var __defProp = Object.defineProperty; var __name = (target, value) => __defProp(target, "name", { value, configurable: true }); import { bX as ComfyDialog, bY as $el, bZ as ComfyApp, c as app, k as LiteGraph, b4 as LGraphCanvas, b_ as DraggableList, bh as useToastStore, b$ as serialise, aE as useNodeDefStore, c0 as deserialiseAndCreate, aZ as api, u as useSettingStore, L as LGraphGroup, c1 as KeyComboImpl, M as useKeybindingStore, F as useCommandStore, e as LGraphNode, c2 as ComfyWidgets, c3 as applyTextReplacements, c4 as isElectron, bN as electronAPI, aN as nextTick } from "./index-CoOvI8ZH.js"; import { mergeIfValid, getWidgetConfig, setWidgetConfig } from "./widgetInputs-CRPRgKEi.js"; class ClipspaceDialog extends ComfyDialog { static { __name(this, "ClipspaceDialog"); } static items = []; static instance = null; static registerButton(name, contextPredicate, callback) { const item = $el("button", { type: "button", textContent: name, contextPredicate, onclick: callback }); ClipspaceDialog.items.push(item); } static invalidatePreview() { if (ComfyApp.clipspace && ComfyApp.clipspace.imgs && ComfyApp.clipspace.imgs.length > 0) { const img_preview = document.getElementById( "clipspace_preview" ); if (img_preview) { img_preview.src = ComfyApp.clipspace.imgs[ComfyApp.clipspace["selectedIndex"]].src; img_preview.style.maxHeight = "100%"; img_preview.style.maxWidth = "100%"; } } } static invalidate() { if (ClipspaceDialog.instance) { const self2 = ClipspaceDialog.instance; const children = $el("div.comfy-modal-content", [ self2.createImgSettings(), ...self2.createButtons() ]); if (self2.element) { if (self2.element.firstChild) { self2.element.removeChild(self2.element.firstChild); } self2.element.appendChild(children); } else { self2.element = $el("div.comfy-modal", { parent: document.body }, [ children ]); } if (self2.element.children[0].children.length <= 1) { self2.element.children[0].appendChild( $el("p", {}, [ "Unable to find the features to edit content of a format stored in the current Clipspace." ]) ); } ClipspaceDialog.invalidatePreview(); } } constructor() { super(); } createButtons() { const buttons = []; for (let idx in ClipspaceDialog.items) { const item = ClipspaceDialog.items[idx]; if (!item.contextPredicate || item.contextPredicate()) buttons.push(ClipspaceDialog.items[idx]); } buttons.push( $el("button", { type: "button", textContent: "Close", onclick: /* @__PURE__ */ __name(() => { this.close(); }, "onclick") }) ); return buttons; } createImgSettings() { if (ComfyApp.clipspace?.imgs) { const combo_items = []; const imgs = ComfyApp.clipspace.imgs; for (let i = 0; i < imgs.length; i++) { combo_items.push($el("option", { value: i }, [`${i}`])); } const combo1 = $el( "select", { id: "clipspace_img_selector", onchange: /* @__PURE__ */ __name((event) => { if (event.target && ComfyApp.clipspace) { ComfyApp.clipspace["selectedIndex"] = event.target.selectedIndex; ClipspaceDialog.invalidatePreview(); } }, "onchange") }, combo_items ); const row1 = $el("tr", {}, [ $el("td", {}, [$el("font", { color: "white" }, ["Select Image"])]), $el("td", {}, [combo1]) ]); const combo2 = $el( "select", { id: "clipspace_img_paste_mode", onchange: /* @__PURE__ */ __name((event) => { if (event.target && ComfyApp.clipspace) { ComfyApp.clipspace["img_paste_mode"] = event.target.value; } }, "onchange") }, [ $el("option", { value: "selected" }, "selected"), $el("option", { value: "all" }, "all") ] ); combo2.value = ComfyApp.clipspace["img_paste_mode"]; const row2 = $el("tr", {}, [ $el("td", {}, [$el("font", { color: "white" }, ["Paste Mode"])]), $el("td", {}, [combo2]) ]); const td2 = $el( "td", { align: "center", width: "100px", height: "100px", colSpan: "2" }, [$el("img", { id: "clipspace_preview", ondragstart: /* @__PURE__ */ __name(() => false, "ondragstart") }, [])] ); const row3 = $el("tr", {}, [td2]); return $el("table", {}, [row1, row2, row3]); } else { return []; } } createImgPreview() { if (ComfyApp.clipspace?.imgs) { return $el("img", { id: "clipspace_preview", ondragstart: /* @__PURE__ */ __name(() => false, "ondragstart") }); } else return []; } show() { const img_preview = document.getElementById("clipspace_preview"); ClipspaceDialog.invalidate(); this.element.style.display = "block"; } } app.registerExtension({ name: "Comfy.Clipspace", init(app2) { app2.openClipspace = function() { if (!ClipspaceDialog.instance) { ClipspaceDialog.instance = new ClipspaceDialog(); ComfyApp.clipspace_invalidate_handler = ClipspaceDialog.invalidate; } if (ComfyApp.clipspace) { ClipspaceDialog.instance.show(); } else app2.ui.dialog.show("Clipspace is Empty!"); }; } }); window.comfyAPI = window.comfyAPI || {}; window.comfyAPI.clipspace = window.comfyAPI.clipspace || {}; window.comfyAPI.clipspace.ClipspaceDialog = ClipspaceDialog; const ext$1 = { name: "Comfy.ContextMenuFilter", init() { const ctxMenu = LiteGraph.ContextMenu; LiteGraph.ContextMenu = function(values, options) { const ctx = new ctxMenu(values, options); if (options?.className === "dark" && values?.length > 4) { const filter = document.createElement("input"); filter.classList.add("comfy-context-menu-filter"); filter.placeholder = "Filter list"; ctx.root.prepend(filter); const items = Array.from( ctx.root.querySelectorAll(".litemenu-entry") ); let displayedItems = [...items]; let itemCount = displayedItems.length; requestAnimationFrame(() => { const currentNode = LGraphCanvas.active_canvas.current_node; const clickedComboValue = currentNode?.widgets?.filter( (w) => w.type === "combo" && w.options.values?.length === values.length ).find( (w) => w.options.values?.every((v, i) => v === values[i]) )?.value; let selectedIndex = clickedComboValue ? values.findIndex((v) => v === clickedComboValue) : 0; if (selectedIndex < 0) { selectedIndex = 0; } let selectedItem = displayedItems[selectedIndex]; updateSelected(); function updateSelected() { selectedItem?.style.setProperty("background-color", ""); selectedItem?.style.setProperty("color", ""); selectedItem = displayedItems[selectedIndex]; selectedItem?.style.setProperty( "background-color", "#ccc", "important" ); selectedItem?.style.setProperty("color", "#000", "important"); } __name(updateSelected, "updateSelected"); const positionList = /* @__PURE__ */ __name(() => { const rect = ctx.root.getBoundingClientRect(); if (rect.top < 0) { const scale = 1 - ctx.root.getBoundingClientRect().height / ctx.root.clientHeight; const shift = ctx.root.clientHeight * scale / 2; ctx.root.style.top = -shift + "px"; } }, "positionList"); filter.addEventListener("keydown", (event) => { switch (event.key) { case "ArrowUp": event.preventDefault(); if (selectedIndex === 0) { selectedIndex = itemCount - 1; } else { selectedIndex--; } updateSelected(); break; case "ArrowRight": event.preventDefault(); selectedIndex = itemCount - 1; updateSelected(); break; case "ArrowDown": event.preventDefault(); if (selectedIndex === itemCount - 1) { selectedIndex = 0; } else { selectedIndex++; } updateSelected(); break; case "ArrowLeft": event.preventDefault(); selectedIndex = 0; updateSelected(); break; case "Enter": selectedItem?.click(); break; case "Escape": ctx.close(); break; } }); filter.addEventListener("input", () => { const term = filter.value.toLocaleLowerCase(); displayedItems = items.filter((item) => { const isVisible = !term || item.textContent?.toLocaleLowerCase().includes(term); item.style.display = isVisible ? "block" : "none"; return isVisible; }); selectedIndex = 0; if (displayedItems.includes(selectedItem)) { selectedIndex = displayedItems.findIndex( (d) => d === selectedItem ); } itemCount = displayedItems.length; updateSelected(); if (options.event) { let top = options.event.clientY - 10; const bodyRect = document.body.getBoundingClientRect(); const rootRect = ctx.root.getBoundingClientRect(); if (bodyRect.height && top > bodyRect.height - rootRect.height - 10) { top = Math.max(0, bodyRect.height - rootRect.height - 10); } ctx.root.style.top = top + "px"; positionList(); } }); requestAnimationFrame(() => { filter.focus(); positionList(); }); }); } return ctx; }; LiteGraph.ContextMenu.prototype = ctxMenu.prototype; } }; app.registerExtension(ext$1); function stripComments(str) { return str.replace(/\/\*[\s\S]*?\*\/|\/\/.