Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
from PIL import Image, ImageDraw, ImageFilter | |
from ..log import log | |
from ..utils import np2tensor, pil2tensor, tensor2np, tensor2pil | |
class MTB_Bbox: | |
"""The bounding box (BBOX) custom type used by other nodes""" | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
# "bbox": ("BBOX",), | |
"x": ( | |
"INT", | |
{"default": 0, "max": 10000000, "min": 0, "step": 1}, | |
), | |
"y": ( | |
"INT", | |
{"default": 0, "max": 10000000, "min": 0, "step": 1}, | |
), | |
"width": ( | |
"INT", | |
{"default": 256, "max": 10000000, "min": 0, "step": 1}, | |
), | |
"height": ( | |
"INT", | |
{"default": 256, "max": 10000000, "min": 0, "step": 1}, | |
), | |
} | |
} | |
RETURN_TYPES = ("BBOX",) | |
FUNCTION = "do_crop" | |
CATEGORY = "mtb/crop" | |
def do_crop(self, x: int, y: int, width: int, height: int): # bbox | |
return ((x, y, width, height),) | |
class MTB_SplitBbox: | |
"""Split the components of a bbox""" | |
def INPUT_TYPES(cls): | |
return { | |
"required": {"bbox": ("BBOX",)}, | |
} | |
CATEGORY = "mtb/crop" | |
FUNCTION = "split_bbox" | |
RETURN_TYPES = ("INT", "INT", "INT", "INT") | |
RETURN_NAMES = ("x", "y", "width", "height") | |
def split_bbox(self, bbox): | |
return (bbox[0], bbox[1], bbox[2], bbox[3]) | |
class MTB_UpscaleBboxBy: | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"bbox": ("BBOX",), | |
"scale": ("FLOAT", {"default": 1.0}), | |
}, | |
} | |
CATEGORY = "mtb/crop" | |
RETURN_TYPES = ("BBOX",) | |
FUNCTION = "upscale" | |
def upscale( | |
self, bbox: tuple[int, int, int, int], scale: float | |
) -> tuple[tuple[int, int, int, int]]: | |
x, y, width, height = bbox | |
# scaled = (x * scale, y * scale, width * scale, height * scale) | |
scaled = ( | |
int(x * scale), | |
int(y * scale), | |
int(width * scale), | |
int(height * scale), | |
) | |
return (scaled,) | |
class MTB_BboxFromMask: | |
"""From a mask extract the bounding box""" | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"mask": ("MASK",), | |
"invert": ("BOOLEAN", {"default": False}), | |
}, | |
"optional": { | |
"image": ("IMAGE",), | |
}, | |
} | |
RETURN_TYPES = ( | |
"BBOX", | |
"IMAGE", | |
) | |
RETURN_NAMES = ( | |
"bbox", | |
"image (optional)", | |
) | |
FUNCTION = "extract_bounding_box" | |
CATEGORY = "mtb/crop" | |
def extract_bounding_box( | |
self, mask: torch.Tensor, invert: bool, image=None | |
): | |
# if image != None: | |
# if mask.size(0) != image.size(0): | |
# if mask.size(0) != 1: | |
# log.error( | |
# f"Batch count mismatch for mask and image, it can either be 1 mask for X images, or X masks for X images (mask: {mask.shape} | image: {image.shape})" | |
# ) | |
# raise Exception( | |
# f"Batch count mismatch for mask and image, it can either be 1 mask for X images, or X masks for X images (mask: {mask.shape} | image: {image.shape})" | |
# ) | |
# we invert it | |
_mask = tensor2pil(1.0 - mask)[0] if invert else tensor2pil(mask)[0] | |
alpha_channel = np.array(_mask) | |
non_zero_indices = np.nonzero(alpha_channel) | |
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1]) | |
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0]) | |
# Create a bounding box tuple | |
if image != None: | |
# Convert the image to a NumPy array | |
imgs = tensor2np(image) | |
out = [] | |
for img in imgs: | |
# Crop the image from the bounding box | |
img = img[min_y:max_y, min_x:max_x, :] | |
log.debug(f"Cropped image to shape {img.shape}") | |
out.append(img) | |
image = np2tensor(out) | |
log.debug(f"Cropped images shape: {image.shape}") | |
bounding_box = (min_x, min_y, max_x - min_x, max_y - min_y) | |
return ( | |
bounding_box, | |
image, | |
) | |
class MTB_Crop: | |
"""Crops an image and an optional mask to a given bounding box | |
The bounding box can be given as a tuple of (x, y, width, height) or as a BBOX type | |
The BBOX input takes precedence over the tuple input | |
""" | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
}, | |
"optional": { | |
"mask": ("MASK",), | |
"x": ( | |
"INT", | |
{"default": 0, "max": 10000000, "min": 0, "step": 1}, | |
), | |
"y": ( | |
"INT", | |
{"default": 0, "max": 10000000, "min": 0, "step": 1}, | |
), | |
"width": ( | |
"INT", | |
{"default": 256, "max": 10000000, "min": 0, "step": 1}, | |
), | |
"height": ( | |
"INT", | |
{"default": 256, "max": 10000000, "min": 0, "step": 1}, | |
), | |
"bbox": ("BBOX",), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE", "MASK", "BBOX") | |
FUNCTION = "do_crop" | |
CATEGORY = "mtb/crop" | |
def do_crop( | |
