Spaces:
Running
on
L40S
Running
on
L40S
import os | |
from .log import log_node_warn, log_node_info, log_node_success | |
from .constants import get_category, get_name | |
from .power_prompt_utils import get_and_strip_loras | |
from nodes import LoraLoader, CLIPTextEncode | |
import folder_paths | |
NODE_NAME = get_name('Power Prompt') | |
class RgthreePowerPrompt: | |
NAME = NODE_NAME | |
CATEGORY = get_category() | |
def INPUT_TYPES(cls): # pylint: disable = invalid-name, missing-function-docstring | |
SAVED_PROMPTS_FILES = folder_paths.get_filename_list('saved_prompts') | |
SAVED_PROMPTS_CONTENT = [] | |
for filename in SAVED_PROMPTS_FILES: | |
with open(folder_paths.get_full_path('saved_prompts', filename), 'r') as f: | |
SAVED_PROMPTS_CONTENT.append(f.read()) | |
return { | |
'required': { | |
'prompt': ('STRING', { | |
'multiline': True | |
}), | |
}, | |
'optional': { | |
"opt_model": ("MODEL",), | |
"opt_clip": ("CLIP",), | |
'insert_lora': (['CHOOSE', 'DISABLE LORAS'] + | |
[os.path.splitext(x)[0] for x in folder_paths.get_filename_list('loras')],), | |
'insert_embedding': ([ | |
'CHOOSE', | |
] + [os.path.splitext(x)[0] for x in folder_paths.get_filename_list('embeddings')],), | |
'insert_saved': ([ | |
'CHOOSE', | |
] + SAVED_PROMPTS_FILES,), | |
}, | |
'hidden': { | |
'values_insert_saved': (['CHOOSE'] + SAVED_PROMPTS_CONTENT,), | |
} | |
} | |
RETURN_TYPES = ( | |
'CONDITIONING', | |
'MODEL', | |
'CLIP', | |
'STRING', | |
) | |
RETURN_NAMES = ( | |
'CONDITIONING', | |
'MODEL', | |
'CLIP', | |
'TEXT', | |
) | |
FUNCTION = 'main' | |
def main(self, | |
prompt, | |
opt_model=None, | |
opt_clip=None, | |
insert_lora=None, | |
insert_embedding=None, | |
insert_saved=None, | |
values_insert_saved=None): | |
if insert_lora == 'DISABLE LORAS': | |
prompt, loras, skipped, unfound = get_and_strip_loras(prompt, log_node=NODE_NAME, silent=True) | |
log_node_info( | |
NODE_NAME, | |
f'Disabling all found loras ({len(loras)}) and stripping lora tags for TEXT output.') | |
elif opt_model is not None and opt_clip is not None: | |
prompt, loras, skipped, unfound = get_and_strip_loras(prompt, log_node=NODE_NAME) | |
if len(loras) > 0: | |
for lora in loras: | |
opt_model, opt_clip = LoraLoader().load_lora(opt_model, opt_clip, lora['lora'], | |
lora['strength'], lora['strength']) | |
log_node_success(NODE_NAME, f'Loaded "{lora["lora"]}" from prompt') | |
log_node_info(NODE_NAME, f'{len(loras)} Loras processed; stripping tags for TEXT output.') | |
elif '<lora:' in prompt: | |
prompt, loras, skipped, unfound = get_and_strip_loras(prompt, log_node=NODE_NAME, silent=True) | |
total_loras = len(loras) + len(skipped) + len(unfound) | |
if total_loras: | |
log_node_warn( | |
NODE_NAME, f'Found {len(loras)} lora tags in prompt but model & clip were not supplied!') | |
log_node_info(NODE_NAME, 'Loras not processed, keeping for TEXT output.') | |
conditioning = None | |
if opt_clip is not None: | |
conditioning = CLIPTextEncode().encode(opt_clip, prompt)[0] | |
return (conditioning, opt_model, opt_clip, prompt) | |