#---------------------------------------------------------------------------------------------------------------------# # Comfyroll Studio custom nodes by RockOfFire and Akatsuzi https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes # for ComfyUI https://github.com/comfyanonymous/ComfyUI #---------------------------------------------------------------------------------------------------------------------# import os import sys import comfy.sd import comfy.utils import folder_paths import hashlib from random import random, uniform from ..categories import icons sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy")) #---------------------------------------------------------------------------------------------------------------------# # LoRA Nodes #---------------------------------------------------------------------------------------------------------------------# # This is a load lora node with an added switch to turn on or off. On will add the lora and off will skip the node. class CR_LoraLoader: def __init__(self): self.loaded_lora = None @classmethod def INPUT_TYPES(s): file_list = folder_paths.get_filename_list("loras") file_list.insert(0, "None") return {"required": { "model": ("MODEL",), "clip": ("CLIP", ), "switch": (["On","Off"],), "lora_name": (file_list, ), "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), }} RETURN_TYPES = ("MODEL", "CLIP", "STRING", ) RETURN_NAMES = ("MODEL", "CLIP", "show_help", ) FUNCTION = "load_lora" CATEGORY = icons.get("Comfyroll/LoRA") def load_lora(self, model, clip, switch, lora_name, strength_model, strength_clip): show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/LoRA-Nodes#cr-load-lora" if strength_model == 0 and strength_clip == 0: return (model, clip, show_help, ) if switch == "Off" or lora_name == "None": return (model, clip, show_help, ) lora_path = folder_paths.get_full_path("loras", lora_name) lora = None if self.loaded_lora is not None: if self.loaded_lora[0] == lora_path: lora = self.loaded_lora[1] else: del self.loaded_lora if lora is None: lora = comfy.utils.load_torch_file(lora_path, safe_load=True) self.loaded_lora = (lora_path, lora) model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip) return (model_lora, clip_lora, show_help, ) #---------------------------------------------------------------------------------------------------------------------# # Based on Efficiency Nodes # This is a lora stack where a single node has 3 different loras each with their own switch class CR_LoRAStack: @classmethod def INPUT_TYPES(cls): loras = ["None"] + folder_paths.get_filename_list("loras") return {"required": { "switch_1": (["Off","On"],), "lora_name_1": (loras,), "model_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), "clip_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), "switch_2": (["Off","On"],), "lora_name_2": (loras,), "model_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), "clip_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), "switch_3": (["Off","On"],), "lora_name_3": (loras,), "model_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), "clip_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), }, "optional": {"lora_stack": ("LORA_STACK",) }, } RETURN_TYPES = ("LORA_STACK", "STRING", ) RETURN_NAMES = ("LORA_STACK", "show_help", ) FUNCTION = "lora_stacker" CATEGORY = icons.get("Comfyroll/LoRA") def lora_stacker(self, lora_name_1, model_weight_1, clip_weight_1, switch_1, lora_name_2, model_weight_2, clip_weight_2, switch_2, lora_name_3, model_weight_3, clip_weight_3, switch_3, lora_stack=None): # Initialise the list lora_list=list() if lora_stack is not None: lora_list.extend([l for l in lora_stack if l[0] != "None"]) if lora_name_1 != "None" and switch_1 == "On": lora_list.extend([(lora_name_1, model_weight_1, clip_weight_1)]), if lora_name_2 != "None" and switch_2 == "On": lora_list.extend([(lora_name_2, model_weight_2, clip_weight_2)]), if lora_name_3 != "None" and switch_3 == "On": lora_list.extend([(lora_name_3, model_weight_3, clip_weight_3)]), show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/LoRA-Nodes#cr-lora-stack" return (lora_list, show_help, ) #---------------------------------------------------------------------------------------------------------------------# # This applies the lora stack. class CR_ApplyLoRAStack: @classmethod def INPUT_TYPES(cls): return {"required": {"model": ("MODEL",), "clip": ("CLIP", ), "lora_stack": ("LORA_STACK", ), } } RETURN_TYPES = ("MODEL", "CLIP", "STRING", ) RETURN_NAMES = ("MODEL", "CLIP", "show_help", ) FUNCTION = "apply_lora_stack" CATEGORY = icons.get("Comfyroll/LoRA") def apply_lora_stack(self, model, clip, lora_stack=None,): show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/LoRA-Nodes#cr-apply-lora-stack" # Initialise the list lora_params = list() # Extend lora_params with lora-stack items if lora_stack: lora_params.extend(lora_stack) else: return (model, clip, show_help,) # Initialise the model and clip model_lora = model clip_lora = clip # Loop through the list for tup in lora_params: lora_name, strength_model, strength_clip = tup lora_path = folder_paths.get_full_path("loras", lora_name) lora = comfy.utils.load_torch_file(lora_path, safe_load=True) model_lora, clip_lora = comfy.sd.load_lora_for_models(model_lora, clip_lora, lora, strength_model, strength_clip) return (model_lora, clip_lora, show_help,) #---------------------------------------------------------------------------------------------------------------------# # This is adds to a LoRA stack chain, which produces a LoRA instance with a randomized weight within a range. # Stride sets the number of iterations before weight is re-randomized. class CR_RandomWeightLoRA: @classmethod def INPUT_TYPES(cls): loras = ["None"] + folder_paths.get_filename_list("loras") return {"required": { "stride": (("INT", {"default": 1, "min": 1, "max": 1000})), "force_randomize_after_stride": (["Off","On"],), "lora_name": (loras,), "switch": (["Off","On"],), "weight_min": ("FLOAT", {"default": 0.0, "min": -10.0, "max": 10.0, "step": 0.01}), "weight_max": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), "clip_weight": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), }, "optional": {"lora_stack": ("LORA_STACK",) }, } RETURN_TYPES = ("LORA_STACK",) FUNCTION = "random_weight_lora" CATEGORY = icons.get("Comfyroll/LoRA") LastWeightMap = {} StridesMap = {} LastHashMap = {} @staticmethod def getIdHash(lora_name: str, force_randomize_after_stride, stride, weight_min, weight_max, clip_weight) -> int: fl_str = f"{lora_name}_{force_randomize_after_stride}_{stride}_{weight_min:.2f}_{weight_max:.2f}_{clip_weight:.2f}" return hashlib.sha256(fl_str.encode('utf-8')).hexdigest() @classmethod def IS_CHANGED(cls, stride, force_randomize_after_stride, lora_name, switch, weight_min, weight_max, clip_weight, lora_stack=None): id_hash = CR_RandomWeightLoRA.getIdHash(lora_name, force_randomize_after_stride, stride, weight_min, weight_max, clip_weight) if switch == "Off": return id_hash + "_Off" if lora_name == "None": return id_hash if id_hash not in CR_RandomWeightLoRA.StridesMap: CR_RandomWeightLoRA.StridesMap[id_hash] = 0 CR_RandomWeightLoRA.StridesMap[id_hash] += 1 if stride > 1 and CR_RandomWeightLoRA.StridesMap[id_hash] < stride and id_hash in CR_RandomWeightLoRA.LastHashMap: return CR_RandomWeightLoRA.LastHashMap[id_hash] else: CR_RandomWeightLoRA.StridesMap[id_hash] = 0 last_weight = CR_RandomWeightLoRA.LastWeightMap.get(id_hash, None) weight = uniform(weight_min, weight_max) if last_weight is not None: while weight == last_weight: weight = uniform(weight_min, weight_max) CR_RandomWeightLoRA.LastWeightMap[id_hash] = weight hash_str = f"{id_hash}_{weight:.3f}" CR_RandomWeightLoRA.LastHashMap[id_hash] = hash_str