*/g, ""); } __name(stripComments, "stripComments"); app.registerExtension({ name: "Comfy.DynamicPrompts", nodeCreated(node) { if (node.widgets) { const widgets = node.widgets.filter((n) => n.dynamicPrompts); for (const widget of widgets) { widget.serializeValue = (workflowNode, widgetIndex) => { let prompt2 = stripComments(widget.value); while (prompt2.replace("\\{", "").includes("{") && prompt2.replace("\\}", "").includes("}")) { const startIndex = prompt2.replace("\\{", "00").indexOf("{"); const endIndex = prompt2.replace("\\}", "00").indexOf("}"); const optionsString = prompt2.substring(startIndex + 1, endIndex); const options = optionsString.split("|"); const randomIndex = Math.floor(Math.random() * options.length); const randomOption = options[randomIndex]; prompt2 = prompt2.substring(0, startIndex) + randomOption + prompt2.substring(endIndex + 1); } if (workflowNode?.widgets_values) workflowNode.widgets_values[widgetIndex] = prompt2; return prompt2; }; } } } }); app.registerExtension({ name: "Comfy.EditAttention", init() { const editAttentionDelta = app.ui.settings.addSetting({ id: "Comfy.EditAttention.Delta", name: "Ctrl+up/down precision", type: "slider", attrs: { min: 0.01, max: 0.5, step: 0.01 }, defaultValue: 0.05 }); function incrementWeight(weight, delta) { const floatWeight = parseFloat(weight); if (isNaN(floatWeight)) return weight; const newWeight = floatWeight + delta; return String(Number(newWeight.toFixed(10))); } __name(incrementWeight, "incrementWeight"); function findNearestEnclosure(text, cursorPos) { let start = cursorPos, end = cursorPos; let openCount = 0, closeCount = 0; while (start >= 0) { start--; if (text[start] === "(" && openCount === closeCount) break; if (text[start] === "(") openCount++; if (text[start] === ")") closeCount++; } if (start < 0) return null; openCount = 0; closeCount = 0; while (end < text.length) { if (text[end] === ")" && openCount === closeCount) break; if (text[end] === "(") openCount++; if (text[end] === ")") closeCount++; end++; } if (end === text.length) return null; return { start: start + 1, end }; } __name(findNearestEnclosure, "findNearestEnclosure"); function addWeightToParentheses(text) { const parenRegex = /^\((.*)\)$/; const parenMatch = text.match(parenRegex); const floatRegex = /:([+-]?(\d*\.)?\d+([eE][+-]?\d+)?)/; const floatMatch = text.match(floatRegex); if (parenMatch && !floatMatch) { return `(${parenMatch[1]}:1.0)`; } else { return text; } } __name(addWeightToParentheses, "addWeightToParentheses"); function editAttention(event) { const inputField = event.composedPath()[0]; const delta = parseFloat(editAttentionDelta.value); if (inputField.tagName !== "TEXTAREA") return; if (!(event.key === "ArrowUp" || event.key === "ArrowDown")) return; if (!event.ctrlKey && !event.metaKey) return; event.preventDefault(); let start = inputField.selectionStart; let end = inputField.selectionEnd; let selectedText = inputField.value.substring(start, end); if (!selectedText) { const nearestEnclosure = findNearestEnclosure(inputField.value, start); if (nearestEnclosure) { start = nearestEnclosure.start; end = nearestEnclosure.end; selectedText = inputField.value.substring(start, end); } else { const delimiters = " .,\\/!?%^*;:{}=-_`~()\r\n "; while (!delimiters.includes(inputField.value[start - 1]) && start > 0) { start--; } while (!delimiters.includes(inputField.value[end]) && end < inputField.value.length) { end++; } selectedText = inputField.value.substring(start, end); if (!selectedText) return; } } if (selectedText[selectedText.length - 1] === " ") { selectedText = selectedText.substring(0, selectedText.length - 1); end -= 1; } if (inputField.value[start - 1] === "(" && inputField.value[end] === ")") { start -= 1; end += 1; selectedText = inputField.value.substring(start, end); } if (selectedText[0] !== "(" || selectedText[selectedText.length - 1] !== ")") { selectedText = `(${selectedText})`; } selectedText = addWeightToParentheses(selectedText); const weightDelta = event.key === "ArrowUp" ? delta : -delta; const updatedText = selectedText.replace( /\((.*):([+-]?\d+(?:\.\d+)?)\)/, (match, text, weight) => { weight = incrementWeight(weight, weightDelta); if (weight == 1) { return text; } else { return `(${text}:${weight})`; } } ); inputField.setSelectionRange(start, end); document.execCommand("insertText", false, updatedText); inputField.setSelectionRange(start, start + updatedText.length); } __name(editAttention, "editAttention"); window.addEventListener("keydown", editAttention); } }); const ORDER = Symbol(); const PREFIX$1 = "workflow"; const SEPARATOR$1 = ">"; function merge(target, source) { if (typeof target === "object" && typeof source === "object") { for (const key in source) { const sv = source[key]; if (typeof sv === "object") { let tv = target[key]; if (!tv) tv = target[key] = {}; merge(tv, source[key]); } else { target[key] = sv; } } } return target; } __name(merge, "merge"); class ManageGroupDialog extends ComfyDialog { static { __name(this, "ManageGroupDialog"); } tabs; selectedNodeIndex; selectedTab = "Inputs"; selectedGroup; modifications = {}; nodeItems; app; groupNodeType; groupNodeDef; groupData; innerNodesList; widgetsPage; inputsPage; outputsPage; draggable; get selectedNodeInnerIndex() { return +this.nodeItems[this.selectedNodeIndex].dataset.nodeindex; } constructor(app2) { super(); this.app = app2; this.element = $el("dialog.comfy-group-manage", { parent: document.body }); } changeTab(tab) { this.tabs[this.selectedTab].tab.classList.remove("active"); this.tabs[this.selectedTab].page.classList.remove("active"); this.tabs[tab].tab.classList.add("active"); this.tabs[tab].page.classList.add("active"); this.selectedTab = tab; } changeNode(index, force) { if (!force && this.selectedNodeIndex === index) return; if (this.selectedNodeIndex != null) { this.nodeItems[this.selectedNodeIndex].classList.remove("selected"); } this.nodeItems[index].classList.add("selected"); this.selectedNodeIndex = index; if (!this.buildInputsPage() && this.selectedTab === "Inputs") { this.changeTab("Widgets"); } if (!this.buildWidgetsPage() && this.selectedTab === "Widgets") { this.changeTab("Outputs"); } if (!this.buildOutputsPage() && this.selectedTab === "Outputs") { this.changeTab("Inputs"); } this.changeTab(this.selectedTab); } getGroupData() { this.groupNodeType = LiteGraph.registered_node_types[`${PREFIX$1}${SEPARATOR$1}` + this.selectedGroup]; this.groupNodeDef = this.groupNodeType.nodeData; this.groupData = GroupNodeHandler.getGroupData(this.groupNodeType); } changeGroup(group, reset = true) { this.selectedGroup = group; this.getGroupData(); const nodes = this.groupData.nodeData.nodes; this.nodeItems = nodes.map( (n, i) => $el( "li.draggable-item", { dataset: { nodeindex: n.index + "" }, onclick: /* @__PURE__ */ __name(() => { this.changeNode(i); }, "onclick") }, [ $el("span.drag-handle"), $el( "div", { textContent: n.title ?? n.type }, n.title ? $el("span", { textContent: n.type }) : [] ) ] ) ); this.innerNodesList.replaceChildren(...this.nodeItems); if (reset) { this.selectedNodeIndex = null; this.changeNode(0); } else { const items = this.draggable.getAllItems(); let index = items.findIndex((item) => item.classList.contains("selected")); if (index === -1) index = this.selectedNodeIndex; this.changeNode(index, true); } const ordered = [...nodes]; this.draggable?.dispose(); this.draggable = new DraggableList(this.innerNodesList, "li"); this.draggable.addEventListener( "dragend", ({ detail: { oldPosition, newPosition } }) => { if (oldPosition === newPosition) return; ordered.splice(newPosition, 0, ordered.splice(oldPosition, 1)[0]); for (let i = 0; i < ordered.length; i++) { this.storeModification({ nodeIndex: ordered[i].index, section: ORDER, prop: "order", value: i }); } } ); } storeModification(props) { const { nodeIndex, section, prop, value } = props; const groupMod = this.modifications[this.selectedGroup] ??= {}; const nodesMod = groupMod.nodes ??= {}; const nodeMod = nodesMod[nodeIndex ?? this.selectedNodeInnerIndex] ??= {}; const typeMod = nodeMod[section] ??= {}; if (typeof value === "object") { const objMod = typeMod[prop] ??= {}; Object.assign(objMod, value); } else { typeMod[prop] = value; } } getEditElement(section, prop, value, placeholder, checked, checkable = true) { if (value === placeholder) value = ""; const mods = this.modifications[this.selectedGroup]?.nodes?.[this.selectedNodeInnerIndex]?.[section]?.[prop]; if (mods) { if (mods.name != null) { value = mods.name; } if (mods.visible != null) { checked = mods.visible; } } return $el("div", [ $el("input", { value, placeholder, type: "text", onchange: /* @__PURE__ */ __name((e) => { this.storeModification({ section, prop, value: { name: e.target.value } }); }, "onchange") }), $el("label", { textContent: "Visible" }, [ $el("input", { type: "checkbox", checked, disabled: !checkable, onchange: /* @__PURE__ */ __name((e) => { this.storeModification({ section, prop, value: { visible: !!e.target.checked } }); }, "onchange") }) ]) ]); } buildWidgetsPage() { const widgets = this.groupData.oldToNewWidgetMap[this.selectedNodeInnerIndex]; const items = Object.keys(widgets ?? {}); const type = app.graph.extra.groupNodes[this.selectedGroup]; const config = type.config?.[this.selectedNodeInnerIndex]?.input; this.widgetsPage.replaceChildren( ...items.map((oldName) => { return this.getEditElement( "input", oldName, widgets[oldName], oldName, config?.[oldName]?.visible !== false ); }) ); return !!items.length; } buildInputsPage() { const inputs = this.groupData.nodeInputs[this.selectedNodeInnerIndex]; const items = Object.keys(inputs ?? {}); const type = app.graph.extra.groupNodes[this.selectedGroup]; const config = type.config?.[this.selectedNodeInnerIndex]?.input; this.inputsPage.replaceChildren( ...items.map((oldName) => { let value = inputs[oldName]; if (!value) { return; } return this.getEditElement( "input", oldName, value, oldName, config?.[oldName]?.visible !== false ); }).filter(Boolean) ); return !!items.length; } buildOutputsPage() { const nodes = this.groupData.nodeData.nodes; const innerNodeDef = this.groupData.getNodeDef( nodes[this.selectedNodeInnerIndex] ); const outputs = innerNodeDef?.output ?? []; const groupOutputs = this.groupData.oldToNewOutputMap[this.selectedNodeInnerIndex]; const type = app.graph.extra.groupNodes[this.selectedGroup]; const config = type.config?.[this.selectedNodeInnerIndex]?.output; const node = this.groupData.nodeData.nodes[this.selectedNodeInnerIndex]; const checkable = node.type !== "PrimitiveNode"; this.outputsPage.replaceChildren( ...outputs.map((type2, slot) => { const groupOutputIndex = groupOutputs?.[slot]; const oldName = innerNodeDef.output_name?.[slot] ?? type2; let value = config?.[slot]?.name; const visible = config?.[slot]?.visible || groupOutputIndex != null; if (!value || value === oldName) { value = ""; } return this.getEditElement( "output", slot, value, oldName, visible, checkable ); }).filter(Boolean) ); return !!outputs.length; } show(type) { const groupNodes = Object.keys(app.graph.extra?.groupNodes ?? {}).sort( (a, b) => a.localeCompare(b) ); this.innerNodesList = $el( "ul.comfy-group-manage-list-items" ); this.widgetsPage = $el("section.comfy-group-manage-node-page"); this.inputsPage = $el("section.comfy-group-manage-node-page"); this.outputsPage = $el("section.comfy-group-manage-node-page"); const pages = $el("div", [ this.widgetsPage, this.inputsPage, this.outputsPage ]); this.tabs = [ ["Inputs", this.inputsPage], ["Widgets", this.widgetsPage], ["Outputs", this.outputsPage] ].reduce((p, [name, page]) => { p[name] = { tab: $el("a", { onclick: /* @__PURE__ */ __name(() => { this.changeTab(name); }, "onclick"), textContent: name }), page }; return p; }, {}); const outer = $el("div.comfy-group-manage-outer", [ $el("header", [ $el("h2", "Group Nodes"), $el( "select", { onchange: /* @__PURE__ */ __name((e) => { this.changeGroup(e.target.value); }, "onchange") }, groupNodes.map( (g) => $el("option", { textContent: g, selected: `${PREFIX$1}${SEPARATOR$1}` + g === type, value: g }) ) ) ]), $el("main", [ $el("section.comfy-group-manage-list", this.innerNodesList), $el("section.comfy-group-manage-node", [ $el( "header", Object.values(this.tabs).map((t) => t.tab) ), pages ]) ]), $el("footer", [ $el( "button.comfy-btn", { onclick: /* @__PURE__ */ __name((e) => { const node = app.graph.nodes.find( (n) => n.type === `${PREFIX$1}${SEPARATOR$1}` + this.selectedGroup ); if (node) { useToastStore().addAlert( "This group node is in use in the current workflow, please first remove these." ); return; } if (confirm( `Are you sure you want to remove the node: "${this.selectedGroup}"` )) { delete app.graph.extra.groupNodes[this.selectedGroup]; LiteGraph.unregisterNodeType( `${PREFIX$1}${SEPARATOR$1}` + this.selectedGroup ); } this.show(); }, "onclick") }, "Delete Group Node" ), $el( "button.comfy-btn", { onclick: /* @__PURE__ */ __name(async () => { let nodesByType; let recreateNodes = []; const types = {}; for (const g in this.modifications) { const type2 = app.graph.extra.groupNodes[g]; let config = type2.config ??= {}; let nodeMods = this.modifications[g]?.nodes; if (nodeMods) { const keys = Object.keys(nodeMods); if (nodeMods[keys[0]][ORDER]) { const orderedNodes = []; const orderedMods = {}; const orderedConfig = {}; for (const n of keys) { const order = nodeMods[n][ORDER].order; orderedNodes[order] = type2.nodes[+n]; orderedMods[order] = nodeMods[n]; orderedNodes[order].index = order; } for (const l of type2.links) { if (l[0] != null) l[0] = type2.nodes[l[0]].index; if (l[2] != null) l[2] = type2.nodes[l[2]].index; } if (type2.external) { for (const ext2 of type2.external) { ext2[0] = type2.nodes[ext2[0]]; } } for (const id2 of keys) { if (config[id2]) { orderedConfig[type2.nodes[id2].index] = config[id2]; } delete config[id2]; } type2.nodes = orderedNodes; nodeMods = orderedMods; type2.config = config = orderedConfig; } merge(config, nodeMods); } types[g] = type2; if (!nodesByType) { nodesByType = app.graph.nodes.reduce((p, n) => { p[n.type] ??= []; p[n.type].push(n); return p; }, {}); } const nodes = nodesByType[`${PREFIX$1}${SEPARATOR$1}` + g]; if (nodes) recreateNodes.push(...nodes); } await GroupNodeConfig.registerFromWorkflow(types, {}); for (const node of recreateNodes) { node.recreate(); } this.modifications = {}; this.app.graph.setDirtyCanvas(true, true); this.changeGroup(this.selectedGroup, false); }, "onclick") }, "Save" ), $el( "button.comfy-btn", { onclick: /* @__PURE__ */ __name(() => this.element.close(), "onclick") }, "Close" ) ]) ]); this.element.replaceChildren(outer); this.changeGroup( type ? groupNodes.find((g) => `${PREFIX$1}${SEPARATOR$1}` + g === type) : groupNodes[0] ); this.element.showModal(); this.element.addEventListener("close", () => { this.draggable?.dispose(); }); } } window.comfyAPI = window.comfyAPI || {}; window.comfyAPI.groupNodeManage = window.comfyAPI.groupNodeManage || {}; window.comfyAPI.groupNodeManage.ManageGroupDialog = ManageGroupDialog; const GROUP = Symbol(); const PREFIX = "workflow"; const SEPARATOR = ">"; const Workflow = { InUse: { Free: 0, Registered: 1, InWorkflow: 2 }, isInUseGroupNode(name) { const id2 = `${PREFIX}${SEPARATOR}${name}`; if (app.graph.extra?.groupNodes?.[name]) { if (app.graph.nodes.find((n) => n.type === id2)) { return Workflow.InUse.InWorkflow; } else { return Workflow.InUse.Registered; } } return Workflow.InUse.Free; }, storeGroupNode(name, data) { let extra = app.graph.extra; if (!extra) app.graph.extra = extra = {}; let groupNodes = extra.groupNodes; if (!groupNodes) extra.groupNodes = groupNodes = {}; groupNodes[name] = data; } }; class GroupNodeBuilder { static { __name(this, "GroupNodeBuilder"); } nodes; nodeData; constructor(nodes) { this.nodes = nodes; } build() { const name = this.getName(); if (!name) return; this.sortNodes(); this.nodeData = this.getNodeData(); Workflow.storeGroupNode(name, this.nodeData); return { name, nodeData: this.nodeData }; } getName() { const name = prompt("Enter group name"); if (!name) return; const used = Workflow.isInUseGroupNode(name); switch (used) { case Workflow.InUse.InWorkflow: useToastStore().addAlert( "An in use group node with this name already exists embedded in this workflow, please remove any instances or use a new name." ); return; case Workflow.InUse.Registered: if (!confirm( "A group node with this name already exists embedded in this workflow, are you sure you want to overwrite it?" )) { return; } break; } return name; } sortNodes() { const nodesInOrder = app.graph.computeExecutionOrder(false); this.nodes = this.nodes.map((node) => ({ index: nodesInOrder.indexOf(node), node })).sort((a, b) => a.index - b.index || a.node.id - b.node.id).map(({ node }) => node); } getNodeData() { const storeLinkTypes = /* @__PURE__ */ __name((config) => { for (const link of config.links) { const origin = app.graph.getNodeById(link[4]); const type = origin.outputs[link[1]].type; link.push(type); } }, "storeLinkTypes"); const storeExternalLinks = /* @__PURE__ */ __name((config) => { config.external = []; for (let i = 0; i < this.nodes.length; i++) { const node = this.nodes[i]; if (!node.outputs?.length) continue; for (let slot = 0; slot < node.outputs.length; slot++) { let hasExternal = false; const