multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
21.5 kB
from nodes import SaveImage
import torch
import torchvision.transforms.v2 as T
import random
import folder_paths
import comfy.utils
from .image import ImageExpandBatch
from .utils import AnyType
import numpy as np
import scipy
from PIL import Image
from nodes import MAX_RESOLUTION
import math
any = AnyType("*")
class MaskBlur:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"amount": ("INT", { "default": 6, "min": 0, "max": 256, "step": 1, }),
"device": (["auto", "cpu", "gpu"],),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, mask, amount, device):
if amount == 0:
return (mask,)
if "gpu" == device:
mask = mask.to(comfy.model_management.get_torch_device())
elif "cpu" == device:
mask = mask.to('cpu')
if amount % 2 == 0:
amount+= 1
if mask.dim() == 2:
mask = mask.unsqueeze(0)
mask = T.functional.gaussian_blur(mask.unsqueeze(1), amount).squeeze(1)
if "gpu" == device or "cpu" == device:
mask = mask.to(comfy.model_management.intermediate_device())
return(mask,)
class MaskFlip:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"axis": (["x", "y", "xy"],),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, mask, axis):
if mask.dim() == 2:
mask = mask.unsqueeze(0)
dim = ()
if "y" in axis:
dim += (1,)
if "x" in axis:
dim += (2,)
mask = torch.flip(mask, dims=dim)
return(mask,)
class MaskPreview(SaveImage):
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
self.type = "temp"
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
self.compress_level = 4
@classmethod
def INPUT_TYPES(s):
return {
"required": {"mask": ("MASK",), },
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, mask, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
return self.save_images(preview, filename_prefix, prompt, extra_pnginfo)
class MaskBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask1": ("MASK",),
"mask2": ("MASK",),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask batch"
def execute(self, mask1, mask2):
if mask1.shape[1:] != mask2.shape[1:]:
mask2 = comfy.utils.common_upscale(mask2.unsqueeze(1).expand(-1,3,-1,-1), mask1.shape[2], mask1.shape[1], upscale_method='bicubic', crop='center')[:,0,:,:]
return (torch.cat((mask1, mask2), dim=0),)
class MaskExpandBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"size": ("INT", { "default": 16, "min": 1, "step": 1, }),
"method": (["expand", "repeat all", "repeat first", "repeat last"],)
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask batch"
def execute(self, mask, size, method):
return (ImageExpandBatch().execute(mask.unsqueeze(1).expand(-1,3,-1,-1), size, method)[0][:,0,:,:],)
class MaskBoundingBox:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"padding": ("INT", { "default": 0, "min": 0, "max": 4096, "step": 1, }),
"blur": ("INT", { "default": 0, "min": 0, "max": 256, "step": 1, }),
},
"optional": {
"image_optional": ("IMAGE",),
}
}
RETURN_TYPES = ("MASK", "IMAGE", "INT", "INT", "INT", "INT")
RETURN_NAMES = ("MASK", "IMAGE", "x", "y", "width", "height")
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, mask, padding, blur, image_optional=None):
if mask.dim() == 2:
mask = mask.unsqueeze(0)
if image_optional is None:
image_optional = mask.unsqueeze(3).repeat(1, 1, 1, 3)
# resize the image if it's not the same size as the mask
if image_optional.shape[1:] != mask.shape[1:]:
image_optional = comfy.utils.common_upscale(image_optional.permute([0,3,1,2]), mask.shape[2], mask.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1])
# match batch size
if image_optional.shape[0] < mask.shape[0]:
image_optional = torch.cat((image_optional, image_optional[-1].unsqueeze(0).repeat(mask.shape[0]-image_optional.shape[0], 1, 1, 1)), dim=0)
elif image_optional.shape[0] > mask.shape[0]:
image_optional = image_optional[:mask.shape[0]]
# blur the mask
if blur > 0:
if blur % 2 == 0:
blur += 1
mask = T.functional.gaussian_blur(mask.unsqueeze(1), blur).squeeze(1)
_, y, x = torch.where(mask)