return hash_str def random_weight_lora(self, stride, force_randomize_after_stride, lora_name, switch, weight_min, weight_max, clip_weight, lora_stack=None): id_hash = CR_RandomWeightLoRA.getIdHash(lora_name, force_randomize_after_stride, stride, weight_min, weight_max, clip_weight) # Initialise the list lora_list=list() if lora_stack is not None: lora_list.extend([l for l in lora_stack if l[0] != "None"]) weight = CR_RandomWeightLoRA.LastWeightMap.get(id_hash, 0.0) if lora_name != "None" and switch == "On": lora_list.extend([(lora_name, weight, clip_weight)]), return (lora_list,) #---------------------------------------------------------------------------------------------------------------------# # This is a lora stack where a single node has 3 different loras which can be applied randomly. Exclusive mode causes only one lora to be applied. # If exclusive mode is on, each LoRA's chance of being applied is evaluated, and the lora with the highest chance is applied # Stride sets the minimum number of cycles before a re-randomization is performed. class CR_RandomLoRAStack: @classmethod def INPUT_TYPES(cls): loras = ["None"] + folder_paths.get_filename_list("loras") return {"required": { "exclusive_mode": (["Off","On"],), "stride": (("INT", {"default": 1, "min": 1, "max": 1000})), "force_randomize_after_stride": (["Off","On"],), "lora_name_1": (loras,), "switch_1": (["Off","On"],), "chance_1": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "model_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), "clip_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), "lora_name_2": (loras,), "switch_2": (["Off","On"],), "chance_2": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "model_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), "clip_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), "lora_name_3": (loras,), "switch_3": (["Off","On"],), "chance_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "model_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), "clip_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), }, "optional": {"lora_stack": ("LORA_STACK",) }, } RETURN_TYPES = ("LORA_STACK",) FUNCTION = "random_lora_stacker" CATEGORY = icons.get("Comfyroll/LoRA") UsedLorasMap = {} StridesMap = {} LastHashMap = {} @staticmethod def getIdHash(lora_name_1: str, lora_name_2: str, lora_name_3: str) -> int: id_set = set([lora_name_1, lora_name_2, lora_name_3]) id_hash = hash(frozenset(id_set)) return id_hash @staticmethod def deduplicateLoraNames(lora_name_1: str, lora_name_2: str, lora_name_3: str): is_same_1 = False is_same_2 = False is_same_3 = False if lora_name_1 == lora_name_2: is_same_1 = True is_same_2 = True if lora_name_1 == lora_name_3: is_same_1 = True is_same_3 = True if lora_name_2 == lora_name_3: is_same_2 = True is_same_3 = True if is_same_1: lora_name_1 = lora_name_1 + "CR_RandomLoRAStack_1" if is_same_2: lora_name_2 = lora_name_2 + "CR_RandomLoRAStack_2" if is_same_3: lora_name_3 = lora_name_3 + "CR_RandomLoRAStack_3" return lora_name_1, lora_name_2, lora_name_3 @staticmethod def cleanLoraName(lora_name) -> str: if "CR_RandomLoRAStack_1" in lora_name: lora_name = lora_name.replace("CR_RandomLoRAStack_1", "") elif "CR_RandomLoRAStack_2" in lora_name: lora_name = lora_name.replace("CR_RandomLoRAStack_2", "") elif "CR_RandomLoRAStack_3" in lora_name: lora_name = lora_name.replace("CR_RandomLoRAStack_3", "") return lora_name @classmethod def IS_CHANGED(cls, exclusive_mode, stride, force_randomize_after_stride, lora_name_1, model_weight_1, clip_weight_1, switch_1, chance_1, lora_name_2, model_weight_2, clip_weight_2, switch_2, chance_2, lora_name_3, model_weight_3, clip_weight_3, switch_3, chance_3, lora_stack=None): lora_set = set() lora_name_1, lora_name_2, lora_name_3 = CR_RandomLoRAStack.deduplicateLoraNames(lora_name_1, lora_name_2, lora_name_3) id_hash = CR_RandomLoRAStack.getIdHash(lora_name_1, lora_name_2, lora_name_3) if id_hash not in CR_RandomLoRAStack.StridesMap: CR_RandomLoRAStack.StridesMap[id_hash] = 0 CR_RandomLoRAStack.StridesMap[id_hash] += 1 if stride > 1 and CR_RandomLoRAStack.StridesMap[id_hash] < stride and id_hash in CR_RandomLoRAStack.LastHashMap: return CR_RandomLoRAStack.LastHashMap[id_hash] else: CR_RandomLoRAStack.StridesMap[id_hash] = 0 total_on = 0 if lora_name_1 != "None" and switch_1 == "On" and chance_1 > 0.0: total_on += 1 if lora_name_2 != "None" and switch_2 == "On" and chance_2 > 0.0: total_on += 1 if lora_name_3 != "None" and switch_3 == "On" and chance_3 > 0.0: total_on += 1 def perform_randomization() -> set: _lora_set = set() rand_1 = random() rand_2 = random() rand_3 = random() apply_1 = True if (rand_1 <= chance_1 and switch_1 == "On") else False apply_2 = True if (rand_2 <= chance_2 and switch_2 == "On") else False apply_3 = True if (rand_3 <= chance_3 and switch_3 == "On") else False num_to_apply = sum([apply_1, apply_2, apply_3]) if exclusive_mode == "On" and num_to_apply > 1: rand_dict = {} if apply_1: rand_dict[1] = rand_1 if apply_2: rand_dict[2] = rand_2 if apply_3: rand_dict[3] = rand_3 sorted_rands = sorted(rand_dict.keys(), key=lambda k: rand_dict[k]) if sorted_rands[0] == 1: apply_2 = False apply_3 = False elif sorted_rands[0] == 2: apply_1 = False apply_3 = False elif sorted_rands[0] == 3: apply_1 = False apply_2 = False if lora_name_1 != "None" and switch_1 == "On" and apply_1: _lora_set.add(lora_name_1) if lora_name_2 != "None" and switch_2 == "On" and apply_2: _lora_set.add(lora_name_2) if lora_name_3 != "None" and switch_3 == "On" and apply_3: _lora_set.add(lora_name_3) return _lora_set last_lora_set = CR_RandomLoRAStack.UsedLorasMap.get(id_hash, set()) lora_set = perform_randomization() if force_randomize_after_stride == "On" and len(last_lora_set) > 0 and total_on > 1: while lora_set == last_lora_set: lora_set = perform_randomization() CR_RandomLoRAStack.UsedLorasMap[id_hash] = lora_set hash_str = str(hash(frozenset(lora_set))) CR_RandomLoRAStack.LastHashMap[id_hash] = hash_str return hash_str def random_lora_stacker(self, exclusive_mode, stride, force_randomize_after_stride, lora_name_1, model_weight_1, clip_weight_1, switch_1, chance_1, lora_name_2, model_weight_2, clip_weight_2, switch_2, chance_2, lora_name_3, model_weight_3, clip_weight_3, switch_3, chance_3, lora_stack=None): # Initialise the list lora_list=list() if lora_stack is not None: lora_list.extend([l for l in lora_stack if l[0] != "None"]) lora_name_1, lora_name_2, lora_name_3 = CR_RandomLoRAStack.deduplicateLoraNames(lora_name_1, lora_name_2, lora_name_3) id_hash = CR_RandomLoRAStack.getIdHash(lora_name_1, lora_name_2, lora_name_3) used_loras = CR_RandomLoRAStack.UsedLorasMap.get(id_hash, set()) if lora_name_1 != "None" and switch_1 == "On" and lora_name_1 in used_loras: lora_list.extend([(CR_RandomLoRAStack.cleanLoraName(lora_name_1), model_weight_1, clip_weight_1)]), if lora_name_2 != "None" and switch_2 == "On" and lora_name_2 in used_loras: lora_list.extend([(CR_RandomLoRAStack.cleanLoraName(lora_name_2), model_weight_2, clip_weight_2)]), if lora_name_3 != "None" and switch_3 == "On" and lora_name_3 in used_loras: lora_list.extend([(CR_RandomLoRAStack.cleanLoraName(lora_name_3), model_weight_3, clip_weight_3)]), return (lora_list,) #---------------------------------------------------------------------------------------------------------------------# # MAPPINGS #---------------------------------------------------------------------------------------------------------------------# # For reference only, actual mappings are in __init__.py ''' NODE_CLASS_MAPPINGS = { "CR Load LoRA": CR_LoraLoader, "CR LoRA Stack":CR_LoRAStack, "CR Apply LoRA Stack":CR_ApplyLoRAStack, "CR Random LoRA Stack":CR_RandomLoRAStack, "CR Random Weight LoRA":CR_RandomWeightLoRA, } '''