multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
18.2 kB
import math
import torch
from .utils import AnyType
import comfy.model_management
from nodes import MAX_RESOLUTION
import time
any = AnyType("*")
class SimpleMathFloat:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"value": ("FLOAT", { "default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.05 }),
},
}
RETURN_TYPES = ("FLOAT", )
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, value):
return (float(value), )
class SimpleMathPercent:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"value": ("FLOAT", { "default": 0.0, "min": 0, "max": 1, "step": 0.05 }),
},
}
RETURN_TYPES = ("FLOAT", )
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, value):
return (float(value), )
class SimpleMathInt:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"value": ("INT", { "default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1 }),
},
}
RETURN_TYPES = ("INT",)
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, value):
return (int(value), )
class SimpleMathSlider:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"value": ("FLOAT", { "display": "slider", "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001 }),
"min": ("FLOAT", { "default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001 }),
"max": ("FLOAT", { "default": 1.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001 }),
"rounding": ("INT", { "default": 0, "min": 0, "max": 10, "step": 1 }),
},
}
RETURN_TYPES = ("FLOAT", "INT",)
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, value, min, max, rounding):
value = min + value * (max - min)
if rounding > 0:
value = round(value, rounding)
return (value, int(value), )
class SimpleMathSliderLowRes:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"value": ("INT", { "display": "slider", "default": 5, "min": 0, "max": 10, "step": 1 }),
"min": ("FLOAT", { "default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001 }),
"max": ("FLOAT", { "default": 1.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001 }),
"rounding": ("INT", { "default": 0, "min": 0, "max": 10, "step": 1 }),
},
}
RETURN_TYPES = ("FLOAT", "INT",)
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, value, min, max, rounding):
value = 0.1 * value
value = min + value * (max - min)
if rounding > 0:
value = round(value, rounding)
return (value, )
class SimpleMathBoolean:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"value": ("BOOLEAN", { "default": False }),
},
}
RETURN_TYPES = ("BOOLEAN",)
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, value):
return (value, int(value), )
class SimpleMath:
@classmethod
def INPUT_TYPES(s):
return {
"optional": {
"a": (any, { "default": 0.0 }),
"b": (any, { "default": 0.0 }),
"c": (any, { "default": 0.0 }),
},
"required": {
"value": ("STRING", { "multiline": False, "default": "" }),
},
}
RETURN_TYPES = ("INT", "FLOAT", )
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, value, a = 0.0, b = 0.0, c = 0.0, d = 0.0):
import ast
import operator as op
h, w = 0.0, 0.0
if hasattr(a, 'shape'):
a = list(a.shape)
if hasattr(b, 'shape'):
b = list(b.shape)
if hasattr(c, 'shape'):
c = list(c.shape)
if hasattr(d, 'shape'):
d = list(d.shape)
if isinstance(a, str):
a = float(a)
if isinstance(b, str):
b = float(b)
if isinstance(c, str):
c = float(c)
if isinstance(d, str):
d = float(d)
operators = {
ast.Add: op.add,
ast.Sub: op.sub,
ast.Mult: op.mul,
ast.Div: op.truediv,
ast.FloorDiv: op.floordiv,
ast.Pow: op.pow,
#ast.BitXor: op.xor,
#ast.BitOr: op.or_,
#ast.BitAnd: op.and_,
ast.USub: op.neg,
ast.Mod: op.mod,
ast.Eq: op.eq,
ast.NotEq: op.ne,
ast.Lt: op.lt,
ast.LtE: op.le,
ast.Gt: op.gt,
ast.GtE: op.ge,
ast.And: lambda x, y: x and y,
ast.Or: lambda x, y: x or y,
ast.Not: op.not_
}
op_functions = {
'min': min,
'max': max,
'round': round,
'sum': sum,
'len': len,
}
def eval_(node):
if isinstance(node, ast.Num): # number
return node.n
elif isinstance(node, ast.Name): # variable
if node.id == "a":
return a
if node.id == "b":
return b
if node.id == "c":
return c
if node.id == "d":
return d
elif isinstance(node, ast.BinOp): # <left> <operator> <right>
return operators[type(node.op)](eval_(node.left), eval_(node.right))
elif isinstance(node, ast.UnaryOp): # <operator> <operand> e.g., -1
return operators[type(node.op)](eval_(node.operand))
elif isinstance(node, ast.Compare): # comparison operators
