import os import comfy.samplers import comfy.sample import torch from nodes import common_ksampler, CLIPTextEncode from comfy.utils import ProgressBar from .utils import expand_mask, FONTS_DIR, parse_string_to_list import torchvision.transforms.v2 as T import torch.nn.functional as F import logging import folder_paths # From https://github.com/BlenderNeko/ComfyUI_Noise/ def slerp(val, low, high): dims = low.shape low = low.reshape(dims[0], -1) high = high.reshape(dims[0], -1) low_norm = low/torch.norm(low, dim=1, keepdim=True) high_norm = high/torch.norm(high, dim=1, keepdim=True) low_norm[low_norm != low_norm] = 0.0 high_norm[high_norm != high_norm] = 0.0 omega = torch.acos((low_norm*high_norm).sum(1)) so = torch.sin(omega) res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high return res.reshape(dims) class KSamplerVariationsWithNoise: @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL", ), "latent_image": ("LATENT", ), "main_seed": ("INT:seed", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "variation_strength": ("FLOAT", {"default": 0.17, "min": 0.0, "max": 1.0, "step":0.01, "round": 0.01}), #"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), #"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}), #"return_with_leftover_noise": (["disable", "enable"], ), "variation_seed": ("INT:seed", {"default": 12345, "min": 0, "max": 0xffffffffffffffff}), "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.01, "round": 0.01}), }} RETURN_TYPES = ("LATENT",) FUNCTION = "execute" CATEGORY = "essentials/sampling" def prepare_mask(self, mask, shape): mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear") mask = mask.expand((-1,shape[1],-1,-1)) if mask.shape[0] < shape[0]: mask = mask.repeat((shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]] return mask def execute(self, model, latent_image, main_seed, steps, cfg, sampler_name, scheduler, positive, negative, variation_strength, variation_seed, denoise): if main_seed == variation_seed: variation_seed += 1 end_at_step = steps #min(steps, end_at_step) start_at_step = round(end_at_step - end_at_step * denoise) force_full_denoise = True disable_noise = True device = comfy.model_management.get_torch_device() # Generate base noise batch_size, _, height, width = latent_image["samples"].shape generator = torch.manual_seed(main_seed) base_noise = torch.randn((1, 4, height, width), dtype=torch.float32, device="cpu", generator=generator).repeat(batch_size, 1, 1, 1).cpu() # Generate variation noise generator = torch.manual_seed(variation_seed) variation_noise = torch.randn((batch_size, 4, height, width), dtype=torch.float32, device="cpu", generator=generator).cpu() slerp_noise = slerp(variation_strength, base_noise, variation_noise) # Calculate sigma comfy.model_management.load_model_gpu(model) sampler = comfy.samplers.KSampler(model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options) sigmas = sampler.sigmas sigma = sigmas[start_at_step] - sigmas[end_at_step] sigma /= model.model.latent_format.scale_factor sigma = sigma.detach().cpu().item() work_latent = latent_image.copy() work_latent["samples"] = latent_image["samples"].clone() + slerp_noise * sigma # if there's a mask we need to expand it to avoid artifacts, 5 pixels should be enough if "noise_mask" in latent_image: noise_mask = self.prepare_mask(latent_image["noise_mask"], latent_image['samples'].shape) work_latent["samples"] = noise_mask * work_latent["samples"] + (1-noise_mask) * latent_image["samples"] work_latent['noise_mask'] = expand_mask(latent_image["noise_mask"].clone(), 5, True) return common_ksampler(model, main_seed, steps, cfg, sampler_name, scheduler, positive, negative, work_latent, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise) class