output = node.outputs[slot]; let type = output.type; if (!output.links?.length) continue; for (const l of output.links) { const link = app.graph.links[l]; if (!link) continue; if (type === "*") type = link.type; if (!app.canvas.selected_nodes[link.target_id]) { hasExternal = true; break; } } if (hasExternal) { config.external.push([i, slot, type]); } } } }, "storeExternalLinks"); try { const serialised = serialise(this.nodes, app.canvas.graph); const config = JSON.parse(serialised); storeLinkTypes(config); storeExternalLinks(config); return config; } finally { } } } class GroupNodeConfig { static { __name(this, "GroupNodeConfig"); } name; nodeData; inputCount; oldToNewOutputMap; newToOldOutputMap; oldToNewInputMap; oldToNewWidgetMap; newToOldWidgetMap; primitiveDefs; widgetToPrimitive; primitiveToWidget; nodeInputs; outputVisibility; nodeDef; inputs; linksFrom; linksTo; externalFrom; constructor(name, nodeData) { this.name = name; this.nodeData = nodeData; this.getLinks(); this.inputCount = 0; this.oldToNewOutputMap = {}; this.newToOldOutputMap = {}; this.oldToNewInputMap = {}; this.oldToNewWidgetMap = {}; this.newToOldWidgetMap = {}; this.primitiveDefs = {}; this.widgetToPrimitive = {}; this.primitiveToWidget = {}; this.nodeInputs = {}; this.outputVisibility = []; } async registerType(source = PREFIX) { this.nodeDef = { output: [], output_name: [], output_is_list: [], // @ts-expect-error Unused, doesn't exist output_is_hidden: [], name: source + SEPARATOR + this.name, display_name: this.name, category: "group nodes" + (SEPARATOR + source), input: { required: {} }, description: `Group node combining ${this.nodeData.nodes.map((n) => n.type).join(", ")}`, python_module: "custom_nodes." + this.name, [GROUP]: this }; this.inputs = []; const seenInputs = {}; const seenOutputs = {}; for (let i = 0; i < this.nodeData.nodes.length; i++) { const node = this.nodeData.nodes[i]; node.index = i; this.processNode(node, seenInputs, seenOutputs); } for (const p of this.#convertedToProcess) { p(); } this.#convertedToProcess = null; await app.registerNodeDef(`${PREFIX}${SEPARATOR}` + this.name, this.nodeDef); useNodeDefStore().addNodeDef(this.nodeDef); } getLinks() { this.linksFrom = {}; this.linksTo = {}; this.externalFrom = {}; for (const l of this.nodeData.links) { const [sourceNodeId, sourceNodeSlot, targetNodeId, targetNodeSlot] = l; if (sourceNodeId == null) continue; if (!this.linksFrom[sourceNodeId]) { this.linksFrom[sourceNodeId] = {}; } if (!this.linksFrom[sourceNodeId][sourceNodeSlot]) { this.linksFrom[sourceNodeId][sourceNodeSlot] = []; } this.linksFrom[sourceNodeId][sourceNodeSlot].push(l); if (!this.linksTo[targetNodeId]) { this.linksTo[targetNodeId] = {}; } this.linksTo[targetNodeId][targetNodeSlot] = l; } if (this.nodeData.external) { for (const ext2 of this.nodeData.external) { if (!this.externalFrom[ext2[0]]) { this.externalFrom[ext2[0]] = { [ext2[1]]: ext2[2] }; } else { this.externalFrom[ext2[0]][ext2[1]] = ext2[2]; } } } } processNode(node, seenInputs, seenOutputs) { const def = this.getNodeDef(node); if (!def) return; const inputs = { ...def.input?.required, ...def.input?.optional }; this.inputs.push(this.processNodeInputs(node, seenInputs, inputs)); if (def.output?.length) this.processNodeOutputs(node, seenOutputs, def); } getNodeDef(node) { const def = globalDefs[node.type]; if (def) return def; const linksFrom = this.linksFrom[node.index]; if (node.type === "PrimitiveNode") { if (!linksFrom) return; let type = linksFrom["0"][0][5]; if (type === "COMBO") { const source = node.outputs[0].widget.name; const fromTypeName = this.nodeData.nodes[linksFrom["0"][0][2]].type; const fromType = globalDefs[fromTypeName]; const input = fromType.input.required[source] ?? fromType.input.optional[source]; type = input[0]; } const def2 = this.primitiveDefs[node.index] = { input: { required: { value: [type, {}] } }, output: [type], output_name: [], output_is_list: [] }; return def2; } else if (node.type === "Reroute") { const linksTo = this.linksTo[node.index]; if (linksTo && linksFrom && !this.externalFrom[node.index]?.[0]) { return null; } let config = {}; let rerouteType = "*"; if (linksFrom) { for (const [, , id2, slot] of linksFrom["0"]) { const node2 = this.nodeData.nodes[id2]; const input = node2.inputs[slot]; if (rerouteType === "*") { rerouteType = input.type; } if (input.widget) { const targetDef = globalDefs[node2.type]; const targetWidget = targetDef.input.required[input.widget.name] ?? targetDef.input.optional[input.widget.name]; const widget = [targetWidget[0], config]; const res = mergeIfValid( { widget }, targetWidget, false, null, widget ); config = res?.customConfig ?? config; } } } else if (linksTo) { const [id2, slot] = linksTo["0"]; rerouteType = this.nodeData.nodes[id2].outputs[slot].type; } else { for (const l of this.nodeData.links) { if (l[2] === node.index) { rerouteType = l[5]; break; } } if (rerouteType === "*") { const t = this.externalFrom[node.index]?.[0]; if (t) { rerouteType = t; } } } config.forceInput = true; return { input: { required: { [rerouteType]: [rerouteType, config] } }, output: [rerouteType], output_name: [], output_is_list: [] }; } console.warn( "Skipping virtual node " + node.type + " when building group node " + this.name ); } getInputConfig(node, inputName, seenInputs, config, extra) { const customConfig = this.nodeData.config?.[node.index]?.input?.[inputName]; let name = customConfig?.name ?? node.inputs?.find((inp) => inp.name === inputName)?.label ?? inputName; let key = name; let prefix = ""; if (node.type === "PrimitiveNode" && node.title || name in seenInputs) { prefix = `${node.title ?? node.type} `; key = name = `${prefix}${inputName}`; if (name in seenInputs) { name = `${prefix}${seenInputs[name]} ${inputName}`; } } seenInputs[key] = (seenInputs[key] ?? 1) + 1; if (inputName === "seed" || inputName === "noise_seed") { if (!extra) extra = {}; extra.control_after_generate = `${prefix}control_after_generate`; } if (config[0] === "IMAGEUPLOAD") { if (!extra) extra = {}; extra.widget = this.oldToNewWidgetMap[node.index]?.[config[1]?.widget ?? "image"] ?? "image"; } if (extra) { config = [config[0], { ...config[1], ...extra }]; } return { name, config, customConfig }; } processWidgetInputs(inputs, node, inputNames, seenInputs) { const slots = []; const converted = /* @__PURE__ */ new Map(); const widgetMap = this.oldToNewWidgetMap[node.index] = {}; for (const inputName of inputNames) { let widgetType = app.getWidgetType(inputs[inputName], inputName); if (widgetType) { const convertedIndex = node.inputs?.findIndex( (inp) => inp.name === inputName && inp.widget?.name === inputName ); if (convertedIndex > -1) { converted.set(convertedIndex, inputName); widgetMap[inputName] = null; } else { const { name, config } = this.getInputConfig( node, inputName, seenInputs, inputs[inputName] ); this.nodeDef.input.required[name] = config; widgetMap[inputName] = name; this.newToOldWidgetMap[name] = { node, inputName }; } } else { slots.push(inputName); } } return { converted, slots }; } checkPrimitiveConnection(link, inputName, inputs) { const sourceNode = this.nodeData.nodes[link[0]]; if (sourceNode.type === "PrimitiveNode") { const [sourceNodeId, _, targetNodeId, __] = link; const primitiveDef = this.primitiveDefs[sourceNodeId]; const targetWidget = inputs[inputName]; const primitiveConfig = primitiveDef.input.required.value; const output = { widget: primitiveConfig }; const config = mergeIfValid( output, targetWidget, false, null, primitiveConfig ); primitiveConfig[1] = config?.customConfig ?? inputs[inputName][1] ? { ...inputs[inputName][1] } : {}; let name = this.oldToNewWidgetMap[sourceNodeId]["value"]; name = name.substr(0, name.length - 6); primitiveConfig[1].control_after_generate = true; primitiveConfig[1].control_prefix = name; let toPrimitive = this.widgetToPrimitive[targetNodeId]; if (!toPrimitive) { toPrimitive = this.widgetToPrimitive[targetNodeId] = {}; } if (toPrimitive[inputName]) { toPrimitive[inputName].push(sourceNodeId); } toPrimitive[inputName] = sourceNodeId; let toWidget = this.primitiveToWidget[sourceNodeId]; if (!toWidget) { toWidget = this.primitiveToWidget[sourceNodeId] = []; } toWidget.push({ nodeId: targetNodeId, inputName }); } } processInputSlots(inputs, node, slots, linksTo, inputMap, seenInputs) { this.nodeInputs[node.index] = {}; for (let i = 0; i < slots.length; i++) { const inputName = slots[i]; if (linksTo[i]) { this.checkPrimitiveConnection(linksTo[i], inputName, inputs); continue; } const { name, config, customConfig } = this.getInputConfig( node, inputName, seenInputs, inputs[inputName] ); this.nodeInputs[node.index][inputName] = name; if (customConfig?.visible === false) continue; this.nodeDef.input.required[name] = config; inputMap[i] = this.inputCount++; } } processConvertedWidgets(inputs, node, slots, converted, linksTo, inputMap, seenInputs) { const convertedSlots = [...converted.keys()].sort().map((k) => converted.get(k)); for (let i = 0; i < convertedSlots.length; i++) { const inputName = convertedSlots[i]; if (linksTo[slots.length + i]) { this.checkPrimitiveConnection( linksTo[slots.length + i], inputName, inputs ); continue; } const { name, config } = this.getInputConfig( node, inputName, seenInputs, inputs[inputName], { defaultInput: true } ); this.nodeDef.input.required[name] = config; this.newToOldWidgetMap[name] = { node, inputName }; if (!this.oldToNewWidgetMap[node.index]) { this.oldToNewWidgetMap[node.index] = {}; } this.oldToNewWidgetMap[node.index][inputName] = name; inputMap[slots.length + i] = this.inputCount++; } } #convertedToProcess = []; processNodeInputs(node, seenInputs, inputs) { const inputMapping = []; const inputNames = Object.keys(inputs); if (!inputNames.length) return; const { converted, slots } = this.processWidgetInputs( inputs, node, inputNames, seenInputs ); const linksTo = this.linksTo[node.index] ?? {}; const inputMap = this.oldToNewInputMap[node.index] = {}; this.processInputSlots(inputs, node, slots, linksTo, inputMap, seenInputs); this.#convertedToProcess.push( () => this.processConvertedWidgets( inputs, node, slots, converted, linksTo, inputMap, seenInputs ) ); return inputMapping; } processNodeOutputs(node, seenOutputs, def) { const oldToNew = this.oldToNewOutputMap[node.index] = {}; for (let outputId = 0; outputId < def.output.length; outputId++) { const linksFrom = this.linksFrom[node.index]; const hasLink = linksFrom?.[outputId] && !this.externalFrom[node.index]?.[outputId]; const customConfig = this.nodeData.config?.[node.index]?.output?.[outputId]; const visible = customConfig?.visible ?? !hasLink; this.outputVisibility.push(visible); if (!visible) { continue; } oldToNew[outputId] = this.nodeDef.output.length; this.newToOldOutputMap[this.nodeDef.output.length] = { node, slot: outputId }; this.nodeDef.output.push(def.output[outputId]); this.nodeDef.output_is_list.push(def.output_is_list[outputId]); let label = customConfig?.name; if (!label) { label = def.output_name?.[outputId] ?? def.output[outputId]; const output = node.outputs.find((o) => o.name === label); if (output?.label) { label = output.label; } } let name = label; if (name in seenOutputs) { const prefix = `${node.title ?? node.type} `; name = `${prefix}${label}`; if (name in seenOutputs) { name = `${prefix}${node.index} ${label}`; } } seenOutputs[name] = 1; this.nodeDef.output_name.push(name); } } static async registerFromWorkflow(groupNodes, missingNodeTypes) { for (const g in groupNodes) { const groupData = groupNodes[g]; let hasMissing = false; for (const n of groupData.nodes) { if (!(n.type in LiteGraph.registered_node_types)) { missingNodeTypes.push({ type: n.type, hint: ` (In group node '${PREFIX}${SEPARATOR}${g}')` }); missingNodeTypes.push({ type: `${PREFIX}${SEPARATOR}` + g, action: { text: "Remove from workflow", callback: /* @__PURE__ */ __name((e) => { delete groupNodes[g]; e.target.textContent = "Removed"; e.target.style.pointerEvents = "none"; e.target.style.opacity = 0.7; }, "callback") } }); hasMissing = true; } } if (hasMissing) continue; const config = new GroupNodeConfig(g, groupData); await config.registerType(); } } } class GroupNodeHandler { static { __name(this, "GroupNodeHandler"); } node; groupData; innerNodes; constructor(node) { this.node = node; this.groupData = node.constructor?.nodeData?.[GROUP]; this.node.setInnerNodes = (innerNodes) => { this.innerNodes = innerNodes; for (let innerNodeIndex = 0; innerNodeIndex < this.innerNodes.length; innerNodeIndex++) { const innerNode = this.innerNodes[innerNodeIndex]; for (const w of innerNode.widgets ?? []) { if (w.type === "converted-widget") { w.serializeValue = w.origSerializeValue; } } innerNode.index = innerNodeIndex; innerNode.getInputNode = (slot) => { const externalSlot = this.groupData.oldToNewInputMap[innerNode.index]?.[slot]; if (externalSlot != null) { return this.node.getInputNode(externalSlot); } const innerLink = this.groupData.linksTo[innerNode.index]?.[slot]; if (!innerLink) return null; const inputNode = innerNodes[innerLink[0]]; if (inputNode.type === "PrimitiveNode") return null; return inputNode; }; innerNode.getInputLink = (slot) => { const externalSlot = this.groupData.oldToNewInputMap[innerNode.index]?.[slot]; if (externalSlot != null) { const linkId = this.node.inputs[externalSlot].link; let link2 = app.graph.links[linkId]; link2 = { ...link2, target_id: innerNode.id, target_slot: +slot }; return link2; } let link = this.groupData.linksTo[innerNode.index]?.[slot]; if (!link) return null; link = { origin_id: innerNodes[link[0]].id, origin_slot: link[1], target_id: innerNode.id, target_slot: +slot }; return link; }; } }; this.node.updateLink = (link) => { link = { ...link }; const output = this.groupData.newToOldOutputMap[link.origin_slot]; let innerNode = this.innerNodes[output.node.index]; let l; while (innerNode?.type === "Reroute") { l = innerNode.getInputLink(0); innerNode = innerNode.getInputNode(0); } if (!innerNode) { return null; } if (l && GroupNodeHandler.isGroupNode(innerNode)) { return innerNode.updateLink(l); } link.origin_id = innerNode.id; link.origin_slot = l?.origin_slot ?? output.slot; return link; }; this.node.getInnerNodes = () => { if (!this.innerNodes) { this.node.setInnerNodes( this.groupData.nodeData.nodes.map((n, i) => { const innerNode = LiteGraph.createNode(n.type); innerNode.configure(n); innerNode.id = `${this.node.id}:${i}`; return innerNode; }) ); } this.updateInnerWidgets(); return this.innerNodes; }; this.node.recreate = async () => { const id2 = this.node.id; const sz = this.node.size; const nodes = this.node.convertToNodes(); const groupNode = LiteGraph.createNode(this.node.type); groupNode.id = id2; groupNode.setInnerNodes(nodes); groupNode[GROUP].populateWidgets(); app.graph.add(groupNode); groupNode.size = [ Math.max(groupNode.size[0], sz[0]), Math.max(groupNode.size[1], sz[1]) ]; const builder = new GroupNodeBuilder(nodes); const nodeData = builder.getNodeData(); groupNode[GROUP].groupData.nodeData.links = nodeData.links; groupNode[GROUP].replaceNodes(nodes); return groupNode; }; this.node.convertToNodes = () => { const addInnerNodes = /* @__PURE__ */ __name(() => { const c = { ...this.groupData.nodeData }; c.nodes = [...c.nodes]; const innerNodes = this.node.getInnerNodes(); let ids = []; for (let i = 0; i < c.nodes.length; i++) { let id2 = innerNodes?.[i]?.id; if (id2 == null || isNaN(id2)) { id2 = void 0; } else { ids.push(id2); } c.nodes[i] = { ...c.nodes[i], id: id2 }; } deserialiseAndCreate(JSON.stringify(c), app.canvas); const [x, y] = this.node.pos; let top; let left; const selectedIds = ids.length ? ids : Object.keys(app.canvas.selected_nodes); const newNodes = []; for (let i = 0; i < selectedIds.length; i++) { const id2 = selectedIds[i]; const newNode = app.graph.getNodeById(id2); const innerNode = innerNodes[i]; newNodes.push(newNode); if (left == null || newNode.pos[0] < left) { left = newNode.pos[0]; } if (top == null || newNode.pos[1] < top) { top = newNode.pos[1]; } if (!newNode.widgets) continue; const map = this.groupData.oldToNewWidgetMap[innerNode.index]; if (map) { const widgets = Object.keys(map); for (const oldName of widgets) { const newName = map[oldName]; if (!newName) continue; const widgetIndex = this.node.widgets.findIndex( (w) => w.name === newName ); if (widgetIndex === -1) continue; if (innerNode.type === "PrimitiveNode") { for (let i2 = 0; i2 < newNode.widgets.length; i2++) { newNode.widgets[i2].value = this.node.widgets[widgetIndex + i2].value; } } else { const outerWidget = this.node.widgets[widgetIndex]; const newWidget = newNode.widgets.find( (w) => w.name === oldName ); if (!newWidget) continue; newWidget.value = outerWidget.value; for (let w = 0; w < outerWidget.linkedWidgets?.length; w++) { newWidget.linkedWidgets[w].value = outerWidget.linkedWidgets[w].value; } } } } } for (const newNode of newNodes) { newNode.pos[0] -= left - x; newNode.pos[1] -= top - y; } return { newNodes, selectedIds }; }, "addInnerNodes"); const reconnectInputs = /* @__PURE__ */ __name((selectedIds) => { for (const innerNodeIndex in this.groupData.oldToNewInputMap) { const id2 = selectedIds[innerNodeIndex]; const newNode = app.graph.getNodeById(id2); const map = this.groupData.oldToNewInputMap[innerNodeIndex]; for (const innerInputId in map) { const groupSlotId = map[innerInputId]; if (groupSlotId == null) continue; const slot = node.inputs[groupSlotId]; if (slot.link == null) continue; const link = app.graph.links[slot.link]; if (!link) continue; const originNode = app.graph.getNodeById(link.origin_id); originNode.connect(link.origin_slot, newNode, +innerInputId); } } }, "reconnectInputs"); const reconnectOutputs = /* @__PURE__ */ __name((selectedIds) => { for (let groupOutputId = 0; groupOutputId < node.outputs?.length; groupOutputId++) { const output = node.outputs[groupOutputId]; if (!output.links) continue; const links = [...output.links]; for (const l of links) { const slot = this.groupData.newToOldOutputMap[groupOutputId]; const link = app.graph.links[l]; const targetNode = app.graph.getNodeById(link.target_id); const newNode = app.graph.getNodeById(selectedIds[slot.node.index]); newNode.connect(slot.slot, targetNode, link.target_slot); } } }, "reconnectOutputs"); app.canvas.emitBeforeChange(); try { const { newNodes, selectedIds } = addInnerNodes(); reconnectInputs(selectedIds); reconnectOutputs(selectedIds); app.graph.remove(this.node); return newNodes; } finally { app.canvas.emitAfterChange(); } }; const getExtraMenuOptions = this.node.getExtraMenuOptions; this.node.getExtraMenuOptions = function(_, options) { getExtraMenuOptions?.apply(this, arguments); let optionIndex = options.findIndex((o) => o.content === "Outputs"); if (optionIndex === -1) optionIndex = options.length; else optionIndex++; options.splice( optionIndex, 0, null, { content: "Convert to nodes", // @ts-expect-error callback: /* @__PURE__ */ __name(() => { return this.convertToNodes(); }, "callback") }, { content: "Manage Group Node", callback: manageGroupNodes } ); }; const onDrawTitleBox = this.node.onDrawTitleBox; this.node.onDrawTitleBox = function(ctx, height, size, scale) { onDrawTitleBox?.apply(this, arguments); const fill2 = ctx.fillStyle; ctx.beginPath(); ctx.rect(11, -height + 11, 2, 2); ctx.rect(14, -height + 11, 2, 2); ctx.rect(17, -height + 11, 2, 2); ctx.rect(11, -height + 14, 2, 2); ctx.rect(14, -height + 14, 2, 2); ctx.rect(17, -height + 14, 2, 2); ctx.rect(11, -height + 17, 2, 2); ctx.rect(14, -height + 17, 2, 2); ctx.rect(17, -height + 17, 2, 2); ctx.fillStyle = this.boxcolor || LiteGraph.NODE_DEFAULT_BOXCOLOR; ctx.fill(); ctx.fillStyle = fill2; }; const onDrawForeground = node.onDrawForeground; const groupData = this.groupData.nodeData; node.onDrawForeground = function(ctx) { const r = onDrawForeground?.apply?.(this, arguments); if (+app.runningNodeId === this.id && this.runningInternalNodeId !== null) { const n = groupData.nodes[this.runningInternalNodeId]; if (!n) return; const message = `Running ${n.title || n.type} (${this.runningInternalNodeId}/${groupData.nodes.length})`; ctx.save(); ctx.font = "12px sans-serif"; const sz = ctx.measureText(message); ctx.fillStyle = node.boxcolor || LiteGraph.NODE_DEFAULT_BOXCOLOR; ctx.beginPath(); ctx.roundRect( 0, -LiteGraph.NODE_TITLE_HEIGHT - 20, sz.width + 12, 20, 5 ); ctx.fill(); ctx.fillStyle = "#fff"; ctx.fillText(message, 6, -LiteGraph.NODE_TITLE_HEIGHT - 6); ctx.restore(); } }; const onExecutionStart = this.node.onExecutionStart; this.node.onExecutionStart = function() { this.resetExecution = true; return onExecutionStart?.apply(this, arguments); }; const self2 = this; const onNodeCreated = this.node.onNodeCreated; this.node.onNodeCreated = function() { if (!this.widgets) { return; } const config = self2.groupData.nodeData.config; if (config) { for (const n in config) { const inputs = config[n]?.input; for (const w in inputs) { if (inputs[w].visible !== false) continue; const widgetName = self2.groupData.oldToNewWidgetMap[n][w]; const widget = this.widgets.find((w2) => w2.name === widgetName); if (widget) { widget.type = "hidden"; widget.computeSize = () => [0, -4]; } } } } return onNodeCreated?.apply(this, arguments); }; function handleEvent(type, getId, getEvent) { const handler = /* @__PURE__ */ __name(({ detail }) => { const id2 = getId(detail); if (!id2) return; const node2 = app.graph.getNodeById(id2); if (node2) return; const innerNodeIndex = this.innerNodes?.findIndex((n) => n.id == id2); if (innerNodeIndex > -1) { this.node.runningInternalNodeId = innerNodeIndex; api.dispatchEvent( new CustomEvent(type, { detail: getEvent(detail, this.node.id + "", this.node) }) ); } }, "handler"); api.addEventListener(type, handler); return handler; } __name(handleEvent, "handleEvent"); const executing = handleEvent.call( this, "executing", (d) => d, (d, id2, node2) => id2 ); const executed = handleEvent.call( this, "executed", (d) => d?.display_node || d?.node, (d, id2, node2) => ({ ...d, node: id2, display_node: id2, merge: !node2.resetExecution }) ); const onRemoved = node.onRemoved; this.node.onRemoved = function() { onRemoved?.apply(this, arguments); api.removeEventListener("executing", executing); api.removeEventListener("executed", executed); }; this.node.refreshComboInNode = (defs) => { for (const widgetName in this.groupData.newToOldWidgetMap) { const widget = this.node.widgets.find((w) => w.name === widgetName); if (widget?.type === "combo") { const old = this.groupData.newToOldWidgetMap[widgetName]; const def = defs[old.node.type]; const input = def?.input?.required?.[old.inputName] ?? def?.input?.optional?.[old.inputName]; if (!input) continue; widget.options.values = input[0]; if (old.inputName !== "image" && // @ts-expect-error Widget values !widget.options.values.includes(widget.value)) { widget.value = widget.options.values[0]; widget.callback(widget.value); } } } }; } updateInnerWidgets() { for (const newWidgetName in this.groupData.newToOldWidgetMap) { const newWidget = this.node.widgets.find((w) => w.name === newWidgetName); if (!newWidget) continue; const newValue = newWidget.value; const old = this.groupData.newToOldWidgetMap[newWidgetName]; let innerNode = this.innerNodes[old.node.index]; if (innerNode.type === "PrimitiveNode") { innerNode.primitiveValue = newValue; const primitiveLinked = this.groupData.primitiveToWidget[old.node.index]; for (const linked of primitiveLinked ?? []) { const node = this.innerNodes[linked.nodeId]; const widget2 = node.widgets.find((w) => w.name === linked.inputName); if (widget2) { widget2.value = newValue; } } continue; } else if (innerNode.type === "Reroute") { const rerouteLinks = this.groupData.linksFrom[old.node.index]; if (rerouteLinks) { for (const [_, , targetNodeId, targetSlot] of rerouteLinks["0"]) { const node = this.innerNodes[targetNodeId]; const input = node.inputs[targetSlot]; if (input.widget) { const widget2 = node.widgets?.find( (w) => w.name === input.widget.name ); if (widget2) { widget2.value = newValue; } } } } } const widget = innerNode.widgets?.find((w) => w.name === old.inputName); if (widget) { widget.value = newValue; } } } populatePrimitive(node, nodeId, oldName, i, linkedShift) { const primitiveId = this.groupData.widgetToPrimitive[nodeId]?.[oldName]; if (primitiveId == null) return; const targetWidgetName = this.groupData.oldToNewWidgetMap[primitiveId]["value"]; const targetWidgetIndex = this.node.widgets.findIndex( (w) => w.name === targetWidgetName ); if (targetWidgetIndex > -1) { const primitiveNode = this.innerNodes[primitiveId]; let len = primitiveNode.widgets.length; if (len - 1 !== this.node.widgets[targetWidgetIndex].linkedWidgets?.length) { len = 1; } for (let i2 = 0; i2 < len; i2++) { this.node.widgets[targetWidgetIndex + i2].value = primitiveNode.widgets[i2].value; } } return true; } populateReroute(node, nodeId, map) { if (node.type !== "Reroute") return; const link = this.groupData.linksFrom[nodeId]?.[0]?.[0]; if (!link) return; const [, , targetNodeId, targetNodeSlot] = link; const targetNode = this.groupData.nodeData.nodes[targetNodeId]; const inputs = targetNode.inputs; const targetWidget = inputs?.[targetNodeSlot]?.widget; if (!targetWidget) return; const offset = inputs.length - (targetNode.widgets_values?.length ?? 0); const v = targetNode.widgets_values?.