left = eval_(node.left)
for op, comparator in zip(node.ops, node.comparators):
if not operators[type(op)](left, eval_(comparator)):
return 0
return 1
elif isinstance(node, ast.BoolOp): # boolean operators (And, Or)
values = [eval_(value) for value in node.values]
return operators[type(node.op)](*values)
elif isinstance(node, ast.Call): # custom function
if node.func.id in op_functions:
args =[eval_(arg) for arg in node.args]
return op_functions[node.func.id](*args)
elif isinstance(node, ast.Subscript): # indexing or slicing
value = eval_(node.value)
if isinstance(node.slice, ast.Constant):
return value[node.slice.value]
else:
return 0
else:
return 0
result = eval_(ast.parse(value, mode='eval').body)
if math.isnan(result):
result = 0.0
return (round(result), result, )
class SimpleMathDual:
@classmethod
def INPUT_TYPES(s):
return {
"optional": {
"a": (any, { "default": 0.0 }),
"b": (any, { "default": 0.0 }),
"c": (any, { "default": 0.0 }),
"d": (any, { "default": 0.0 }),
},
"required": {
"value_1": ("STRING", { "multiline": False, "default": "" }),
"value_2": ("STRING", { "multiline": False, "default": "" }),
},
}
RETURN_TYPES = ("INT", "FLOAT", "INT", "FLOAT", )
RETURN_NAMES = ("int_1", "float_1", "int_2", "float_2" )
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, value_1, value_2, a = 0.0, b = 0.0, c = 0.0, d = 0.0):
return SimpleMath().execute(value_1, a, b, c, d) + SimpleMath().execute(value_2, a, b, c, d)
class SimpleMathCondition:
@classmethod
def INPUT_TYPES(s):
return {
"optional": {
"a": (any, { "default": 0.0 }),
"b": (any, { "default": 0.0 }),
"c": (any, { "default": 0.0 }),
},
"required": {
"evaluate": (any, {"default": 0}),
"on_true": ("STRING", { "multiline": False, "default": "" }),
"on_false": ("STRING", { "multiline": False, "default": "" }),
},
}
RETURN_TYPES = ("INT", "FLOAT", )
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, evaluate, on_true, on_false, a = 0.0, b = 0.0, c = 0.0):
return SimpleMath().execute(on_true if evaluate else on_false, a, b, c)
class SimpleCondition:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"evaluate": (any, {"default": 0}),
"on_true": (any, {"default": 0}),
},
"optional": {
"on_false": (any, {"default": None}),
},
}
RETURN_TYPES = (any,)
RETURN_NAMES = ("result",)
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, evaluate, on_true, on_false=None):
from comfy_execution.graph import ExecutionBlocker
if not evaluate:
return (on_false if on_false is not None else ExecutionBlocker(None),)
return (on_true,)
class SimpleComparison:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"a": (any, {"default": 0}),
"b": (any, {"default": 0}),
"comparison": (["==", "!=", "<", "<=", ">", ">="],),
},
}
RETURN_TYPES = ("BOOLEAN",)
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, a, b, comparison):
if comparison == "==":
return (a == b,)
elif comparison == "!=":
return (a != b,)
elif comparison == "<":
return (a < b,)
elif comparison == "<=":
return (a <= b,)
elif comparison == ">":
return (a > b,)
elif comparison == ">=":
return (a >= b,)
class ConsoleDebug:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"value": (any, {}),
},
"optional": {
"prefix": ("STRING", { "multiline": False, "default": "Value:" })
}
}
RETURN_TYPES = ()
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
OUTPUT_NODE = True
def execute(self, value, prefix):
print(f"\033[96m{prefix} {value}\033[0m")
return (None,)
class DebugTensorShape:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"tensor": (any, {}),
},
}
RETURN_TYPES = ()
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
OUTPUT_NODE = True
def execute(self, tensor):
shapes = []
def tensorShape(tensor):
if isinstance(tensor, dict):
for k in tensor:
tensorShape(tensor[k])
elif isinstance(tensor, list):
for i in range(len(tensor)):
tensorShape(tensor[i])
elif hasattr(tensor, 'shape'):
shapes.append(list(tensor.shape))
tensorShape(tensor)
print(f"\033[96mShapes found: {shapes}\033[0m")
return (None,)
class BatchCount:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"batch": (any, {}),
},
}
RETURN_TYPES = ("INT",)
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, batch):
count = 0
if hasattr(batch, 'shape'):
count = batch.shape[0]
elif isinstance(batch, dict) and 'samples' in batch:
count = batch['samples'].shape[0]
elif isinstance(batch, list) or isinstance(batch, dict):
count = len(batch)
