multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
3.68 kB
import torch
import torch.nn as nn
import numpy as np
from functools import partial
from .util import extract_into_tensor, make_beta_schedule
from comfy.ldm.util import default
class AbstractLowScaleModel(nn.Module):
# for concatenating a downsampled image to the latent representation
def __init__(self, noise_schedule_config=None):
super(AbstractLowScaleModel, self).__init__()
if noise_schedule_config is not None:
self.register_schedule(**noise_schedule_config)
def register_schedule(self, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
def q_sample(self, x_start, t, noise=None, seed=None):
if noise is None:
if seed is None:
noise = torch.randn_like(x_start)
else:
noise = torch.randn(x_start.size(), dtype=x_start.dtype, layout=x_start.layout, generator=torch.manual_seed(seed)).to(x_start.device)
return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise)
def forward(self, x):
return x, None
def decode(self, x):
return x
class SimpleImageConcat(AbstractLowScaleModel):
# no noise level conditioning
def __init__(self):
super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
self.max_noise_level = 0
def forward(self, x):
# fix to constant noise level
return x, torch.zeros(x.shape[0], device=x.device).long()
class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
super().__init__(noise_schedule_config=noise_schedule_config)
self.max_noise_level = max_noise_level
def forward(self, x, noise_level=None, seed=None):
if noise_level is None:
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
else:
assert isinstance(noise_level, torch.Tensor)
z = self.q_sample(x, noise_level, seed=seed)
return z, noise_level