Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
import json | |
import numpy as np | |
import os | |
import torch | |
from basicsr.utils import FileClient, imfrombytes | |
from collections import OrderedDict | |
# ---------------------------- This script is used to parse facial landmarks ------------------------------------- # | |
# Configurations | |
save_img = False | |
scale = 0.5 # 0.5 for official FFHQ (512x512), 1 for others | |
enlarge_ratio = 1.4 # only for eyes | |
json_path = 'ffhq-dataset-v2.json' | |
face_path = 'datasets/ffhq/ffhq_512.lmdb' | |
save_path = './FFHQ_eye_mouth_landmarks_512.pth' | |
print('Load JSON metadata...') | |
# use the official json file in FFHQ dataset | |
with open(json_path, 'rb') as f: | |
json_data = json.load(f, object_pairs_hook=OrderedDict) | |
print('Open LMDB file...') | |
# read ffhq images | |
file_client = FileClient('lmdb', db_paths=face_path) | |
with open(os.path.join(face_path, 'meta_info.txt')) as fin: | |
paths = [line.split('.')[0] for line in fin] | |
save_dict = {} | |
for item_idx, item in enumerate(json_data.values()): | |
print(f'\r{item_idx} / {len(json_data)}, {item["image"]["file_path"]} ', end='', flush=True) | |
# parse landmarks | |
lm = np.array(item['image']['face_landmarks']) | |
lm = lm * scale | |
item_dict = {} | |
# get image | |
if save_img: | |
img_bytes = file_client.get(paths[item_idx]) | |
img = imfrombytes(img_bytes, float32=True) | |
# get landmarks for each component | |
map_left_eye = list(range(36, 42)) | |
map_right_eye = list(range(42, 48)) | |
map_mouth = list(range(48, 68)) | |
# eye_left | |
mean_left_eye = np.mean(lm[map_left_eye], 0) # (x, y) | |
half_len_left_eye = np.max((np.max(np.max(lm[map_left_eye], 0) - np.min(lm[map_left_eye], 0)) / 2, 16)) | |
item_dict['left_eye'] = [mean_left_eye[0], mean_left_eye[1], half_len_left_eye] | |
# mean_left_eye[0] = 512 - mean_left_eye[0] # for testing flip | |
half_len_left_eye *= enlarge_ratio | |
loc_left_eye = np.hstack((mean_left_eye - half_len_left_eye + 1, mean_left_eye + half_len_left_eye)).astype(int) | |
if save_img: | |
eye_left_img = img[loc_left_eye[1]:loc_left_eye[3], loc_left_eye[0]:loc_left_eye[2], :] | |
cv2.imwrite(f'tmp/{item_idx:08d}_eye_left.png', eye_left_img * 255) | |
# eye_right | |
mean_right_eye = np.mean(lm[map_right_eye], 0) | |
half_len_right_eye = np.max((np.max(np.max(lm[map_right_eye], 0) - np.min(lm[map_right_eye], 0)) / 2, 16)) | |
item_dict['right_eye'] = [mean_right_eye[0], mean_right_eye[1], half_len_right_eye] | |
# mean_right_eye[0] = 512 - mean_right_eye[0] # # for testing flip | |
half_len_right_eye *= enlarge_ratio | |
loc_right_eye = np.hstack( | |
(mean_right_eye - half_len_right_eye + 1, mean_right_eye + half_len_right_eye)).astype(int) | |
if save_img: | |
eye_right_img = img[loc_right_eye[1]:loc_right_eye[3], loc_right_eye[0]:loc_right_eye[2], :] | |
cv2.imwrite(f'tmp/{item_idx:08d}_eye_right.png', eye_right_img * 255) | |
# mouth | |
mean_mouth = np.mean(lm[map_mouth], 0) | |
half_len_mouth = np.max((np.max(np.max(lm[map_mouth], 0) - np.min(lm[map_mouth], 0)) / 2, 16)) | |
item_dict['mouth'] = [mean_mouth[0], mean_mouth[1], half_len_mouth] | |
# mean_mouth[0] = 512 - mean_mouth[0] # for testing flip | |
loc_mouth = np.hstack((mean_mouth - half_len_mouth + 1, mean_mouth + half_len_mouth)).astype(int) | |
if save_img: | |
mouth_img = img[loc_mouth[1]:loc_mouth[3], loc_mouth[0]:loc_mouth[2], :] | |
cv2.imwrite(f'tmp/{item_idx:08d}_mouth.png', mouth_img * 255) | |
save_dict[f'{item_idx:08d}'] = item_dict | |
print('Save...') | |
torch.save(save_dict, save_path) | |