Spaces:
Running
on
Zero
Running
on
Zero
flux-style-shaping
/
custom_nodes
/ComfyUI-DepthAnythingV2
/depth_anything_v2
/dinov2_layers
/attention.py
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# References: | |
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py | |
import logging | |
from torch import Tensor | |
from torch import nn | |
import comfy.ops | |
ops = comfy.ops.manual_cast | |
from comfy.ldm.modules.attention import optimized_attention | |
logger = logging.getLogger("dinov2") | |
try: | |
from xformers.ops import memory_efficient_attention, unbind | |
XFORMERS_AVAILABLE = True | |
except ImportError: | |
logger.warning("xFormers not available") | |
XFORMERS_AVAILABLE = False | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
proj_bias: bool = True, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
) -> None: | |
super().__init__() | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim**-0.5 | |
self.qkv = ops.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = ops.Linear(dim, dim, bias=proj_bias) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x: Tensor) -> Tensor: | |
# B, N, C = x.shape | |
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
# q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] | |
# attn = q @ k.transpose(-2, -1) | |
# attn = attn.softmax(dim=-1) | |
# #attn = self.attn_drop(attn) | |
# x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
# x = self.proj(x) | |
# #x = self.proj_drop(x) | |
# return x | |
# print("x shape: ", x.shape) | |
B, N, C = x.shape | |
q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
out = optimized_attention(q, k, v, self.num_heads, skip_reshape=True) | |
out= self.proj(out) | |
out = self.proj_drop(out) | |
return out | |
class MemEffAttention(Attention): | |
def forward(self, x: Tensor, attn_bias=None) -> Tensor: | |
if not XFORMERS_AVAILABLE: | |
assert attn_bias is None, "xFormers is required for nested tensors usage" | |
return super().forward(x) | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
q, k, v = unbind(qkv, 2) | |
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) | |
x = x.reshape([B, N, C]) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |