multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
33.5 kB
from io import BytesIO
import cv2
import numpy as np
import torch
from PIL import Image
from ..log import log
from ..utils import EASINGS, apply_easing, pil2tensor
from .transform import MTB_TransformImage
def hex_to_rgb(hex_color: str, bgr: bool = False):
hex_color = hex_color.lstrip("#")
if bgr:
return tuple(int(hex_color[i : i + 2], 16) for i in (4, 2, 0))
return tuple(int(hex_color[i : i + 2], 16) for i in (0, 2, 4))
class MTB_BatchFloatMath:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"reverse": ("BOOLEAN", {"default": False}),
"operation": (
["add", "sub", "mul", "div", "pow", "abs"],
{"default": "add"},
),
}
}
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/utils"
FUNCTION = "execute"
def execute(self, reverse: bool, operation: str, **kwargs: list[float]):
res: list[float] = []
vals = list(kwargs.values())
if reverse:
vals = vals[::-1]
ref_count = len(vals[0])
for v in vals:
if len(v) != ref_count:
raise ValueError(
f"All values must have the same length (current: {len(v)}, ref: {ref_count}"
)
match operation:
case "add":
for i in range(ref_count):
result = sum(v[i] for v in vals)
res.append(result)
case "sub":
for i in range(ref_count):
result = vals[0][i] - sum(v[i] for v in vals[1:])
res.append(result)
case "mul":
for i in range(ref_count):
result = vals[0][i] * vals[1][i]
res.append(result)
case "div":
for i in range(ref_count):
result = vals[0][i] / vals[1][i]
res.append(result)
case "pow":
for i in range(ref_count):
result: float = vals[0][i] ** vals[1][i]
res.append(result)
case "abs":
for i in range(ref_count):
result = abs(vals[0][i])
res.append(result)
case _:
log.info(f"For now this mode ({operation}) is not implemented")
return (res,)
class MTB_BatchFloatNormalize:
"""Normalize the values in the list of floats"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {"floats": ("FLOATS",)},
}
RETURN_TYPES = ("FLOATS",)
RETURN_NAMES = ("normalized_floats",)
CATEGORY = "mtb/batch"
FUNCTION = "execute"
def execute(
self,
floats: list[float],
):
min_value = min(floats)
max_value = max(floats)
normalized_floats = [
(x - min_value) / (max_value - min_value) for x in floats
]
log.debug(f"Floats: {floats}")
log.debug(f"Normalized Floats: {normalized_floats}")
return (normalized_floats,)
class MTB_BatchTimeWrap:
"""Remap a batch using a time curve (FLOATS)"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"target_count": ("INT", {"default": 25, "min": 2}),
"frames": ("IMAGE",),
"curve": ("FLOATS",),
},
}
RETURN_TYPES = ("IMAGE", "FLOATS")
RETURN_NAMES = ("image", "interpolated_floats")
CATEGORY = "mtb/batch"
FUNCTION = "execute"
def execute(
self, target_count: int, frames: torch.Tensor, curve: list[float]
):
"""Apply time warping to a list of video frames based on a curve."""
