Spaces:
Running
on
L40S
Running
on
L40S
from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace | |
import os | |
import torch | |
import json | |
import logging | |
import comfy.ops | |
import comfy.model_patcher | |
import comfy.model_management | |
import comfy.utils | |
import comfy.clip_model | |
class Output: | |
def __getitem__(self, key): | |
return getattr(self, key) | |
def __setitem__(self, key, item): | |
setattr(self, key, item) | |
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True): | |
mean = torch.tensor(mean, device=image.device, dtype=image.dtype) | |
std = torch.tensor(std, device=image.device, dtype=image.dtype) | |
image = image.movedim(-1, 1) | |
if not (image.shape[2] == size and image.shape[3] == size): | |
if crop: | |
scale = (size / min(image.shape[2], image.shape[3])) | |
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3])) | |
else: | |
scale_size = (size, size) | |
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True) | |
h = (image.shape[2] - size)//2 | |
w = (image.shape[3] - size)//2 | |
image = image[:,:,h:h+size,w:w+size] | |
image = torch.clip((255. * image), 0, 255).round() / 255.0 | |
return (image - mean.view([3,1,1])) / std.view([3,1,1]) | |
class ClipVisionModel(): | |
def __init__(self, json_config): | |
with open(json_config) as f: | |
config = json.load(f) | |
self.image_size = config.get("image_size", 224) | |
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073]) | |
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711]) | |
self.load_device = comfy.model_management.text_encoder_device() | |
offload_device = comfy.model_management.text_encoder_offload_device() | |
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device) | |
self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast) | |
self.model.eval() | |
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) | |
def load_sd(self, sd): | |
return self.model.load_state_dict(sd, strict=False) | |
def get_sd(self): | |
return self.model.state_dict() | |
def encode_image(self, image, crop=True): | |
comfy.model_management.load_model_gpu(self.patcher) | |
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float() | |
out = self.model(pixel_values=pixel_values, intermediate_output=-2) | |
outputs = Output() | |
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device()) | |
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device()) | |
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device()) | |
return outputs | |
def convert_to_transformers(sd, prefix): | |
sd_k = sd.keys() | |
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k: | |
keys_to_replace = { | |
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding", | |
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight", | |
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight", | |
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias", | |
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight", | |
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias", | |
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight", | |
} | |
for x in keys_to_replace: | |
if x in sd_k: | |
sd[keys_to_replace[x]] = sd.pop(x) | |
if "{}proj".format(prefix) in sd_k: | |
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1) | |
sd = transformers_convert(sd, prefix, "vision_model.", 48) | |
else: | |
replace_prefix = {prefix: ""} | |
sd = state_dict_prefix_replace(sd, replace_prefix) | |
return sd | |
def load_clipvision_from_sd(sd, prefix="", convert_keys=False): | |
if convert_keys: | |
sd = convert_to_transformers(sd, prefix) | |
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd: | |
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json") | |
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd: | |
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json") | |
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd: | |
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152: | |
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json") | |
elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577: | |
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json") | |
else: | |
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json") | |
else: | |
return None | |
clip = ClipVisionModel(json_config) | |
m, u = clip.load_sd(sd) | |
if len(m) > 0: | |
logging.warning("missing clip vision: {}".format(m)) | |
u = set(u) | |
keys = list(sd.keys()) | |
for k in keys: | |
if k not in u: | |
sd.pop(k) | |
return clip | |
def load(ckpt_path): | |
sd = load_torch_file(ckpt_path) | |
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd: | |
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True) | |
else: | |
return load_clipvision_from_sd(sd) | |