# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py import logging from torch import Tensor from torch import nn import comfy.ops ops = comfy.ops.manual_cast from comfy.ldm.modules.attention import optimized_attention logger = logging.getLogger("dinov2") try: from xformers.ops import memory_efficient_attention, unbind XFORMERS_AVAILABLE = True except ImportError: logger.warning("xFormers not available") XFORMERS_AVAILABLE = False class Attention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, attn_drop: float = 0.0, proj_drop: float = 0.0, ) -> None: super().__init__() self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim**-0.5 self.qkv = ops.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = ops.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x: Tensor) -> Tensor: # B, N, C = x.shape # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] # attn = q @ k.transpose(-2, -1) # attn = attn.softmax(dim=-1) # #attn = self.attn_drop(attn) # x = (attn @ v).transpose(1, 2).reshape(B, N, C) # x = self.proj(x) # #x = self.proj_drop(x) # return x # print("x shape: ", x.shape) B, N, C = x.shape q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) out = optimized_attention(q, k, v, self.num_heads, skip_reshape=True) out= self.proj(out) out = self.proj_drop(out) return out class MemEffAttention(Attention): def forward(self, x: Tensor, attn_bias=None) -> Tensor: if not XFORMERS_AVAILABLE: assert attn_bias is None, "xFormers is required for nested tensors usage" return super().forward(x) B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) q, k, v = unbind(qkv, 2) x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) x = x.reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x