log.debug(f"Input frames shape: {frames.shape}")
log.debug(f"Curve: {curve}")
total_duration = sum(curve)
log.debug(f"Total duration: {total_duration}")
B, H, W, C = frames.shape
log.debug(f"Batch Size: {B}")
normalized_times = np.linspace(0, 1, target_count)
interpolated_curve = np.interp(
normalized_times, np.linspace(0, 1, len(curve)), curve
).tolist()
log.debug(f"Interpolated curve: {interpolated_curve}")
interpolated_frame_indices = [
(B - 1) * value for value in interpolated_curve
]
log.debug(f"Interpolated frame indices: {interpolated_frame_indices}")
rounded_indices = [
int(round(idx)) for idx in interpolated_frame_indices
]
rounded_indices = np.clip(rounded_indices, 0, B - 1)
# Gather frames based on interpolated indices
warped_frames = []
for index in rounded_indices:
warped_frames.append(frames[index].unsqueeze(0))
warped_tensor = torch.cat(warped_frames, dim=0)
log.debug(f"Warped frames shape: {warped_tensor.shape}")
return (warped_tensor, interpolated_curve)
class MTB_BatchMake:
"""Simply duplicates the input frame as a batch"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"count": ("INT", {"default": 1}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "generate_batch"
CATEGORY = "mtb/batch"
def generate_batch(self, image: torch.Tensor, count):
if len(image.shape) == 3:
image = image.unsqueeze(0)
return (image.repeat(count, 1, 1, 1),)
class MTB_BatchShape:
"""Generates a batch of 2D shapes with optional shading (experimental)"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"count": ("INT", {"default": 1}),
"shape": (
["Box", "Circle", "Diamond", "Tube"],
{"default": "Circle"},
),
"image_width": ("INT", {"default": 512}),
"image_height": ("INT", {"default": 512}),
"shape_size": ("INT", {"default": 100}),
"color": ("COLOR", {"default": "#ffffff"}),
"bg_color": ("COLOR", {"default": "#000000"}),
"shade_color": ("COLOR", {"default": "#000000"}),
"thickness": ("INT", {"default": 5}),
"shadex": ("FLOAT", {"default": 0.0}),
"shadey": ("FLOAT", {"default": 0.0}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "generate_shapes"
CATEGORY = "mtb/batch"
def generate_shapes(
self,
count,
shape,
image_width,
image_height,
shape_size,
color,
bg_color,
shade_color,
thickness,
shadex,
shadey,
):
log.debug(f"COLOR: {color}")
log.debug(f"BG_COLOR: {bg_color}")
log.debug(f"SHADE_COLOR: {shade_color}")
# Parse color input to BGR tuple for OpenCV
color = hex_to_rgb(color)
bg_color = hex_to_rgb(bg_color)
shade_color = hex_to_rgb(shade_color)
res = []
for x in range(count):
# Initialize an image canvas
canvas = np.full(
(image_height, image_width, 3), bg_color, dtype=np.uint8
)
mask = np.zeros((image_height, image_width), dtype=np.uint8)
# Compute the center point of the shape
center = (image_width // 2, image_height // 2)
if shape == "Box":
half_size = shape_size // 2
top_left = (center[0] - half_size, center[1] - half_size)
bottom_right = (center[0] + half_size, center[1] + half_size)
cv2.rectangle(mask, top_left, bottom_right, 255, -1)
elif shape == "Circle":
cv2.circle(mask, center, shape_size // 2, 255, -1)
elif shape == "Diamond":
pts = np.array(
[
[center[0], center[1] - shape_size // 2],
[center[0] + shape_size // 2, center[1]],
[center[0], center[1] + shape_size // 2],
[center[0] - shape_size // 2, center[1]],
]
)
cv2.fillPoly(mask, [pts], 255)
elif shape == "Tube":
cv2.ellipse(
mask,
center,
(shape_size // 2, shape_size // 2),
0,
0,
360,
255,
thickness,
)
# Color the shape
canvas[mask == 255] = color
# Apply shading effects to a separate shading canvas
shading = np.zeros_like(canvas, dtype=np.float32)
shading[:, :, 0] = shadex * np.linspace(0, 1, image_width)
shading[:, :, 1] = shadey * np.linspace(
0, 1, image_height
).reshape(-1, 1)
shading_canvas = cv2.addWeighted(
canvas.astype(np.float32), 1, shading, 1, 0
).astype(np.uint8)