self, | |
image: torch.Tensor, | |
mask=None, | |
x=0, | |
y=0, | |
width=256, | |
height=256, | |
bbox=None, | |
): | |
image = image.numpy() | |
if mask is not None: | |
mask = mask.numpy() | |
if bbox is not None: | |
x, y, width, height = bbox | |
cropped_image = image[:, y : y + height, x : x + width, :] | |
cropped_mask = None | |
if mask is not None: | |
cropped_mask = ( | |
mask[:, y : y + height, x : x + width] | |
if mask is not None | |
else None | |
) | |
crop_data = (x, y, width, height) | |
return ( | |
torch.from_numpy(cropped_image), | |
torch.from_numpy(cropped_mask) | |
if cropped_mask is not None | |
else None, | |
crop_data, | |
) | |
# def calculate_intersection(rect1, rect2): | |
# x_left = max(rect1[0], rect2[0]) | |
# y_top = max(rect1[1], rect2[1]) | |
# x_right = min(rect1[2], rect2[2]) | |
# y_bottom = min(rect1[3], rect2[3]) | |
# return (x_left, y_top, x_right, y_bottom) | |
def bbox_check(bbox, target_size=None): | |
if not target_size: | |
return bbox | |
new_bbox = ( | |
bbox[0], | |
bbox[1], | |
min(target_size[0] - bbox[0], bbox[2]), | |
min(target_size[1] - bbox[1], bbox[3]), | |
) | |
if new_bbox != bbox: | |
log.warn(f"BBox too big, constrained to {new_bbox}") | |
return new_bbox | |
def bbox_to_region(bbox, target_size=None): | |
bbox = bbox_check(bbox, target_size) | |
# to region | |
return (bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]) | |
class MTB_Uncrop: | |
"""Uncrops an image to a given bounding box | |
The bounding box can be given as a tuple of (x, y, width, height) or as a BBOX type | |
The BBOX input takes precedence over the tuple input | |
""" | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"crop_image": ("IMAGE",), | |
"bbox": ("BBOX",), | |
"border_blending": ( | |
"FLOAT", | |
{"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}, | |
), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "do_crop" | |
CATEGORY = "mtb/crop" | |
def do_crop(self, image, crop_image, bbox, border_blending): | |
def inset_border(image, border_width=20, border_color=(0)): | |
width, height = image.size | |
bordered_image = Image.new( | |
image.mode, (width, height), border_color | |
) | |
bordered_image.paste(image, (0, 0)) | |
draw = ImageDraw.Draw(bordered_image) | |
draw.rectangle( | |
(0, 0, width - 1, height - 1), | |
outline=border_color, | |
width=border_width, | |
) | |
return bordered_image | |
single = image.size(0) == 1 | |
if image.size(0) != crop_image.size(0): | |
if not single: | |
raise ValueError( | |
"The Image batch count is greater than 1, but doesn't match the crop_image batch count. If using batches they should either match or only crop_image must be greater than 1" | |
) | |
images = tensor2pil(image) | |
crop_imgs = tensor2pil(crop_image) | |
out_images = [] | |
for i, crop in enumerate(crop_imgs): | |
if single: | |
img = images[0] | |
else: | |
img = images[i] | |
# uncrop the image based on the bounding box | |
bb_x, bb_y, bb_width, bb_height = bbox | |
paste_region = bbox_to_region( | |
(bb_x, bb_y, bb_width, bb_height), img.size | |
) | |
# log.debug(f"Paste region: {paste_region}") | |
# new_region = adjust_paste_region(img.size, paste_region) | |
# log.debug(f"Adjusted paste region: {new_region}") | |
# # Check if the adjusted paste region is different from the original | |
crop_img = crop.convert("RGB") | |
log.debug(f"Crop image size: {crop_img.size}") | |
log.debug(f"Image size: {img.size}") | |
if border_blending > 1.0: | |
border_blending = 1.0 | |
elif border_blending < 0.0: | |
border_blending = 0.0 | |
blend_ratio = (max(crop_img.size) / 2) * float(border_blending) | |
blend = img.convert("RGBA") | |
mask = Image.new("L", img.size, 0) | |
mask_block = Image.new("L", (bb_width, bb_height), 255) | |
mask_block = inset_border(mask_block, int(blend_ratio / 2), (0)) | |
mask.paste(mask_block, paste_region) | |
log.debug(f"Blend size: {blend.size} | kind {blend.mode}") | |
log.debug( | |
f"Crop image size: {crop_img.size} | kind {crop_img.mode}" | |
) | |
log.debug(f"BBox: {paste_region}") | |
blend.paste(crop_img, paste_region) | |
mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4)) | |
mask = mask.filter( | |
ImageFilter.GaussianBlur(radius=blend_ratio / 4) | |
) | |
blend.putalpha(mask) | |
img = Image.alpha_composite(img.convert("RGBA"), blend) | |
out_images.append(img.convert("RGB")) | |
return (pil2tensor(out_images),) | |
__nodes__ = [ | |
MTB_BboxFromMask, | |
MTB_Bbox, | |
MTB_Crop, | |
MTB_Uncrop, | |
MTB_SplitBbox, | |
MTB_UpscaleBboxBy, | |
] | |