_columns, y_rows, index): | |
# Index values for all XY nodes start from 1 | |
index -=1 | |
x = index % x_columns | |
y = int(index / x_columns) | |
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/XY-Grid-Nodes#cr-xy-index" | |
return (x, y, show_help, ) | |
#---------------------------------------------------------------------------------------------------------------------# | |
class CR_XYFromFolder: | |
def INPUT_TYPES(cls) -> dict[str, t.Any]: | |
input_dir = folder_paths.output_directory | |
image_folder = [name for name in os.listdir(input_dir) if os.path.isdir(os.path.join(input_dir,name))] | |
return {"required": | |
{"image_folder": (sorted(image_folder), ), | |
"start_index": ("INT", {"default": 1, "min": 0, "max": 10000}), | |
"end_index": ("INT", {"default": 1, "min": 1, "max": 10000}), | |
"max_columns": ("INT", {"default": 1, "min": 1, "max": 10000}), | |
"x_annotation": ("STRING", {"multiline": True}), | |
"y_annotation": ("STRING", {"multiline": True}), | |
"font_size": ("INT", {"default": 50, "min": 1}), | |
"gap": ("INT", {"default": 0, "min": 0}), | |
}, | |
"optional": { | |
"trigger": ("BOOLEAN", {"default": False},), | |
} | |
} | |
RETURN_TYPES = ("IMAGE", "BOOLEAN", "STRING", ) | |
RETURN_NAMES = ("IMAGE", "trigger", "show_help", ) | |
FUNCTION = "load_images" | |
CATEGORY = icons.get("Comfyroll/XY Grid") | |
def load_images(self, image_folder, start_index, end_index, max_columns, x_annotation, y_annotation, font_size, gap, trigger=False): | |
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/XY-Grid-Nodes#cr-xy-from-folder" | |
if trigger == False: | |
return((), False, show_help, ) | |
input_dir = folder_paths.output_directory | |
image_path = os.path.join(input_dir, image_folder) | |
file_list = sorted(os.listdir(image_path), key=lambda s: sum(((s, int(n)) for s, n in re.findall(r'(\D+)(\d+)', 'a%s0' % s)), ())) | |
sample_frames = [] | |
pillow_images = [] | |
if len(file_list) < end_index: | |
end_index = len(file_list) | |
for num in range(start_index, end_index + 1): | |
i = Image.open(os.path.join(image_path, file_list[num - 1])) | |
image = i.convert("RGB") | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = torch.from_numpy(image)[None,] | |
image = image.squeeze() | |
sample_frames.append(image) | |
resolved_font_path = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), "fonts\Roboto-Regular.ttf") | |
font = ImageFont.truetype(str(resolved_font_path), size=font_size) | |
start_x_ann = (start_index % max_columns) - 1 | |
start_y_ann = int(start_index / max_columns) | |
column_list = x_annotation.split(";")[start_x_ann:] | |
row_list = y_annotation.split(";")[start_y_ann:] | |
column_list = [item.strip() for item in column_list] | |
row_list = [item.strip() for item in row_list] | |
annotation = Annotation(column_texts=column_list, row_texts=row_list, font=font) | |
images = torch.stack(sample_frames) | |
pillow_images = [tensor_to_pillow(i) for i in images] | |
pillow_grid = create_images_grid_by_columns( | |
images=pillow_images, | |
gap=gap, | |
annotation=annotation, | |
max_columns=max_columns, | |
) | |
tensor_grid = pillow_to_tensor(pillow_grid) | |
return (tensor_grid, trigger, show_help, ) | |
#---------------------------------------------------------------------------------------------------------------------# | |
class CR_XYSaveGridImage: | |
# originally based on SaveImageSequence by mtb | |
def __init__(self): | |
self.type = "output" | |
def INPUT_TYPES(cls): | |
output_dir = folder_paths.output_directory | |
output_folders = [name for name in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir,name))] | |
return { | |
"required": {"mode": (["Save", "Preview"],), | |
"output_folder": (sorted(output_folders), ), | |
"image": ("IMAGE", ), | |
"filename_prefix": ("STRING", {"default": "CR"}), | |
"file_format": (["webp", "jpg", "png", "tif"],), | |
}, | |
"optional": {"output_path": ("STRING", {"default": '', "multiline": False}), | |
"trigger": ("BOOLEAN", {"default": False},), | |
} | |
} | |
RETURN_TYPES = () | |
FUNCTION = "save_image" | |
OUTPUT_NODE = True | |
CATEGORY = icons.get("Comfyroll/XY Grid") | |
def save_image(self, mode, output_folder, image, file_format, output_path='', filename_prefix="CR", trigger=False): | |
if trigger == False: | |
return () | |
output_dir = folder_paths.get_output_directory() | |
out_folder = os.path.join(output_dir, output_folder) | |
# Set the output path | |
if output_path != '': | |
if not os.path.exists(output_path): | |
print(f"[Warning] CR Save XY Grid Image: The input_path `{output_path}` does not exist") | |
return ("",) | |
out_path = output_path | |
else: | |
out_path = os.path.join(output_dir, out_folder) | |
if mode == "Preview": | |
out_path = folder_paths.temp_directory | |
print(f"[Info] CR Save XY Grid Image: Output path is `{out_path}`") | |
# Set the counter | |
counter = find_highest_numeric_value(out_path, filename_prefix) + 1 | |
#print(f"[Debug] counter {counter}") | |
# Output image | |
output_image = image[0].cpu().numpy() | |
img = Image.fromarray(np.clip(output_image * 255.0, 0, 255).astype(np.uint8)) | |
output_filename = f"{filename_prefix}_{counter:05}" | |
img_params = {'png': {'compress_level': 4}, | |
'webp': {'method': 6, 'lossless': False, 'quality': 80}, | |
'jpg': {'format': 'JPEG'}, | |
'tif': {'format': 'TIFF'} | |
} | |
self.type = "output" if mode == "Save" else 'temp' | |
resolved_image_path = os.path.join(out_path, f"{output_filename}.{file_format}") | |
img.save(resolved_image_path, **img_params[file_format]) | |
print(f"[Info] CR Save XY Grid Image: Saved to {output_filename}.{file_format}") | |
out_filename = f"{output_filename}.{file_format}" | |
preview = {"ui": {"images": [{"filename": out_filename,"subfolder": out_path,"type": self.type,}]}} | |
return preview | |
#---------------------------------------------------------------------------------------------------------------------# | |
# MAPPINGS | |
#---------------------------------------------------------------------------------------------------------------------# | |
# For reference only, actual mappings are in __init__.py | |
# 0 nodes released | |
''' | |
NODE_CLASS_MAPPINGS = { | |
# XY Grid | |
"CR XY List":CR_XYList, | |
"CR XY Index":CR_XYIndex, | |
"CR XY Interpolate":CR_XYInterpolate, | |
"CR XY From Folder":CR_XYFromFolder, | |
"CR XY Save Grid Image":CR_XYSaveGridImage, | |
} | |
''' | |