KSamplerVariationsStochastic: @classmethod def INPUT_TYPES(s): return {"required":{ "model": ("MODEL",), "latent_image": ("LATENT", ), "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 25, "min": 1, "max": 10000}), "cfg": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), "sampler": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "variation_seed": ("INT:seed", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "variation_strength": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step":0.05, "round": 0.01}), #"variation_sampler": (comfy.samplers.KSampler.SAMPLERS, ), "cfg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.05, "round": 0.01}), }} RETURN_TYPES = ("LATENT", ) FUNCTION = "execute" CATEGORY = "essentials/sampling" def execute(self, model, latent_image, noise_seed, steps, cfg, sampler, scheduler, positive, negative, variation_seed, variation_strength, cfg_scale, variation_sampler="dpmpp_2m_sde"): # Stage 1: composition sampler force_full_denoise = False # return with leftover noise = "enable" disable_noise = False # add noise = "enable" end_at_step = max(int(steps * (1-variation_strength)), 1) start_at_step = 0 work_latent = latent_image.copy() batch_size = work_latent["samples"].shape[0] work_latent["samples"] = work_latent["samples"][0].unsqueeze(0) stage1 = common_ksampler(model, noise_seed, steps, cfg, sampler, scheduler, positive, negative, work_latent, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)[0] if batch_size > 1: stage1["samples"] = stage1["samples"].clone().repeat(batch_size, 1, 1, 1) # Stage 2: variation sampler force_full_denoise = True disable_noise = True cfg = max(cfg * cfg_scale, 1.0) start_at_step = end_at_step end_at_step = steps return common_ksampler(model, variation_seed, steps, cfg, variation_sampler, scheduler, positive, negative, stage1, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise) class InjectLatentNoise: @classmethod def INPUT_TYPES(s): return {"required": { "latent": ("LATENT", ), "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "noise_strength": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step":0.01, "round": 0.01}), "normalize": (["false", "true"], {"default": "false"}), }, "optional": { "mask": ("MASK", ), }} RETURN_TYPES = ("LATENT",) FUNCTION = "execute" CATEGORY = "essentials/sampling" def execute(self, latent, noise_seed, noise_strength, normalize="false", mask=None): torch.manual_seed(noise_seed) noise_latent = latent.copy() original_samples = noise_latent["samples"].clone() random_noise = torch.randn_like(original_samples) if normalize == "true": mean = original_samples.mean() std = original_samples.std() random_noise = random_noise * std + mean random_noise = original_samples + random_noise * noise_strength if mask is not None: mask = F.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(random_noise.shape[2], random_noise.shape[3]), mode="bilinear") mask = mask.expand((-1,random_noise.shape[1],-1,-1)).clamp(0.0, 1.0) if mask.shape[0] < random_noise.shape[0]: mask = mask.repeat((random_noise.shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:random_noise.shape[0]] elif mask.shape[0] > random_noise.shape[0]: mask = mask[:random_noise.shape[0]] random_noise = mask * random_noise + (1-mask) * original_samples noise_latent["samples"] = random_noise return (noise_latent, ) class TextEncodeForSamplerParams: @classmethod def INPUT_TYPES(s): return { "required": { "text": ("STRING", {"multiline": True, "dynamicPrompts": True, "default": "Separate prompts with at least three dashes\n---\nLike so"}), "clip": ("CLIP", ) }} RETURN_TYPES = ("CONDITIONING", ) FUNCTION = "execute" CATEGORY = "essentials/sampling" def execute(self, text, clip): import re output_text = [] output_encoded = [] text = re.sub(r'[-*=~]{4,}\n', '---\n', text) text = text.split("---\n") for t in text: t = t.strip() if t: output_text.append(t) output_encoded.append(CLIPTextEncode().encode(clip, t)[0]) #if len(output_encoded) == 1: # output = output_encoded[0] #else: output = {"text": output_text, "encoded": output_encoded} return (output, ) class SamplerSelectHelper: @classmethod def INPUT_TYPES(s): return {"required": { **{s: ("BOOLEAN", { "default": False }) for s in comfy.samplers.KSampler.SAMPLERS}, }} RETURN_TYPES = ("STRING", ) FUNCTION = "execute" CATEGORY = "essentials/sampling" def execute(self, **values): values = [v for v in values if values[v]] values = ", ".join(values) return (values, ) class SchedulerSelectHelper: @classmethod def INPUT_TYPES(s): return {"required": { **{s: ("BOOLEAN", { "default": False }) for s in comfy.samplers.KSampler.SCHEDULERS}, }} RETURN_TYPES = ("STRING", ) FUNCTION = "execute" CATEGORY = "essentials/sampling" def execute(self, **values): values = [v for v in values if values[v]] values = ", ".join(values) return (values, ) class LorasForFluxParams: @classmethod def INPUT_TYPES(s): optional_loras = ['none'] + folder_paths.get_filename_list("loras") return { "required": { "lora_1": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}), "strength_model_1": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "1.0" }), }, #"optional": { # "lora_2": (optional_loras, ), # "strength_lora_2": ("STRING", { "multiline": False, "dynamicPrompts": False }), # "lora_3": (optional_loras, ), # "strength_lora_3": ("STRING", { "multiline": False, "dynamicPrompts": False }), # "lora_4": (optional_loras, ), # "strength_lora_4": ("STRING", { "multiline": False, "dynamicPrompts": False }), #} } RETURN_TYPES = ("LORA_PARAMS", ) FUNCTION = "execute" CATEGORY = "essentials/sampling" def execute(self, lora_1, strength_model_1, lora_2="none", strength_lora_2="", lora_3="none", strength_lora_3="", lora_4="none", strength_lora_4=""): output = { "loras": [], "strengths": [] } output["loras"].append(lora_1) output["strengths"].append(parse_string_to_list(strength_model_1)) if lora_2 != "none": output["loras"].append(lora_2) if strength_lora_2 == "": strength_lora_2 = "1.0" output["strengths"].append(parse_string_to_list(strength_lora_2)) if lora_3 != "none": output["loras"].append(lora_3) if strength_lora_3 == "": strength_lora_3 = "1.0" output["strengths"].append(parse_string_to_list(strength_lora_3)) if lora_4 != "none": output["loras"].append(lora_4) if strength_lora_4 == "": strength_lora_4 = "1.0" output["strengths"].append(parse_string_to_list(strength_lora_4)) return (output,) class FluxSamplerParams: def __init__(self): self.loraloader = None self.lora = (None, None) @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL", ), "conditioning": ("CONDITIONING", ), "latent_image": ("LATENT", ), "seed": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "?" }), "sampler": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "euler" }), "scheduler": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "simple" }), "steps": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "20" }), "guidance": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "3.5" }), "max_shift": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "" }), "base_shift": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "" }), "denoise": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "1.0" }), }, "optional": { "loras": ("LORA_PARAMS",), }} RETURN_TYPES = ("LATENT","SAMPLER_PARAMS") RETURN_NAMES = ("latent", "params") FUNCTION = "execute" CATEGORY = "essentials/sampling" def execute(self, model, conditioning, latent_image, seed, sampler, scheduler, steps, guidance, max_shift, base_shift, denoise, loras=None): import random import time from