multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
8.77 kB
from PIL import Image
from ..log import log
from ..utils import comfy_dir, font_path, pil2tensor
# class MtbExamples:
# """MTB Example Images"""
# def __init__(self):
# pass
# @classmethod
# @lru_cache(maxsize=1)
# def get_root(cls):
# return here / "examples" / "samples"
# @classmethod
# def INPUT_TYPES(cls):
# input_dir = cls.get_root()
# files = [f.name for f in input_dir.iterdir() if f.is_file()]
# return {
# "required": {"image": (sorted(files),)},
# }
# RETURN_TYPES = ("IMAGE", "MASK")
# FUNCTION = "do_mtb_examples"
# CATEGORY = "fun"
# def do_mtb_examples(self, image, index):
# image_path = (self.get_root() / image).as_posix()
# i = Image.open(image_path)
# i = ImageOps.exif_transpose(i)
# image = i.convert("RGB")
# image = np.array(image).astype(np.float32) / 255.0
# image = torch.from_numpy(image)[None,]
# if "A" in i.getbands():
# mask = np.array(i.getchannel("A")).astype(np.float32) / 255.0
# mask = 1.0 - torch.from_numpy(mask)
# else:
# mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
# return (image, mask)
# @classmethod
# def IS_CHANGED(cls, image):
# image_path = (cls.get_root() / image).as_posix()
# m = hashlib.sha256()
# with open(image_path, "rb") as f:
# m.update(f.read())
# return m.digest().hex()
class MTB_UnsplashImage:
"""Unsplash Image given a keyword and a size"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"width": (
"INT",
{"default": 512, "max": 8096, "min": 0, "step": 1},
),
"height": (
"INT",
{"default": 512, "max": 8096, "min": 0, "step": 1},
),
"random_seed": (
"INT",
{"default": 0, "max": 1e5, "min": 0, "step": 1},
),
},
"optional": {
"keyword": ("STRING", {"default": "nature"}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "do_unsplash_image"
CATEGORY = "mtb/generate"
def do_unsplash_image(self, width, height, random_seed, keyword=None):
import io
import requests
base_url = "https://source.unsplash.com/random/"
if width and height:
base_url += f"/{width}x{height}"
if keyword:
keyword = keyword.replace(" ", "%20")
base_url += f"?{keyword}&{random_seed}"
else:
base_url += f"?&{random_seed}"
try:
log.debug(f"Getting unsplash image from {base_url}")
response = requests.get(base_url)
response.raise_for_status()
image = Image.open(io.BytesIO(response.content))
return (
pil2tensor(
image,
),
)
except requests.exceptions.RequestException as e:
print("Error retrieving image:", e)
return (None,)
def bbox_dim(bbox):
left, upper, right, lower = bbox
width = right - left
height = lower - upper
return width, height
# TODO: Auto install the base font to ComfyUI/fonts
class MTB_TextToImage:
"""Utils to convert text to image using a font.
The tool looks for any .ttf file in the Comfy folder hierarchy.
"""
fonts = {}
DESCRIPTION = """# Text to Image
This node look for any font files in comfy_dir/fonts.
by default it fallsback to a default font.
![img](https://i.imgur.com/3GT92hy.gif)
"""
def __init__(self):
# - This is executed when the graph is executed,
# - we could conditionaly reload fonts there
pass
@classmethod
def CACHE_FONTS(cls):
font_extensions = ["*.ttf", "*.otf", "*.woff", "*.woff2", "*.eot"]
fonts = [font_path]
for extension in font_extensions:
try:
if comfy_dir.exists():
fonts.extend(comfy_dir.glob(f"fonts/**/{extension}"))
else:
log.warn(f"Directory {comfy_dir} does not exist.")
except Exception as e:
log.error(f"Error during font caching: {e}")
for font in fonts:
log.debug(f"Adding font {font}")
MTB_TextToImage.fonts[font.stem] = font.as_posix()
@classmethod
def INPUT_TYPES(cls):
if not cls.fonts:
cls.CACHE_FONTS()
else:
log.debug(f"Using cached fonts (count: {len(cls.fonts)})")
return {
"required": {
"text": (
"STRING",
{"default": "Hello world!"},
),
"font": ((sorted(cls.fonts.keys())),),
"wrap": ("BOOLEAN", {"default": True}),
"trim": ("BOOLEAN", {"default": True}),
"line_height": (
"FLOAT",
{"default": 1.0, "min": 0, "step": 0.1},
),
"font_size": (
"INT",
{"default": 32, "min": 1, "max": 2500, "step": 1},
),
"width": (
"INT",
{"default": 512, "min": 1, "max": 8096, "step": 1},
),
"height": (
"INT",
{"default": 512, "min": 1, "max": 8096, "step": 1},
),
"color": (
"COLOR",
{"default": "black"},
),
"background": (
"COLOR",
{"default": "white"},
),
"h_align": (("left", "center", "right"), {"default": "left"}),
"v_align": (("top", "center", "bottom"), {"default": "top"}),
"h_offset": (
"INT",
{"default": 0, "min": 0, "max": 8096, "step": 1},
),
"v_offset": (
"INT",
{"default": 0, "min": 0, "max": 8096, "step": 1},
),
"h_coverage": (
"INT",
{"default": 100, "min": 1, "max": 100, "step": 1},
),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = "text_to_image"
CATEGORY = "mtb/generate"
def text_to_image(
self,
text: str,
font,
wrap,
trim,
line_height,
font_size,
width,
height,
color,
background,
h_align="left",
v_align="top",
h_offset=0,
v_offset=0,
h_coverage=100,
):
import textwrap
from PIL import Image, ImageDraw, ImageFont
font_path = self.fonts[font]
text = (
text.encode("ascii", "ignore").decode().strip() if trim else text
)
# Handle word wrapping
if wrap:
wrap_width = (((width / 100) * h_coverage) / font_size) * 2
lines = textwrap.wrap(text, width=wrap_width)
else:
lines = [text]
font = ImageFont.truetype(font_path, size=font_size)
log.debug(f"Lines: {lines}")
img = Image.new("RGBA", (width, height), background)
draw = ImageDraw.Draw(img)
line_height_px = line_height * font_size
# Vertical alignment
if v_align == "top":
y_text = v_offset
elif v_align == "center":
y_text = ((height - (line_height_px * len(lines))) // 2) + v_offset
else: # bottom
y_text = (height - (line_height_px * len(lines))) - v_offset
def get_width(line):
if hasattr(font, "getsize"):
return font.getsize(line)[0]
else:
return font.getlength(line)
# Draw each line of text
for line in lines:
line_width = get_width(line)
# Horizontal alignment
if h_align == "left":
x_text = h_offset
elif h_align == "center":
x_text = ((width - line_width) // 2) + h_offset
else: # right
x_text = (width - line_width) - h_offset
draw.text((x_text, y_text), line, fill=color, font=font)
y_text += line_height_px
return (pil2tensor(img),)
__nodes__ = [
MTB_UnsplashImage,
MTB_TextToImage,
# MtbExamples,
]