# Apply shading only to the shape area using the mask
canvas[mask == 255] = shading_canvas[mask == 255]
res.append(canvas)
return (pil2tensor(res),)
class MTB_BatchFloatFill:
"""Fills a batch float with a single value until it reaches the target length"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"floats": ("FLOATS",),
"direction": (["head", "tail"], {"default": "tail"}),
"value": ("FLOAT", {"default": 0.0}),
"count": ("INT", {"default": 1}),
}
}
FUNCTION = "fill_floats"
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/batch"
def fill_floats(self, floats, direction, value, count):
size = len(floats)
if size > count:
raise ValueError(
f"Size ({size}) is less then target count ({count})"
)
rem = count - size
if direction == "tail":
floats = floats + [value] * rem
else:
floats = [value] * rem + floats
return (floats,)
class MTB_BatchFloatAssemble:
"""Assembles mutiple batches of floats into a single stream (batch)"""
@classmethod
def INPUT_TYPES(cls):
return {"required": {"reverse": ("BOOLEAN", {"default": False})}}
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/batch"
FUNCTION = "assemble_floats"
def assemble_floats(self, reverse: bool, **kwargs: list[float]):
res: list[float] = []
if reverse:
for x in reversed(kwargs.values()):
if x:
res += x
else:
for x in kwargs.values():
if x:
res += x
return (res,)
class MTB_BatchFloat:
"""Generates a batch of float values with interpolation"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mode": (
["Single", "Steps"],
{"default": "Steps"},
),
"count": ("INT", {"default": 2}),
"min": ("FLOAT", {"default": 0.0, "step": 0.001}),
"max": ("FLOAT", {"default": 1.0, "step": 0.001}),
"easing": (
[
"Linear",
"Sine In",
"Sine Out",
"Sine In/Out",
"Quart In",
"Quart Out",
"Quart In/Out",
"Cubic In",
"Cubic Out",
"Cubic In/Out",
"Circ In",
"Circ Out",
"Circ In/Out",
"Back In",
"Back Out",
"Back In/Out",
"Elastic In",
"Elastic Out",
"Elastic In/Out",
"Bounce In",
"Bounce Out",
"Bounce In/Out",
],
{"default": "Linear"},
),
}
}
FUNCTION = "set_floats"
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/batch"
def set_floats(self, mode, count, min, max, easing):
if mode == "Steps" and count == 1:
raise ValueError(
"Steps mode requires at least a count of 2 values"
)
keyframes = []
if mode == "Single":
keyframes = [min] * count
return (keyframes,)
for i in range(count):
normalized_step = i / (count - 1)
eased_step = apply_easing(normalized_step, easing)
eased_value = min + (max - min) * eased_step
keyframes.append(eased_value)
return (keyframes,)
class MTB_BatchMerge:
"""Merges multiple image batches with different frame counts"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"fusion_mode": (
["add", "multiply", "average"],
{"default": "average"},
),
"fill": (["head", "tail"], {"default": "tail"}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "merge_batches"
CATEGORY = "mtb/batch"
def merge_batches(self, fusion_mode: str, fill: str, **kwargs):
images = kwargs.values()
max_frames = max(img.shape[0] for img in images)
adjusted_images = []
for img in images:
frame_count = img.shape[0]
if frame_count < max_frames:
fill_frame = img[0] if fill == "head" else img[-1]
fill_frames = fill_frame.repeat(
max_frames - frame_count, 1, 1, 1
)
adjusted_batch = (
torch.cat((fill_frames, img), dim=0)
if fill == "head"
else torch.cat((img, fill_frames), dim=0)
)
else:
adjusted_batch = img
adjusted_images.append(adjusted_batch)
# Merge the adjusted batches
merged_image = None
for img in adjusted_images:
if merged_image is None:
merged_image = img
else:
if fusion_mode == "add":
merged_image += img
elif fusion_mode == "multiply":
merged_image *= img
elif fusion_mode == "average":
merged_image = (merged_image + img) / 2
return (merged_image,)
class MTB_Batch2dTransform:
"""Transform a batch of images using a batch of keyframes"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"border_handling": (