comfy_extras.nodes_custom_sampler import Noise_RandomNoise, BasicScheduler, BasicGuider, SamplerCustomAdvanced from comfy_extras.nodes_latent import LatentBatch from comfy_extras.nodes_model_advanced import ModelSamplingFlux, ModelSamplingAuraFlow from node_helpers import conditioning_set_values from nodes import LoraLoader is_schnell = model.model.model_type == comfy.model_base.ModelType.FLOW noise = seed.replace("\n", ",").split(",") noise = [random.randint(0, 999999) if "?" in n else int(n) for n in noise] if not noise: noise = [random.randint(0, 999999)] if sampler == '*': sampler = comfy.samplers.KSampler.SAMPLERS elif sampler.startswith("!"): sampler = sampler.replace("\n", ",").split(",") sampler = [s.strip("! ") for s in sampler] sampler = [s for s in comfy.samplers.KSampler.SAMPLERS if s not in sampler] else: sampler = sampler.replace("\n", ",").split(",") sampler = [s.strip() for s in sampler if s.strip() in comfy.samplers.KSampler.SAMPLERS] if not sampler: sampler = ['ipndm'] if scheduler == '*': scheduler = comfy.samplers.KSampler.SCHEDULERS elif scheduler.startswith("!"): scheduler = scheduler.replace("\n", ",").split(",") scheduler = [s.strip("! ") for s in scheduler] scheduler = [s for s in comfy.samplers.KSampler.SCHEDULERS if s not in scheduler] else: scheduler = scheduler.replace("\n", ",").split(",") scheduler = [s.strip() for s in scheduler] scheduler = [s for s in scheduler if s in comfy.samplers.KSampler.SCHEDULERS] if not scheduler: scheduler = ['simple'] if steps == "": if is_schnell: steps = "4" else: steps = "20" steps = parse_string_to_list(steps) denoise = "1.0" if denoise == "" else denoise denoise = parse_string_to_list(denoise) guidance = "3.5" if guidance == "" else guidance guidance = parse_string_to_list(guidance) if not is_schnell: max_shift = "1.15" if max_shift == "" else max_shift base_shift = "0.5" if base_shift == "" else base_shift else: max_shift = "0" base_shift = "1.0" if base_shift == "" else base_shift max_shift = parse_string_to_list(max_shift) base_shift = parse_string_to_list(base_shift) cond_text = None if isinstance(conditioning, dict) and "encoded" in conditioning: cond_text = conditioning["text"] cond_encoded = conditioning["encoded"] else: cond_encoded = [conditioning] out_latent = None out_params = [] basicschedueler = BasicScheduler() basicguider = BasicGuider() samplercustomadvanced = SamplerCustomAdvanced() latentbatch = LatentBatch() modelsamplingflux = ModelSamplingFlux() if not is_schnell else ModelSamplingAuraFlow() width = latent_image["samples"].shape[3]*8 height = latent_image["samples"].shape[2]*8 lora_strength_len = 1 if loras: lora_model = loras["loras"] lora_strength = loras["strengths"] lora_strength_len = sum(len(i) for i in lora_strength) if self.loraloader is None: self.loraloader = LoraLoader() # count total number of samples total_samples = len(cond_encoded) * len(noise) * len(max_shift) * len(base_shift) * len(guidance) * len(sampler) * len(scheduler) * len(steps) * len(denoise) * lora_strength_len current_sample = 0 if total_samples > 1: pbar = ProgressBar(total_samples) lora_strength_len = 1 if loras: lora_strength_len = len(lora_strength[0]) for los in range(lora_strength_len): if loras: patched_model = self.loraloader.load_lora(model, None, lora_model[0], lora_strength[0][los], 0)[0] else: patched_model = model for i in range(len(cond_encoded)): conditioning = cond_encoded[i] ct = cond_text[i] if cond_text else None for n in noise: randnoise = Noise_RandomNoise(n) for ms in max_shift: for bs in base_shift: if is_schnell: work_model = modelsamplingflux.patch_aura(patched_model, bs)[0] else: work_model = modelsamplingflux.patch(patched_model, ms, bs, width, height)[0] for g in guidance: cond = conditioning_set_values(conditioning, {"guidance": g}) guider = basicguider.get_guider(work_model, cond)[0] for s in sampler: samplerobj = comfy.samplers.sampler_object(s) for sc in scheduler: for st in steps: for d in denoise: sigmas = basicschedueler.get_sigmas(work_model, sc, st, d)[0] current_sample += 1 log = f"Sampling {current_sample}/{total_samples} with seed {n}, sampler {s}, scheduler {sc}, steps {st}, guidance {g}, max_shift {ms}, base_shift {bs}, denoise {d}" lora_name = None lora_str = 0 if loras: lora_name = lora_model[0] lora_str = lora_strength[0][los] log += f", lora {lora_name}, lora_strength {lora_str}" logging.info(log) start_time = time.time() latent = samplercustomadvanced.sample(randnoise, guider, samplerobj, sigmas, latent_image)[1] elapsed_time = time.time() - start_time out_params.append({"time": elapsed_time, "seed": n, "width": width, "height": height, "sampler": s, "scheduler": sc, "steps": st, "guidance": g, "max_shift": ms, "base_shift": bs, "denoise": d, "prompt": ct, "lora": lora_name, "lora_strength": lora_str}) if out_latent is None: out_latent = latent else: out_latent = latentbatch.batch(out_latent, latent)[0] if total_samples > 1: pbar.update(1) return (out_latent, out_params) class PlotParameters: @classmethod def INPUT_TYPES(s): return {"required": { "images": ("IMAGE", ), "params": ("SAMPLER_PARAMS", ), "order_by": (["none", "time", "seed", "steps", "denoise", "sampler", "scheduler", "guidance", "max_shift", "base_shift", "lora_strength"], ), "cols_value": (["none", "time", "seed", "steps", "denoise", "sampler", "scheduler", "guidance", "max_shift", "base_shift", "lora_strength"], ), "cols_num": ("INT", {"default": -1, "min": -1, "max": 1024 }), "add_prompt": (["false", "true", "excerpt"], ), "add_params": (["false", "true", "changes only"], {"default": "true"}), }} RETURN_TYPES = ("IMAGE", ) FUNCTION = "execute" CATEGORY = "essentials/sampling" def execute(self, images, params, order_by, cols_value, cols_num, add_prompt, add_params): from PIL import Image, ImageDraw, ImageFont import math import textwrap if images.shape[0] != len(params): raise ValueError("Number of images and number of parameters do not match.") _params = params.copy() if order_by != "none": sorted_params = sorted(_params, key=lambda x: x[order_by]) indices = [_params.index(item) for item in sorted_params] images = images[torch.tensor(indices)] _params = sorted_params if cols_value != "none" and cols_num > -1: groups = {} for p in _params: value = p[cols_value] if value not in groups: groups[value] = [] groups[value].append(p) cols_num = len(groups) sorted_params = [] groups = list(groups.values()) for g in zip(*groups): sorted_params.extend(g) indices = [_params.index(item) for item in sorted_params] images = images[torch.tensor(indices)] _params = sorted_params elif cols_num == 0: cols_num = int(math.sqrt(images.shape[0])) cols_num = max(1, min(cols_num, 1024)) width = images.shape[2] out_image = [] font = ImageFont.truetype(os.path.join(FONTS_DIR, 'ShareTechMono-Regular.ttf'), min(48, int(32*(width/1024)))) text_padding = 3 line_height = font.getmask('Q').getbbox()[3] + font.getmetrics()[1] + text_padding*2 char_width = font.getbbox('M')[2]+1 # using monospace font if add_params == "changes only": value_tracker = {} for p in _params: for key, value in p.items(): if key != "time": if key not in value_tracker: value_tracker[key] = set() value_tracker[key].add(value) changing_keys = {key for key, values in value_tracker.items() if len(values) > 1 or key == "prompt"} result = [] for p in _params: changing_params = {key: value for key, value in p.items() if key in changing_keys} result.append(changing_params) _params = result for (image, param) in zip(images, _params): image = image.permute(2, 0, 1) if add_params != "false": if add_params == "changes only": text = "\n".join([f"{key}: {value}" for key, value in param.items() if key != "prompt"]) else: text = f"time: {param['time']:.2f}s, seed: {param['seed']}, steps: {param['steps']}, size: {param['width']}Γ—{param['height']}\ndenoise: {param['denoise']}, sampler: {param['sampler']}, sched: {param['scheduler']}\nguidance: {param['guidance']}, max/base shift: {param['max_shift']}/{param['base_shift']}" if 'lora' in param and param['lora']: text += f"\nLoRA: {param['lora'][:32]}, str: {param['lora_strength']}" lines = text.split("\n") text_height = line_height * len(lines) text_image = Image.new('RGB', (width, text_height), color=(0, 0, 0)) for i, line in enumerate(lines): draw = ImageDraw.Draw(text_image) draw.text((text_padding, i * line_height + text_padding), line, font=font, fill=(255, 255, 255)) text_image = T.ToTensor()(text_image).to(image.device) image = torch.cat([image, text_image], 1) if 'prompt' in param and param['prompt'] and add_prompt != "false": prompt = param['prompt'] if add_prompt == "excerpt": prompt = " ".join(param['prompt'].split()[:64]) prompt += "..." cols = math.ceil(width / char_width) prompt_lines = textwrap.wrap(prompt, width=cols) prompt_height = line_height * len(prompt_lines) prompt_image = Image.new('RGB', (width, prompt_height), color=(0, 0, 0)) for i, line in enumerate(prompt_lines): draw = ImageDraw.Draw(prompt_image) draw.text((text_padding, i * line_height + text_padding), line, font=font, fill=(255, 255, 255)) prompt_image = T.ToTensor()(prompt_image).to(image.device) image = torch.cat([image, prompt_image], 1) # a little cleanup image = torch.nan_to_num(image, nan=0.0).clamp(0.0, 1.0) out_image.append(image) # ensure all images have the same height if add_prompt != "false" or add_params == "changes only": max_height = max([image.shape[1] for image in out_image]) out_image = [F.pad(image, (0, 0, 0, max_height - image.shape[1])) for image in out_image] out_image = torch.stack(out_image, 0).permute(0, 2, 3, 1) # merge images if cols_num > -1: cols = min(cols_num, out_image.shape[0]) b, h, w, c = out_image.shape rows = math.ceil(b / cols) # Pad the tensor if necessary if b % cols != 0: padding = cols - (b % cols) out_image = F.pad(out_image, (0, 0, 0, 0, 0, 0, 0, padding)) b = out_image.shape[0] # Reshape and transpose out_image = out_image.reshape(rows, cols, h, w, c) out_image = out_image.permute(0, 2, 1, 3, 4) out_image = out_image.reshape(rows * h, cols * w, c).unsqueeze(0) """ width = out_image.shape[2] # add the title and notes on top if title and export_labels: title_font = ImageFont.truetype(os.path.join(FONTS_DIR, 'ShareTechMono-Regular.ttf'), 48) title_width = title_font.getbbox(title)[2] title_padding = 6 title_line_height = title_font.getmask(title).getbbox()[3] + title_font.getmetrics()[1] + title_padding*2 title_text_height = title_line_height title_text_image = Image.new('RGB', (width, title_text_height), color=(0, 0, 0, 0)) draw = ImageDraw.Draw(title_text_image) draw.text((width//2 - title_width//2, title_padding), title, font=title_font, fill=(255, 255, 255)) title_text_image = T.ToTensor()(title_text_image).unsqueeze(0).permute([0,2,3,1]).to(out_image.device) out_image = torch.cat([title_text_image, out_image], 1) """ return (out_image, ) class GuidanceTimestepping: @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL",), "value": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.05}), "start_at": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01}), "end_at": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01}), } } RETURN_TYPES = ("MODEL",) FUNCTION = "execute" CATEGORY = "essentials/sampling" def execute(self, model, value, start_at, end_at): sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at) sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at) def apply_apg(args): cond = args["cond"] uncond = args["uncond"] cond_scale = args["cond_scale"] sigma = args["sigma"] sigma = sigma.detach().cpu()[0].item() if sigma <= sigma_start and sigma > sigma_end: cond_scale = value return uncond + (cond - uncond) * cond_scale m = model.clone() m.set_model_sampler_cfg_function(apply_apg) return (m,) class ModelSamplingDiscreteFlowCustom(torch.nn.Module): def __init__(self, model_config=None): super().