return (count, )
class ModelCompile():
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"fullgraph": ("BOOLEAN", { "default": False }),
"dynamic": ("BOOLEAN", { "default": False }),
"mode": (["default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"],),
},
}
RETURN_TYPES = ("MODEL", )
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, model, fullgraph, dynamic, mode):
work_model = model.clone()
torch._dynamo.config.suppress_errors = True
work_model.add_object_patch("diffusion_model", torch.compile(model=work_model.get_model_object("diffusion_model"), dynamic=dynamic, fullgraph=fullgraph, mode=mode))
return (work_model, )
class RemoveLatentMask:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, samples):
s = samples.copy()
if "noise_mask" in s:
del s["noise_mask"]
return (s,)
class SDXLEmptyLatentSizePicker:
def __init__(self):
self.device = comfy.model_management.intermediate_device()
@classmethod
def INPUT_TYPES(s):
return {"required": {
"resolution": (["704x1408 (0.5)","704x1344 (0.52)","768x1344 (0.57)","768x1280 (0.6)","832x1216 (0.68)","832x1152 (0.72)","896x1152 (0.78)","896x1088 (0.82)","960x1088 (0.88)","960x1024 (0.94)","1024x1024 (1.0)","1024x960 (1.07)","1088x960 (1.13)","1088x896 (1.21)","1152x896 (1.29)","1152x832 (1.38)","1216x832 (1.46)","1280x768 (1.67)","1344x768 (1.75)","1344x704 (1.91)","1408x704 (2.0)","1472x704 (2.09)","1536x640 (2.4)","1600x640 (2.5)","1664x576 (2.89)","1728x576 (3.0)",], {"default": "1024x1024 (1.0)"}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"width_override": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"height_override": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}}
RETURN_TYPES = ("LATENT","INT","INT",)
RETURN_NAMES = ("LATENT","width","height",)
FUNCTION = "execute"
CATEGORY = "essentials/utilities"
def execute(self, resolution, batch_size, width_override=0, height_override=0):
width, height = resolution.split(" ")[0].split("x")
width = width_override if width_override > 0 else int(width)
height = height_override if height_override > 0 else int(height)
latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
return ({"samples":latent}, width, height,)
class DisplayAny:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input": (("*",{})),
"mode": (["raw value", "tensor shape"],),
},
}
@classmethod
def VALIDATE_INPUTS(s, input_types):
return True
RETURN_TYPES = ("STRING",)
FUNCTION = "execute"
OUTPUT_NODE = True
CATEGORY = "essentials/utilities"
def execute(self, input, mode):
if mode == "tensor shape":
text = []
def tensorShape(tensor):
if isinstance(tensor, dict):
for k in tensor:
tensorShape(tensor[k])
elif isinstance(tensor, list):
for i in range(len(tensor)):
tensorShape(tensor[i])
elif hasattr(tensor, 'shape'):
text.append(list(tensor.shape))
tensorShape(input)
input = text
text = str(input)
return {"ui": {"text": text}, "result": (text,)}
MISC_CLASS_MAPPINGS = {
"BatchCount+": BatchCount,
"ConsoleDebug+": ConsoleDebug,
"DebugTensorShape+": DebugTensorShape,
"DisplayAny": DisplayAny,
"ModelCompile+": ModelCompile,
"RemoveLatentMask+": RemoveLatentMask,
"SDXLEmptyLatentSizePicker+": SDXLEmptyLatentSizePicker,
"SimpleComparison+": SimpleComparison,
"SimpleCondition+": SimpleCondition,
"SimpleMath+": SimpleMath,
"SimpleMathDual+": SimpleMathDual,
"SimpleMathCondition+": SimpleMathCondition,
"SimpleMathBoolean+": SimpleMathBoolean,
"SimpleMathFloat+": SimpleMathFloat,
"SimpleMathInt+": SimpleMathInt,
"SimpleMathPercent+": SimpleMathPercent,
"SimpleMathSlider+": SimpleMathSlider,
"SimpleMathSliderLowRes+": SimpleMathSliderLowRes,
}
MISC_NAME_MAPPINGS = {
"BatchCount+": "🔧 Batch Count",
"ConsoleDebug+": "🔧 Console Debug",
"DebugTensorShape+": "🔧 Debug Tensor Shape",
"DisplayAny": "🔧 Display Any",
"ModelCompile+": "🔧 Model Compile",
"RemoveLatentMask+": "🔧 Remove Latent Mask",
"SDXLEmptyLatentSizePicker+": "🔧 Empty Latent Size Picker",
"SimpleComparison+": "🔧 Simple Comparison",
"SimpleCondition+": "🔧 Simple Condition",
"SimpleMath+": "🔧 Simple Math",
"SimpleMathDual+": "🔧 Simple Math Dual",
"SimpleMathCondition+": "🔧 Simple Math Condition",
"SimpleMathBoolean+": "🔧 Simple Math Boolean",
"SimpleMathFloat+": "🔧 Simple Math Float",
"SimpleMathInt+": "🔧 Simple Math Int",
"SimpleMathPercent+": "🔧 Simple Math Percent",
"SimpleMathSlider+": "🔧 Simple Math Slider",
"SimpleMathSliderLowRes+": "🔧 Simple Math Slider low-res",
}