["edge", "constant", "reflect", "symmetric"],
{"default": "edge"},
),
"constant_color": ("COLOR", {"default": "#000000"}),
},
"optional": {
"x": ("FLOATS",),
"y": ("FLOATS",),
"zoom": ("FLOATS",),
"angle": ("FLOATS",),
"shear": ("FLOATS",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "transform_batch"
CATEGORY = "mtb/batch"
def get_num_elements(
self, param: None | torch.Tensor | list[torch.Tensor] | list[float]
) -> int:
if isinstance(param, torch.Tensor):
return torch.numel(param)
elif isinstance(param, list):
return len(param)
return 0
def transform_batch(
self,
image: torch.Tensor,
border_handling: str,
constant_color: str,
x: list[float] | None = None,
y: list[float] | None = None,
zoom: list[float] | None = None,
angle: list[float] | None = None,
shear: list[float] | None = None,
):
if all(
self.get_num_elements(param) <= 0
for param in [x, y, zoom, angle, shear]
):
raise ValueError(
"At least one transform parameter must be provided"
)
keyframes: dict[str, list[float]] = {
"x": [],
"y": [],
"zoom": [],
"angle": [],
"shear": [],
}
default_vals = {"x": 0, "y": 0, "zoom": 1.0, "angle": 0, "shear": 0}
if x and self.get_num_elements(x) > 0:
keyframes["x"] = x
if y and self.get_num_elements(y) > 0:
keyframes["y"] = y
if zoom and self.get_num_elements(zoom) > 0:
# some easing types like elastic can pull back... maybe it should abs the value?
keyframes["zoom"] = [max(x, 0.00001) for x in zoom]
if angle and self.get_num_elements(angle) > 0:
keyframes["angle"] = angle
if shear and self.get_num_elements(shear) > 0:
keyframes["shear"] = shear
for name, values in keyframes.items():
count = len(values)
if count > 0 and count != image.shape[0]:
raise ValueError(
f"Length of {name} values ({count}) must match number of images ({image.shape[0]})"
)
if count == 0:
keyframes[name] = [default_vals[name]] * image.shape[0]
transformer = MTB_TransformImage()
res = [
transformer.transform(
image[i].unsqueeze(0),
keyframes["x"][i],
keyframes["y"][i],
keyframes["zoom"][i],
keyframes["angle"][i],
keyframes["shear"][i],
border_handling,
constant_color,
)[0]
for i in range(image.shape[0])
]
return (torch.cat(res, dim=0),)
class MTB_BatchFloatFit:
"""Fit a list of floats using a source and target range"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"values": ("FLOATS", {"forceInput": True}),
"clamp": ("BOOLEAN", {"default": False}),
"auto_compute_source": ("BOOLEAN", {"default": False}),
"source_min": ("FLOAT", {"default": 0.0, "step": 0.01}),
"source_max": ("FLOAT", {"default": 1.0, "step": 0.01}),
"target_min": ("FLOAT", {"default": 0.0, "step": 0.01}),
"target_max": ("FLOAT", {"default": 1.0, "step": 0.01}),
"easing": (
EASINGS,
{"default": "Linear"},
),
}
}
FUNCTION = "fit_range"
RETURN_TYPES = ("FLOATS",)
CATEGORY = "mtb/batch"
DESCRIPTION = "Fit a list of floats using a source and target range"
def fit_range(
self,
values: list[float],
clamp: bool,
auto_compute_source: bool,
source_min: float,
source_max: float,
target_min: float,
target_max: float,
easing: str,
):
if auto_compute_source:
source_min = min(values)
source_max = max(values)
from .graph_utils import MTB_FitNumber
res = []
fit_number = MTB_FitNumber()
for value in values:
(transformed_value,) = fit_number.set_range(
value,
clamp,
source_min,
source_max,
target_min,
target_max,
easing,
)
res.append(transformed_value)
return (res,)
class MTB_PlotBatchFloat:
"""Plot floats"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"width": ("INT", {"default": 768}),
"height": ("INT", {"default": 768}),
"point_size": ("INT", {"default": 4}),
"seed": ("INT", {"default": 1}),
"start_at_zero": ("BOOLEAN", {"default": False}),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("plot",)
FUNCTION = "plot"
CATEGORY = "mtb/batch"
def plot(
self,
width: int,
height: int,
point_size: int,
seed: int,
start_at_zero: bool,
interactive_backend: bool = False,