x1 = max(0, x.min().item() - padding)
x2 = min(mask.shape[2], x.max().item() + 1 + padding)
y1 = max(0, y.min().item() - padding)
y2 = min(mask.shape[1], y.max().item() + 1 + padding)
# crop the mask
mask = mask[:, y1:y2, x1:x2]
image_optional = image_optional[:, y1:y2, x1:x2, :]
return (mask, image_optional, x1, y1, x2 - x1, y2 - y1)
class MaskFromColor:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"red": ("INT", { "default": 255, "min": 0, "max": 255, "step": 1, }),
"green": ("INT", { "default": 255, "min": 0, "max": 255, "step": 1, }),
"blue": ("INT", { "default": 255, "min": 0, "max": 255, "step": 1, }),
"threshold": ("INT", { "default": 0, "min": 0, "max": 127, "step": 1, }),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, image, red, green, blue, threshold):
temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int)
color = torch.tensor([red, green, blue])
lower_bound = (color - threshold).clamp(min=0)
upper_bound = (color + threshold).clamp(max=255)
lower_bound = lower_bound.view(1, 1, 1, 3)
upper_bound = upper_bound.view(1, 1, 1, 3)
mask = (temp >= lower_bound) & (temp <= upper_bound)
mask = mask.all(dim=-1)
mask = mask.float()
return (mask, )
class MaskFromSegmentation:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"segments": ("INT", { "default": 6, "min": 1, "max": 16, "step": 1, }),
"remove_isolated_pixels": ("INT", { "default": 0, "min": 0, "max": 32, "step": 1, }),
"remove_small_masks": ("FLOAT", { "default": 0.0, "min": 0., "max": 1., "step": 0.01, }),
"fill_holes": ("BOOLEAN", { "default": False }),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, image, segments, remove_isolated_pixels, fill_holes, remove_small_masks):
im = image[0] # we only work on the first image in the batch
im = Image.fromarray((im * 255).to(torch.uint8).cpu().numpy(), mode="RGB")
im = im.quantize(palette=im.quantize(colors=segments), dither=Image.Dither.NONE)
im = torch.tensor(np.array(im.convert("RGB"))).float() / 255.0
colors = im.reshape(-1, im.shape[-1])
colors = torch.unique(colors, dim=0)
masks = []
for color in colors:
mask = (im == color).all(dim=-1).float()
# remove isolated pixels
if remove_isolated_pixels > 0:
mask = torch.from_numpy(scipy.ndimage.binary_opening(mask.cpu().numpy(), structure=np.ones((remove_isolated_pixels, remove_isolated_pixels))))
# fill holes
if fill_holes:
mask = torch.from_numpy(scipy.ndimage.binary_fill_holes(mask.cpu().numpy()))
# if the mask is too small, it's probably noise
if mask.sum() / (mask.shape[0]*mask.shape[1]) > remove_small_masks:
masks.append(mask)
if masks == []:
masks.append(torch.zeros_like(im)[:,:,0]) # return an empty mask if no masks were found, prevents errors
mask = torch.stack(masks, dim=0).float()
return (mask, )
class MaskFix:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"erode_dilate": ("INT", { "default": 0, "min": -256, "max": 256, "step": 1, }),
"fill_holes": ("INT", { "default": 0, "min": 0, "max": 128, "step": 1, }),
"remove_isolated_pixels": ("INT", { "default": 0, "min": 0, "max": 32, "step": 1, }),
"smooth": ("INT", { "default": 0, "min": 0, "max": 256, "step": 1, }),
"blur": ("INT", { "default": 0, "min": 0, "max": 256, "step": 1, }),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, mask, erode_dilate, smooth, remove_isolated_pixels, blur, fill_holes):
masks = []
for m in mask:
# erode and dilate
if erode_dilate != 0:
if erode_dilate < 0:
m = torch.from_numpy(scipy.ndimage.grey_erosion(m.cpu().numpy(), size=(-erode_dilate, -erode_dilate)))
else:
m = torch.from_numpy(scipy.ndimage.grey_dilation(m.cpu().numpy(), size=(erode_dilate, erode_dilate)))
# fill holes
if fill_holes > 0:
#m = torch.from_numpy(scipy.ndimage.binary_fill_holes(m.cpu().numpy(), structure=np.ones((fill_holes,fill_holes)))).float()
m = torch.from_numpy(scipy.ndimage.grey_closing(m.cpu().numpy(), size=(fill_holes, fill_holes)))
# remove isolated pixels
if remove_isolated_pixels > 0:
