#---------------------------------------------------------------------------------------------------------------------# # Comfyroll Studio custom nodes by RockOfFire and Akatsuzi https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes # for ComfyUI https://github.com/comfyanonymous/ComfyUI #---------------------------------------------------------------------------------------------------------------------# #---------------------------------------------------------------------------------------------------------------------# # UPSCALE FUNCTIONS #---------------------------------------------------------------------------------------------------------------------# # These functions are based on WAS nodes Image Resize and the Comfy Extras upscale with model nodes import torch #import os from comfy_extras.chainner_models import model_loading from comfy import model_management import numpy as np import comfy.utils import folder_paths from PIL import Image # PIL to Tensor def pil2tensor(image): return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0) # Tensor to PIL def tensor2pil(image): return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) def load_model(model_name): model_path = folder_paths.get_full_path("upscale_models", model_name) sd = comfy.utils.load_torch_file(model_path, safe_load=True) if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd: sd = comfy.utils.state_dict_prefix_replace(sd, {"module.":""}) out = model_loading.load_state_dict(sd).eval() return out def upscale_with_model(upscale_model, image): device = model_management.get_torch_device() upscale_model.to(device) in_img = image.movedim(-1,-3).to(device) free_memory = model_management.get_free_memory(device) tile = 512 overlap = 32 oom = True while oom: try: steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) pbar = comfy.utils.ProgressBar(steps) s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) oom = False except model_management.OOM_EXCEPTION as e: tile //= 2 if tile < 128: raise e upscale_model.cpu() s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) return s def apply_resize_image(image: Image.Image, original_width, original_height, rounding_modulus, mode='scale', supersample='true', factor: int = 2, width: int = 1024, height: int = 1024, resample='bicubic'): # Calculate the new width and height based on the given mode and parameters if mode == 'rescale': new_width, new_height = int(original_width * factor), int(original_height * factor) else: m = rounding_modulus original_ratio = original_height / original_width height = int(width * original_ratio) new_width = width if width % m == 0 else width + (m - width % m) new_height = height if height % m == 0 else height + (m - height % m) # Define a dictionary of resampling filters resample_filters = {'nearest': 0, 'bilinear': 2, 'bicubic': 3, 'lanczos': 1} # Apply supersample if supersample == 'true': image = image.resize((new_width * 8, new_height * 8), resample=Image.Resampling(resample_filters[resample])) # Resize the image using the given resampling filter resized_image = image.resize((new_width, new_height), resample=Image.Resampling(resample_filters[resample])) return resized_image