[targetNodeSlot - offset]; if (v == null) return; const widgetName = Object.values(map)[0]; const widget = this.node.widgets.find((w) => w.name === widgetName); if (widget) { widget.value = v; } } populateWidgets() { if (!this.node.widgets) return; for (let nodeId = 0; nodeId < this.groupData.nodeData.nodes.length; nodeId++) { const node = this.groupData.nodeData.nodes[nodeId]; const map = this.groupData.oldToNewWidgetMap[nodeId] ?? {}; const widgets = Object.keys(map); if (!node.widgets_values?.length) { this.populateReroute(node, nodeId, map); continue; } let linkedShift = 0; for (let i = 0; i < widgets.length; i++) { const oldName = widgets[i]; const newName = map[oldName]; const widgetIndex = this.node.widgets.findIndex( (w) => w.name === newName ); const mainWidget = this.node.widgets[widgetIndex]; if (this.populatePrimitive(node, nodeId, oldName, i, linkedShift) || widgetIndex === -1) { const innerWidget = this.innerNodes[nodeId].widgets?.find( (w) => w.name === oldName ); linkedShift += innerWidget?.linkedWidgets?.length ?? 0; } if (widgetIndex === -1) { continue; } mainWidget.value = node.widgets_values[i + linkedShift]; for (let w = 0; w < mainWidget.linkedWidgets?.length; w++) { this.node.widgets[widgetIndex + w + 1].value = node.widgets_values[i + ++linkedShift]; } } } } replaceNodes(nodes) { let top; let left; for (let i = 0; i < nodes.length; i++) { const node = nodes[i]; if (left == null || node.pos[0] < left) { left = node.pos[0]; } if (top == null || node.pos[1] < top) { top = node.pos[1]; } this.linkOutputs(node, i); app.graph.remove(node); } this.linkInputs(); this.node.pos = [left, top]; } linkOutputs(originalNode, nodeId) { if (!originalNode.outputs) return; for (const output of originalNode.outputs) { if (!output.links) continue; const links = [...output.links]; for (const l of links) { const link = app.graph.links[l]; if (!link) continue; const targetNode = app.graph.getNodeById(link.target_id); const newSlot = this.groupData.oldToNewOutputMap[nodeId]?.[link.origin_slot]; if (newSlot != null) { this.node.connect(newSlot, targetNode, link.target_slot); } } } } linkInputs() { for (const link of this.groupData.nodeData.links ?? []) { const [, originSlot, targetId, targetSlot, actualOriginId] = link; const originNode = app.graph.getNodeById(actualOriginId); if (!originNode) continue; originNode.connect( originSlot, // @ts-expect-error Valid - uses deprecated interface. Required check: if (graph.getNodeById(this.node.id) !== this.node) report() this.node.id, this.groupData.oldToNewInputMap[targetId][targetSlot] ); } } static getGroupData(node) { return (node.nodeData ?? node.constructor?.nodeData)?.[GROUP]; } static isGroupNode(node) { return !!node.constructor?.nodeData?.[GROUP]; } static async fromNodes(nodes) { const builder = new GroupNodeBuilder(nodes); const res = builder.build(); if (!res) return; const { name, nodeData } = res; const config = new GroupNodeConfig(name, nodeData); await config.registerType(); const groupNode = LiteGraph.createNode(`${PREFIX}${SEPARATOR}${name}`); groupNode.setInnerNodes(builder.nodes); groupNode[GROUP].populateWidgets(); app.graph.add(groupNode); groupNode[GROUP].replaceNodes(builder.nodes); return groupNode; } } function addConvertToGroupOptions() { function addConvertOption(options, index) { const selected = Object.values(app.canvas.selected_nodes ?? {}); const disabled = selected.length < 2 || selected.find((n) => GroupNodeHandler.isGroupNode(n)); options.splice(index + 1, null, { content: `Convert to Group Node`, disabled, callback: convertSelectedNodesToGroupNode }); } __name(addConvertOption, "addConvertOption"); function addManageOption(options, index) { const groups = app.graph.extra?.groupNodes; const disabled = !groups || !Object.keys(groups).length; options.splice(index + 1, null, { content: `Manage Group Nodes`, disabled, callback: manageGroupNodes }); } __name(addManageOption, "addManageOption"); const getCanvasMenuOptions = LGraphCanvas.prototype.getCanvasMenuOptions; LGraphCanvas.prototype.getCanvasMenuOptions = function() { const options = getCanvasMenuOptions.apply(this, arguments); const index = options.findIndex((o) => o?.content === "Add Group") + 1 || options.length; addConvertOption(options, index); addManageOption(options, index + 1); return options; }; const getNodeMenuOptions = LGraphCanvas.prototype.getNodeMenuOptions; LGraphCanvas.prototype.getNodeMenuOptions = function(node) { const options = getNodeMenuOptions.apply(this, arguments); if (!GroupNodeHandler.isGroupNode(node)) { const index = options.findIndex((o) => o?.content === "Outputs") + 1 || options.length - 1; addConvertOption(options, index); } return options; }; } __name(addConvertToGroupOptions, "addConvertToGroupOptions"); const replaceLegacySeparators = /* @__PURE__ */ __name((nodes) => { for (const node of nodes) { if (typeof node.type === "string" && node.type.startsWith("workflow/")) { node.type = node.type.replace(/^workflow\//, `${PREFIX}${SEPARATOR}`); } } }, "replaceLegacySeparators"); async function convertSelectedNodesToGroupNode() { const nodes = Object.values(app.canvas.selected_nodes ?? {}); if (nodes.length === 0) { throw new Error("No nodes selected"); } if (nodes.length === 1) { throw new Error("Please select multiple nodes to convert to group node"); } if (nodes.some((n) => GroupNodeHandler.isGroupNode(n))) { throw new Error("Selected nodes contain a group node"); } return await GroupNodeHandler.fromNodes(nodes); } __name(convertSelectedNodesToGroupNode, "convertSelectedNodesToGroupNode"); function ungroupSelectedGroupNodes() { const nodes = Object.values(app.canvas.selected_nodes ?? {}); for (const node of nodes) { if (GroupNodeHandler.isGroupNode(node)) { node.convertToNodes?.(); } } } __name(ungroupSelectedGroupNodes, "ungroupSelectedGroupNodes"); function manageGroupNodes() { new ManageGroupDialog(app).show(); } __name(manageGroupNodes, "manageGroupNodes"); const id$2 = "Comfy.GroupNode"; let globalDefs; const ext = { name: id$2, commands: [ { id: "Comfy.GroupNode.ConvertSelectedNodesToGroupNode", label: "Convert selected nodes to group node", icon: "pi pi-sitemap", versionAdded: "1.3.17", function: convertSelectedNodesToGroupNode }, { id: "Comfy.GroupNode.UngroupSelectedGroupNodes", label: "Ungroup selected group nodes", icon: "pi pi-sitemap", versionAdded: "1.3.17", function: ungroupSelectedGroupNodes }, { id: "Comfy.GroupNode.ManageGroupNodes", label: "Manage group nodes", icon: "pi pi-cog", versionAdded: "1.3.17", function: manageGroupNodes } ], keybindings: [ { commandId: "Comfy.GroupNode.ConvertSelectedNodesToGroupNode", combo: { alt: true, key: "g" } }, { commandId: "Comfy.GroupNode.UngroupSelectedGroupNodes", combo: { alt: true, shift: true, key: "G" } } ], setup() { addConvertToGroupOptions(); }, async beforeConfigureGraph(graphData, missingNodeTypes) { const nodes = graphData?.extra?.groupNodes; if (nodes) { replaceLegacySeparators(graphData.nodes); await GroupNodeConfig.registerFromWorkflow(nodes, missingNodeTypes); } }, addCustomNodeDefs(defs) { globalDefs = defs; }, nodeCreated(node) { if (GroupNodeHandler.isGroupNode(node)) { node[GROUP] = new GroupNodeHandler(node); if (node.title && node[GROUP]?.groupData?.nodeData) { Workflow.storeGroupNode(node.title, node[GROUP].groupData.nodeData); } } }, async refreshComboInNodes(defs) { Object.assign(globalDefs, defs); const nodes = app.graph.extra?.groupNodes; if (nodes) { await GroupNodeConfig.registerFromWorkflow(nodes, {}); } } }; app.registerExtension(ext); window.comfyAPI = window.comfyAPI || {}; window.comfyAPI.groupNode = window.comfyAPI.groupNode || {}; window.comfyAPI.groupNode.GroupNodeConfig = GroupNodeConfig; window.comfyAPI.groupNode.GroupNodeHandler = GroupNodeHandler; function setNodeMode(node, mode) { node.mode = mode; node.graph?.change(); } __name(setNodeMode, "setNodeMode"); function addNodesToGroup(group, items) { const padding = useSettingStore().get("Comfy.GroupSelectedNodes.Padding"); group.resizeTo([...group.children, ...items], padding); } __name(addNodesToGroup, "addNodesToGroup"); app.registerExtension({ name: "Comfy.GroupOptions", setup() { const orig = LGraphCanvas.prototype.getCanvasMenuOptions; LGraphCanvas.prototype.getCanvasMenuOptions = function() { const options = orig.apply(this, arguments); const group = this.graph.getGroupOnPos( this.graph_mouse[0], this.graph_mouse[1] ); if (!group) { options.push({ content: "Add Group For Selected Nodes", disabled: !this.selectedItems?.size, callback: /* @__PURE__ */ __name(() => { const group2 = new LGraphGroup(); addNodesToGroup(group2, this.selectedItems); this.graph.add(group2); this.graph.change(); }, "callback") }); return options; } group.recomputeInsideNodes(); const nodesInGroup = group.nodes; options.push({ content: "Add Selected Nodes To Group", disabled: !this.selectedItems?.size, callback: /* @__PURE__ */ __name(() => { addNodesToGroup(group, this.selectedItems); this.graph.change(); }, "callback") }); if (nodesInGroup.length === 0) { return options; } else { options.push(null); } let allNodesAreSameMode = true; for (let i = 1; i < nodesInGroup.length; i++) { if (nodesInGroup[i].mode !