Spaces:
Running
on
L40S
Running
on
L40S
import os | |
import logging | |
from spandrel import ModelLoader, ImageModelDescriptor | |
from comfy import model_management | |
import torch | |
import comfy.utils | |
import folder_paths | |
try: | |
from spandrel_extra_arches import EXTRA_REGISTRY | |
from spandrel import MAIN_REGISTRY | |
MAIN_REGISTRY.add(*EXTRA_REGISTRY) | |
logging.info("Successfully imported spandrel_extra_arches: support for non commercial upscale models.") | |
except: | |
pass | |
class UpscaleModelLoader: | |
def INPUT_TYPES(s): | |
return {"required": { "model_name": (folder_paths.get_filename_list("upscale_models"), ), | |
}} | |
RETURN_TYPES = ("UPSCALE_MODEL",) | |
FUNCTION = "load_model" | |
CATEGORY = "loaders" | |
def load_model(self, model_name): | |
model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name) | |
sd = comfy.utils.load_torch_file(model_path, safe_load=True) | |
if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd: | |
sd = comfy.utils.state_dict_prefix_replace(sd, {"module.":""}) | |
out = ModelLoader().load_from_state_dict(sd).eval() | |
if not isinstance(out, ImageModelDescriptor): | |
raise Exception("Upscale model must be a single-image model.") | |
return (out, ) | |
class ImageUpscaleWithModel: | |
def INPUT_TYPES(s): | |
return {"required": { "upscale_model": ("UPSCALE_MODEL",), | |
"image": ("IMAGE",), | |
}} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "upscale" | |
CATEGORY = "image/upscaling" | |
def upscale(self, upscale_model, image): | |
device = model_management.get_torch_device() | |
memory_required = model_management.module_size(upscale_model.model) | |
memory_required += (512 * 512 * 3) * image.element_size() * max(upscale_model.scale, 1.0) * 384.0 #The 384.0 is an estimate of how much some of these models take, TODO: make it more accurate | |
memory_required += image.nelement() * image.element_size() | |
model_management.free_memory(memory_required, device) | |
upscale_model.to(device) | |
in_img = image.movedim(-1,-3).to(device) | |
tile = 512 | |
overlap = 32 | |
oom = True | |
while oom: | |
try: | |
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) | |
pbar = comfy.utils.ProgressBar(steps) | |
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) | |
oom = False | |
except model_management.OOM_EXCEPTION as e: | |
tile //= 2 | |
if tile < 128: | |
raise e | |
upscale_model.to("cpu") | |
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) | |
return (s,) | |
NODE_CLASS_MAPPINGS = { | |
"UpscaleModelLoader": UpscaleModelLoader, | |
"ImageUpscaleWithModel": ImageUpscaleWithModel | |
} | |