__init__() if model_config is not None: sampling_settings = model_config.sampling_settings else: sampling_settings = {} self.set_parameters(shift=sampling_settings.get("shift", 1.0), multiplier=sampling_settings.get("multiplier", 1000)) def set_parameters(self, shift=1.0, timesteps=1000, multiplier=1000, cut_off=1.0, shift_multiplier=0): self.shift = shift self.multiplier = multiplier self.cut_off = cut_off self.shift_multiplier = shift_multiplier ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps) * multiplier) self.register_buffer('sigmas', ts) @property def sigma_min(self): return self.sigmas[0] @property def sigma_max(self): return self.sigmas[-1] def timestep(self, sigma): return sigma * self.multiplier def sigma(self, timestep): shift = self.shift if timestep.dim() == 0: t = timestep.cpu().item() / self.multiplier if t <= self.cut_off: shift = shift * self.shift_multiplier return comfy.model_sampling.time_snr_shift(shift, timestep / self.multiplier) def percent_to_sigma(self, percent): if percent <= 0.0: return 1.0 if percent >= 1.0: return 0.0 return 1.0 - percent class ModelSamplingSD3Advanced: @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "shift": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step":0.01}), "cut_off": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step":0.05}), "shift_multiplier": ("FLOAT", {"default": 2, "min": 0, "max": 10, "step":0.05}), }} RETURN_TYPES = ("MODEL",) FUNCTION = "execute" CATEGORY = "essentials/sampling" def execute(self, model, shift, multiplier=1000, cut_off=1.0, shift_multiplier=0): m = model.clone() sampling_base = ModelSamplingDiscreteFlowCustom sampling_type = comfy.model_sampling.CONST class ModelSamplingAdvanced(sampling_base, sampling_type): pass model_sampling = ModelSamplingAdvanced(model.model.model_config) model_sampling.set_parameters(shift=shift, multiplier=multiplier, cut_off=cut_off, shift_multiplier=shift_multiplier) m.add_object_patch("model_sampling", model_sampling) return (m, ) SAMPLING_CLASS_MAPPINGS = { "KSamplerVariationsStochastic+": KSamplerVariationsStochastic, "KSamplerVariationsWithNoise+": KSamplerVariationsWithNoise, "InjectLatentNoise+": InjectLatentNoise, "FluxSamplerParams+": FluxSamplerParams, "GuidanceTimestepping+": GuidanceTimestepping, "PlotParameters+": PlotParameters, "TextEncodeForSamplerParams+": TextEncodeForSamplerParams, "SamplerSelectHelper+": SamplerSelectHelper, "SchedulerSelectHelper+": SchedulerSelectHelper, "LorasForFluxParams+": LorasForFluxParams, "ModelSamplingSD3Advanced+": ModelSamplingSD3Advanced, } SAMPLING_NAME_MAPPINGS = { "KSamplerVariationsStochastic+": "πŸ”§ KSampler Stochastic Variations", "KSamplerVariationsWithNoise+": "πŸ”§ KSampler Variations with Noise Injection", "InjectLatentNoise+": "πŸ”§ Inject Latent Noise", "FluxSamplerParams+": "πŸ”§ Flux Sampler Parameters", "GuidanceTimestepping+": "πŸ”§ Guidance Timestep (experimental)", "PlotParameters+": "πŸ”§ Plot Sampler Parameters", "TextEncodeForSamplerParams+": "πŸ”§Text Encode for Sampler Params", "SamplerSelectHelper+": "πŸ”§ Sampler Select Helper", "SchedulerSelectHelper+": "πŸ”§ Scheduler Select Helper", "LorasForFluxParams+": "πŸ”§ LoRA for Flux Parameters", "ModelSamplingSD3Advanced+": "πŸ”§ Model Sampling SD3 Advanced", }