**kwargs,
):
import matplotlib
# NOTE: This is for notebook usage or tests, i.e not exposed to comfy that should always use Agg
if not interactive_backend:
matplotlib.use("Agg")
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(width / 100, height / 100), dpi=100)
fig.set_edgecolor("black")
fig.patch.set_facecolor("#2e2e2e")
# Setting background color and grid
ax.set_facecolor("#2e2e2e") # Dark gray background
ax.grid(color="gray", linestyle="-", linewidth=0.5, alpha=0.5)
# Finding global min and max across all lists for scaling the plot
all_values = [value for values in kwargs.values() for value in values]
global_min = min(all_values)
global_max = max(all_values)
y_padding = 0.05 * (global_max - global_min)
ax.set_ylim(global_min - y_padding, global_max + y_padding)
max_length = max(len(values) for values in kwargs.values())
if start_at_zero:
x_values = np.linspace(0, max_length - 1, max_length)
else:
x_values = np.linspace(1, max_length, max_length)
ax.set_xlim(1, max_length) # Set X-axis limits
np.random.seed(seed)
colors = np.random.rand(len(kwargs), 3) # Generate random RGB values
for color, (label, values) in zip(colors, kwargs.items()):
ax.plot(x_values[: len(values)], values, label=label, color=color)
ax.legend(
title="Legend",
title_fontsize="large",
fontsize="medium",
edgecolor="black",
loc="best",
)
# Setting labels and title
ax.set_xlabel("Time", fontsize="large", color="white")
ax.set_ylabel("Value", fontsize="large", color="white")
ax.set_title(
"Plot of Values over Time", fontsize="x-large", color="white"
)
# Adjusting tick colors to be visible on dark background
ax.tick_params(colors="white")
# Changing color of the axes border
for _, spine in ax.spines.items():
spine.set_edgecolor("white")
# Rendering the plot into a NumPy array
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
buf.seek(0)
image = Image.open(buf)
plt.close(fig) # Closing the figure to free up memory
return (pil2tensor(image),)
def draw_point(self, image, point, color, point_size):
x, y = point
y = image.shape[0] - 1 - y # Invert Y-coordinate
half_size = point_size // 2
x_start, x_end = (
max(0, x - half_size),
min(image.shape[1], x + half_size + 1),
)
y_start, y_end = (
max(0, y - half_size),
min(image.shape[0], y + half_size + 1),
)
image[y_start:y_end, x_start:x_end] = color
def draw_line(self, image, start, end, color):
x1, y1 = start
x2, y2 = end
# Invert Y-coordinate
y1 = image.shape[0] - 1 - y1
y2 = image.shape[0] - 1 - y2
dx = x2 - x1
dy = y2 - y1
is_steep = abs(dy) > abs(dx)
if is_steep:
x1, y1 = y1, x1
x2, y2 = y2, x2
swapped = False
if x1 > x2:
x1, x2 = x2, x1
y1, y2 = y2, y1
swapped = True
dx = x2 - x1
dy = y2 - y1
error = int(dx / 2.0)
y = y1
ystep = None
if y1 < y2:
ystep = 1
else:
ystep = -1
for x in range(x1, x2 + 1):
coord = (y, x) if is_steep else (x, y)
image[coord] = color
error -= abs(dy)
if error < 0:
y += ystep
error += dx
if swapped:
image[(x1, y1)] = color
image[(x2, y2)] = color
DEFAULT_INTERPOLANT = lambda t: t * t * t * (t * (t * 6 - 15) + 10)
class MTB_BatchShake:
"""Applies a shaking effect to batches of images."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"position_amount_x": ("FLOAT", {"default": 1.0}),
"position_amount_y": ("FLOAT", {"default": 1.0}),
"rotation_amount": ("FLOAT", {"default": 10.0}),
"frequency": ("FLOAT", {"default": 1.0, "min": 0.005}),
"frequency_divider": ("FLOAT", {"default": 1.0, "min": 0.005}),
"octaves": ("INT", {"default": 1, "min": 1}),
"seed": ("INT", {"default": 0}),
},
}
RETURN_TYPES = ("IMAGE", "FLOATS", "FLOATS", "FLOATS")
RETURN_NAMES = ("image", "pos_x", "pos_y", "rot")
FUNCTION = "apply_shake"
CATEGORY = "mtb/batch"
# def interpolant(self, t):
# return t * t * t * (t * (t * 6 - 15) + 10)
def generate_perlin_noise_2d(
self, shape, res, tileable=(False, False), interpolant=None
):
"""Generate a 2D numpy array of perlin noise.
