Spaces:
Running
on
Zero
Running
on
Zero
import qrcode | |
import torch | |
from PIL import Image | |
from ..log import log | |
from ..utils import pil2tensor | |
class MTB_QrCode: | |
"""Basic QR Code generator.""" | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"url": ("STRING", {"default": "https://www.github.com"}), | |
"width": ( | |
"INT", | |
{"default": 256, "max": 8096, "min": 0, "step": 1}, | |
), | |
"height": ( | |
"INT", | |
{"default": 256, "max": 8096, "min": 0, "step": 1}, | |
), | |
"error_correct": (("L", "M", "Q", "H"), {"default": "L"}), | |
"box_size": ( | |
"INT", | |
{"default": 10, "max": 8096, "min": 0, "step": 1}, | |
), | |
"border": ( | |
"INT", | |
{"default": 4, "max": 8096, "min": 0, "step": 1}, | |
), | |
"invert": (("BOOLEAN",), {"default": False}), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "do_qr" | |
CATEGORY = "mtb/generate" | |
def do_qr( | |
self, | |
*, | |
url: str, | |
width: int, | |
height: int, | |
error_correct: str, | |
box_size: int, | |
border: int, | |
invert: bool, | |
) -> tuple[torch.Tensor]: | |
log.warning( | |
"This node will soon be deprecated, there are much better alternatives like https://github.com/coreyryanhanson/comfy-qr" | |
) | |
if error_correct == "L" or error_correct not in ["M", "Q", "H"]: | |
error_correct = qrcode.constants.ERROR_CORRECT_L | |
elif error_correct == "M": | |
error_correct = qrcode.constants.ERROR_CORRECT_M | |
elif error_correct == "Q": | |
error_correct = qrcode.constants.ERROR_CORRECT_Q | |
else: | |
error_correct = qrcode.constants.ERROR_CORRECT_H | |
qr = qrcode.QRCode( | |
version=1, | |
error_correction=error_correct, | |
box_size=box_size, | |
border=border, | |
) | |
qr.add_data(url) | |
qr.make(fit=True) | |
back_color = (255, 255, 255) if invert else (0, 0, 0) | |
fill_color = (0, 0, 0) if invert else (255, 255, 255) | |
code = qr.make_image(back_color=back_color, fill_color=fill_color) | |
# that we now resize without filtering | |
code = code.resize((width, height), Image.NEAREST) | |
return (pil2tensor(code),) | |
__nodes__ = [MTB_QrCode] | |