m = torch.from_numpy(scipy.ndimage.grey_opening(m.cpu().numpy(), size=(remove_isolated_pixels, remove_isolated_pixels)))
# smooth the mask
if smooth > 0:
if smooth % 2 == 0:
smooth += 1
m = T.functional.gaussian_blur((m > 0.5).unsqueeze(0), smooth).squeeze(0)
# blur the mask
if blur > 0:
if blur % 2 == 0:
blur += 1
m = T.functional.gaussian_blur(m.float().unsqueeze(0), blur).squeeze(0)
masks.append(m.float())
masks = torch.stack(masks, dim=0).float()
return (masks, )
class MaskSmooth:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"amount": ("INT", { "default": 0, "min": 0, "max": 127, "step": 1, }),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, mask, amount):
if amount == 0:
return (mask,)
if amount % 2 == 0:
amount += 1
mask = mask > 0.5
mask = T.functional.gaussian_blur(mask.unsqueeze(1), amount).squeeze(1).float()
return (mask,)
class MaskFromBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK", ),
"start": ("INT", { "default": 0, "min": 0, "step": 1, }),
"length": ("INT", { "default": 1, "min": 1, "step": 1, }),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask batch"
def execute(self, mask, start, length):
if length > mask.shape[0]:
length = mask.shape[0]
start = min(start, mask.shape[0]-1)
length = min(mask.shape[0]-start, length)
return (mask[start:start + length], )
class MaskFromList:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"width": ("INT", { "default": 32, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"height": ("INT", { "default": 32, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
}, "optional": {
"values": (any, { "default": 0.0, "min": 0.0, "max": 1.0, }),
"str_values": ("STRING", { "default": "", "multiline": True, "placeholder": "0.0, 0.5, 1.0",}),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, width, height, values=None, str_values=""):
out = []
if values is not None:
if not isinstance(values, list):
out = [values]
else:
out.extend([float(v) for v in values])
if str_values != "":
str_values = [float(v) for v in str_values.split(",")]
out.extend(str_values)
if out == []:
raise ValueError("No values provided")
out = torch.tensor(out).float().clamp(0.0, 1.0)
out = out.view(-1, 1, 1).expand(-1, height, width)
values = None
str_values = ""
return (out, )
class MaskFromRGBCMYBW:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"threshold_r": ("FLOAT", { "default": 0.15, "min": 0.0, "max": 1, "step": 0.01, }),
"threshold_g": ("FLOAT", { "default": 0.15, "min": 0.0, "max": 1, "step": 0.01, }),
"threshold_b": ("FLOAT", { "default": 0.15, "min": 0.0, "max": 1, "step": 0.01, }),
}
}
RETURN_TYPES = ("MASK","MASK","MASK","MASK","MASK","MASK","MASK","MASK",)
RETURN_NAMES = ("red","green","blue","cyan","magenta","yellow","black","white",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, image, threshold_r, threshold_g, threshold_b):
red = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] < threshold_g) & (image[..., 2] < threshold_b)).float()
green = ((image[..., 0] < threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] < threshold_b)).float()
blue = ((image[..., 0] < threshold_r) & (image[..., 1] < threshold_g) & (image[..., 2] >= 1-threshold_b)).float()
cyan = ((image[..., 0] < threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] >= 1-threshold_b)).float()
magenta = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] < threshold_g) & (image[..., 2] > 1-threshold_b)).float()
yellow = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] < threshold_b)).float()
black = ((image[..., 0] <= threshold_r) & (image[..., 1] <= threshold_g) & (image[..., 2] <= threshold_b)).float()
white = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] >= 1-threshold_b)).float()
return (red, green, blue, cyan, magenta, yellow, black, white,)
class TransitionMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"width": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }),
"height": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }),