Args:
shape: The shape of the generated array (tuple of two ints).
This must be a multple of res.
res: The number of periods of noise to generate along each
axis (tuple of two ints). Note shape must be a multiple of
res.
tileable: If the noise should be tileable along each axis
(tuple of two bools). Defaults to (False, False).
interpolant: The interpolation function, defaults to
t*t*t*(t*(t*6 - 15) + 10).
Returns
-------
A numpy array of shape shape with the generated noise.
Raises
------
ValueError: If shape is not a multiple of res.
"""
interpolant = interpolant or DEFAULT_INTERPOLANT
delta = (res[0] / shape[0], res[1] / shape[1])
d = (shape[0] // res[0], shape[1] // res[1])
grid = (
np.mgrid[0 : res[0] : delta[0], 0 : res[1] : delta[1]].transpose(
1, 2, 0
)
% 1
)
# Gradients
angles = 2 * np.pi * np.random.rand(res[0] + 1, res[1] + 1)
gradients = np.dstack((np.cos(angles), np.sin(angles)))
if tileable[0]:
gradients[-1, :] = gradients[0, :]
if tileable[1]:
gradients[:, -1] = gradients[:, 0]
gradients = gradients.repeat(d[0], 0).repeat(d[1], 1)
g00 = gradients[: -d[0], : -d[1]]
g10 = gradients[d[0] :, : -d[1]]
g01 = gradients[: -d[0], d[1] :]
g11 = gradients[d[0] :, d[1] :]
# Ramps
n00 = np.sum(np.dstack((grid[:, :, 0], grid[:, :, 1])) * g00, 2)
n10 = np.sum(np.dstack((grid[:, :, 0] - 1, grid[:, :, 1])) * g10, 2)
n01 = np.sum(np.dstack((grid[:, :, 0], grid[:, :, 1] - 1)) * g01, 2)
n11 = np.sum(
np.dstack((grid[:, :, 0] - 1, grid[:, :, 1] - 1)) * g11, 2
)
# Interpolation
t = interpolant(grid)
n0 = n00 * (1 - t[:, :, 0]) + t[:, :, 0] * n10
n1 = n01 * (1 - t[:, :, 0]) + t[:, :, 0] * n11
return np.sqrt(2) * ((1 - t[:, :, 1]) * n0 + t[:, :, 1] * n1)
def generate_fractal_noise_2d(
self,
shape,
res,
octaves=1,
persistence=0.5,
lacunarity=2,
tileable=(True, True),
interpolant=None,
):
"""Generate a 2D numpy array of fractal noise.
Args:
shape: The shape of the generated array (tuple of two ints).
This must be a multiple of lacunarity**(octaves-1)*res.
res: The number of periods of noise to generate along each
axis (tuple of two ints). Note shape must be a multiple of
(lacunarity**(octaves-1)*res).
octaves: The number of octaves in the noise. Defaults to 1.
persistence: The scaling factor between two octaves.
lacunarity: The frequency factor between two octaves.
tileable: If the noise should be tileable along each axis
(tuple of two bools). Defaults to (True,True).
interpolant: The, interpolation function, defaults to
t*t*t*(t*(t*6 - 15) + 10).
Returns
-------
A numpy array of fractal noise and of shape shape generated by
combining several octaves of perlin noise.
Raises
------
ValueError: If shape is not a multiple of
(lacunarity**(octaves-1)*res).
"""
interpolant = interpolant or DEFAULT_INTERPOLANT
noise = np.zeros(shape)
frequency = 1
amplitude = 1
for _ in range(octaves):
noise += amplitude * self.generate_perlin_noise_2d(
shape,
(frequency * res[0], frequency * res[1]),
tileable,
interpolant,
)
frequency *= lacunarity
amplitude *= persistence
return noise
def fbm(self, x, y, octaves):
# noise_2d = self.generate_fractal_noise_2d((256, 256), (8, 8), octaves)
# Now, extract a single noise value based on x and y, wrapping indices if necessary
x_idx = int(x) % 256
y_idx = int(y) % 256
return self.noise_pattern[x_idx, y_idx]
def apply_shake(
self,
images,
position_amount_x,
position_amount_y,
rotation_amount,
frequency,
frequency_divider,
octaves,
seed,
):
# Rehash
np.random.seed(seed)
self.position_offset = np.random.uniform(-1e3, 1e3, 3)
self.rotation_offset = np.random.uniform(-1e3, 1e3, 3)
self.noise_pattern = self.generate_perlin_noise_2d(
(512, 512), (32, 32), (True, True)
)
# Assuming frame count is derived from the first dimension of images tensor
frame_count = images.shape[0]
frequency = frequency / frequency_divider
# Generate shaking parameters for each frame
x_translations = []
y_translations = []
rotations = []
for frame_num in range(frame_count):
time = frame_num * frequency
x_idx = (self.position_offset[0] + frame_num) % 256
y_idx = (self.position_offset[1] + frame_num) % 256
np_position = np.array(
[
self.fbm(x_idx, time, octaves),
self.fbm(y_idx, time, octaves),
]
)
# np_position = np.array(
# [
# self.fbm(self.position_offset[0] + frame_num, time, octaves),
# self.fbm(self.position_offset[1] + frame_num, time, octaves),
# ]
# )
# np_rotation = self.fbm(self.rotation_offset[2] + frame_num, time, octaves)
rot_idx = (self.rotation_offset[2] + frame_num) % 256
np_rotation = self.fbm(rot_idx, time, octaves)
x_translations.append(np_position[0] * position_amount_x)
y_translations.append(np_position[1] * position_amount_y)
rotations.append(np_rotation * rotation_amount)
# Convert lists to tensors
# x_translations = torch.tensor(x_translations, dtype=torch.float32)
# y_translations = torch.tensor(y_translations, dtype=torch.float32)
# rotations = torch.tensor(rotations, dtype=torch.float32)
# Create an instance of Batch2dTransform
transform = MTB_Batch2dTransform()
log.debug(
f"Applying shaking with parameters: \nposition {position_amount_x}, {position_amount_y}\nrotation {rotation_amount}\nfrequency {frequency}\noctaves {octaves}"
)
# Apply shaking transformations to images
shaken_images = transform.transform_batch(
images,
border_handling="edge", # Assuming edge handling as default
constant_color="#000000", # Assuming black as default constant color
x=x_translations,
y=y_translations,
angle=rotations,
)[0]
return (shaken_images, x_translations, y_translations, rotations)
__nodes__ = [
MTB_BatchFloat,
MTB_Batch2dTransform,
MTB_BatchShape,
MTB_BatchMake,
MTB_BatchFloatAssemble,
MTB_BatchFloatFill,
MTB_BatchFloatNormalize,
MTB_BatchMerge,
MTB_BatchShake,
MTB_PlotBatchFloat,
MTB_BatchTimeWrap,
MTB_BatchFloatFit,
MTB_BatchFloatMath,
]