"frames": ("INT", { "default": 16, "min": 1, "max": 9999, "step": 1, }),
"start_frame": ("INT", { "default": 0, "min": 0, "step": 1, }),
"end_frame": ("INT", { "default": 9999, "min": 0, "step": 1, }),
"transition_type": (["horizontal slide", "vertical slide", "horizontal bar", "vertical bar", "center box", "horizontal door", "vertical door", "circle", "fade"],),
"timing_function": (["linear", "in", "out", "in-out"],)
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def linear(self, i, t):
return i/t
def ease_in(self, i, t):
return pow(i/t, 2)
def ease_out(self, i, t):
return 1 - pow(1 - i/t, 2)
def ease_in_out(self, i, t):
if i < t/2:
return pow(i/(t/2), 2) / 2
else:
return 1 - pow(1 - (i - t/2)/(t/2), 2) / 2
def execute(self, width, height, frames, start_frame, end_frame, transition_type, timing_function):
if timing_function == 'in':
timing_function = self.ease_in
elif timing_function == 'out':
timing_function = self.ease_out
elif timing_function == 'in-out':
timing_function = self.ease_in_out
else:
timing_function = self.linear
out = []
end_frame = min(frames, end_frame)
transition = end_frame - start_frame
if start_frame > 0:
out = out + [torch.full((height, width), 0.0, dtype=torch.float32, device="cpu")] * start_frame
for i in range(transition):
frame = torch.full((height, width), 0.0, dtype=torch.float32, device="cpu")
progress = timing_function(i, transition-1)
if "horizontal slide" in transition_type:
pos = round(width*progress)
frame[:, :pos] = 1.0
elif "vertical slide" in transition_type:
pos = round(height*progress)
frame[:pos, :] = 1.0
elif "box" in transition_type:
box_w = round(width*progress)
box_h = round(height*progress)
x1 = (width - box_w) // 2
y1 = (height - box_h) // 2
x2 = x1 + box_w
y2 = y1 + box_h
frame[y1:y2, x1:x2] = 1.0
elif "circle" in transition_type:
radius = math.ceil(math.sqrt(pow(width,2)+pow(height,2))*progress/2)
c_x = width // 2
c_y = height // 2
# is this real life? Am I hallucinating?
x = torch.arange(0, width, dtype=torch.float32, device="cpu")
y = torch.arange(0, height, dtype=torch.float32, device="cpu")
y, x = torch.meshgrid((y, x), indexing="ij")
circle = ((x - c_x) ** 2 + (y - c_y) ** 2) <= (radius ** 2)
frame[circle] = 1.0
elif "horizontal bar" in transition_type:
bar = round(height*progress)
y1 = (height - bar) // 2
y2 = y1 + bar
frame[y1:y2, :] = 1.0
elif "vertical bar" in transition_type:
bar = round(width*progress)
x1 = (width - bar) // 2
x2 = x1 + bar
frame[:, x1:x2] = 1.0
elif "horizontal door" in transition_type:
bar = math.ceil(height*progress/2)
if bar > 0:
frame[:bar, :] = 1.0
frame[-bar:, :] = 1.0
elif "vertical door" in transition_type:
bar = math.ceil(width*progress/2)
if bar > 0:
frame[:, :bar] = 1.0
frame[:, -bar:] = 1.0
elif "fade" in transition_type:
frame[:,:] = progress
out.append(frame)
if end_frame < frames:
out = out + [torch.full((height, width), 1.0, dtype=torch.float32, device="cpu")] * (frames - end_frame)
out = torch.stack(out, dim=0)
return (out, )
MASK_CLASS_MAPPINGS = {
"MaskBlur+": MaskBlur,
"MaskBoundingBox+": MaskBoundingBox,
"MaskFix+": MaskFix,
"MaskFlip+": MaskFlip,
"MaskFromColor+": MaskFromColor,
"MaskFromList+": MaskFromList,
"MaskFromRGBCMYBW+": MaskFromRGBCMYBW,
"MaskFromSegmentation+": MaskFromSegmentation,
"MaskPreview+": MaskPreview,
"MaskSmooth+": MaskSmooth,
"TransitionMask+": TransitionMask,
# Batch
"MaskBatch+": MaskBatch,
"MaskExpandBatch+": MaskExpandBatch,
"MaskFromBatch+": MaskFromBatch,
}
MASK_NAME_MAPPINGS = {
"MaskBlur+": "🔧 Mask Blur",
"MaskFix+": "🔧 Mask Fix",
"MaskFlip+": "🔧 Mask Flip",
"MaskFromColor+": "🔧 Mask From Color",
"MaskFromList+": "🔧 Mask From List",
"MaskFromRGBCMYBW+": "🔧 Mask From RGB/CMY/BW",
"MaskFromSegmentation+": "🔧 Mask From Segmentation",
"MaskPreview+": "🔧 Mask Preview",
"MaskBoundingBox+": "🔧 Mask Bounding Box",
"MaskSmooth+": "🔧 Mask Smooth",
"TransitionMask+": "🔧 Transition Mask",
"MaskBatch+": "🔧 Mask Batch",
"MaskExpandBatch+": "🔧 Mask Expand Batch",
"MaskFromBatch+": "🔧 Mask From Batch",
}