== nodesInGroup[0].mode) { allNodesAreSameMode = false; break; } } options.push({ content: "Fit Group To Nodes", callback: /* @__PURE__ */ __name(() => { group.recomputeInsideNodes(); const padding = useSettingStore().get( "Comfy.GroupSelectedNodes.Padding" ); group.resizeTo(group.children, padding); this.graph.change(); }, "callback") }); options.push({ content: "Select Nodes", callback: /* @__PURE__ */ __name(() => { this.selectNodes(nodesInGroup); this.graph.change(); this.canvas.focus(); }, "callback") }); if (allNodesAreSameMode) { const mode = nodesInGroup[0].mode; switch (mode) { case 0: options.push({ content: "Set Group Nodes to Never", callback: /* @__PURE__ */ __name(() => { for (const node of nodesInGroup) { setNodeMode(node, 2); } }, "callback") }); options.push({ content: "Bypass Group Nodes", callback: /* @__PURE__ */ __name(() => { for (const node of nodesInGroup) { setNodeMode(node, 4); } }, "callback") }); break; case 2: options.push({ content: "Set Group Nodes to Always", callback: /* @__PURE__ */ __name(() => { for (const node of nodesInGroup) { setNodeMode(node, 0); } }, "callback") }); options.push({ content: "Bypass Group Nodes", callback: /* @__PURE__ */ __name(() => { for (const node of nodesInGroup) { setNodeMode(node, 4); } }, "callback") }); break; case 4: options.push({ content: "Set Group Nodes to Always", callback: /* @__PURE__ */ __name(() => { for (const node of nodesInGroup) { setNodeMode(node, 0); } }, "callback") }); options.push({ content: "Set Group Nodes to Never", callback: /* @__PURE__ */ __name(() => { for (const node of nodesInGroup) { setNodeMode(node, 2); } }, "callback") }); break; default: options.push({ content: "Set Group Nodes to Always", callback: /* @__PURE__ */ __name(() => { for (const node of nodesInGroup) { setNodeMode(node, 0); } }, "callback") }); options.push({ content: "Set Group Nodes to Never", callback: /* @__PURE__ */ __name(() => { for (const node of nodesInGroup) { setNodeMode(node, 2); } }, "callback") }); options.push({ content: "Bypass Group Nodes", callback: /* @__PURE__ */ __name(() => { for (const node of nodesInGroup) { setNodeMode(node, 4); } }, "callback") }); break; } } else { options.push({ content: "Set Group Nodes to Always", callback: /* @__PURE__ */ __name(() => { for (const node of nodesInGroup) { setNodeMode(node, 0); } }, "callback") }); options.push({ content: "Set Group Nodes to Never", callback: /* @__PURE__ */ __name(() => { for (const node of nodesInGroup) { setNodeMode(node, 2); } }, "callback") }); options.push({ content: "Bypass Group Nodes", callback: /* @__PURE__ */ __name(() => { for (const node of nodesInGroup) { setNodeMode(node, 4); } }, "callback") }); } return options; }; } }); const id$1 = "Comfy.InvertMenuScrolling"; app.registerExtension({ name: id$1, init() { const ctxMenu = LiteGraph.ContextMenu; const replace = /* @__PURE__ */ __name(() => { LiteGraph.ContextMenu = function(values, options) { options = options || {}; if (options.scroll_speed) { options.scroll_speed *= -1; } else { options.scroll_speed = -0.1; } return ctxMenu.call(this, values, options); }; LiteGraph.ContextMenu.prototype = ctxMenu.prototype; }, "replace"); app.ui.settings.addSetting({ id: id$1, category: ["LiteGraph", "Menu", "InvertMenuScrolling"], name: "Invert Context Menu Scrolling", type: "boolean", defaultValue: false, onChange(value) { if (value) { replace(); } else { LiteGraph.ContextMenu = ctxMenu; } } }); } }); app.registerExtension({ name: "Comfy.Keybinds", init() { const keybindListener = /* @__PURE__ */ __name(async function(event) { if (!app.vueAppReady) return; const keyCombo = KeyComboImpl.fromEvent(event); if (keyCombo.isModifier) { return; } const target = event.composedPath()[0]; if (!keyCombo.hasModifier && (target.tagName === "TEXTAREA" || target.tagName === "INPUT" || target.tagName === "SPAN" && target.classList.contains("property_value"))) { return; } const keybindingStore = useKeybindingStore(); const commandStore = useCommandStore(); const keybinding = keybindingStore.getKeybinding(keyCombo); if (keybinding && keybinding.targetSelector !== "#graph-canvas") { event.preventDefault(); await commandStore.execute(keybinding.commandId); return; } if (event.ctrlKey || event.altKey || event.metaKey) { return; } if (event.key === "Escape") { const modals = document.querySelectorAll(".comfy-modal"); const modal = Array.from(modals).find( (modal2) => window.getComputedStyle(modal2).getPropertyValue("display") !== "none" ); if (modal) { modal.style.display = "none"; } ; [...document.querySelectorAll("dialog")].forEach((d) => { d.close(); }); } }, "keybindListener"); window.addEventListener("keydown", keybindListener); } }); function dataURLToBlob(dataURL) { const parts = dataURL.split(";base64,"); const contentType = parts[0].split(":")[1]; const byteString = atob(parts[1]); const arrayBuffer = new ArrayBuffer(byteString.length); const uint8Array = new Uint8Array(arrayBuffer); for (let i = 0; i < byteString.length; i++) { uint8Array[i] = byteString.charCodeAt(i); } return new Blob([arrayBuffer], { type: contentType }); } __name(dataURLToBlob, "dataURLToBlob"); function loadedImageToBlob(image) { const canvas = document.createElement("canvas"); canvas.width = image.width; canvas.height = image.height; const ctx = canvas.getContext("2d"); ctx.drawImage(image, 0, 0); const dataURL = canvas.toDataURL("image/png", 1); const blob = dataURLToBlob(dataURL); return blob; } __name(loadedImageToBlob, "loadedImageToBlob"); function loadImage(imagePath) { return new Promise((resolve, reject) => { const image = new Image(); image.onload = function() { resolve(image); }; image.src = imagePath; }); } __name(loadImage, "loadImage"); async function uploadMask(filepath, formData) { await api.fetchApi("/upload/mask", { method: "POST", body: formData }).then((response) => { }).catch((error) => { console.error("Error:", error); }); ComfyApp.clipspace.imgs[ComfyApp.clipspace["selectedIndex"]] = new Image(); ComfyApp.clipspace.imgs[ComfyApp.clipspace["selectedIndex"]].src = api.apiURL( "/view?" + new URLSearchParams(filepath).toString() + app.getPreviewFormatParam() + app.getRandParam() ); if (ComfyApp.clipspace.images) ComfyApp.clipspace.images[ComfyApp.clipspace["selectedIndex"]] = filepath; ClipspaceDialog.invalidatePreview(); } __name(uploadMask, "uploadMask"); function prepare_mask(image, maskCanvas, maskCtx, maskColor) { maskCtx.drawImage(image, 0, 0, maskCanvas.width, maskCanvas.height); const maskData = maskCtx.getImageData( 0, 0, maskCanvas.width, maskCanvas.height ); for (let i = 0; i < maskData.data.length; i += 4) { if (maskData.data[i + 3] == 255) maskData.data[i + 3] = 0; else maskData.data[i + 3] = 255; maskData.data[i] = maskColor.r; maskData.data[i + 1] = maskColor.g; maskData.data[i + 2] = maskColor.b; } maskCtx.globalCompositeOperation = "source-over"; maskCtx.putImageData(maskData, 0, 0); } __name(prepare_mask, "prepare_mask"); var PointerType = /* @__PURE__ */ ((PointerType2) => { PointerType2["Arc"] = "arc"; PointerType2["Rect"] = "rect"; return PointerType2; })(PointerType || {}); var CompositionOperation$1 = /* @__PURE__ */ ((CompositionOperation2) => { CompositionOperation2["SourceOver"] = "source-over"; CompositionOperation2["DestinationOut"] = "destination-out"; return CompositionOperation2; })(CompositionOperation$1 || {}); class MaskEditorDialogOld extends ComfyDialog { static { __name(this, "MaskEditorDialogOld"); } static instance = null; static mousedown_x = null; static mousedown_y = null; brush; maskCtx; maskCanvas; brush_size_slider; brush_opacity_slider; colorButton; saveButton; zoom_ratio; pan_x; pan_y; imgCanvas; last_display_style; is_visible; image; handler_registered; brush_slider_input; cursorX; cursorY; mousedown_pan_x; mousedown_pan_y; last_pressure; pointer_type; brush_pointer_type_select; static getInstance() { if (!MaskEditorDialogOld.instance) { MaskEditorDialogOld.instance = new MaskEditorDialogOld(); } return MaskEditorDialogOld.instance; } is_layout_created = false; constructor() { super(); this.element = $el("div.comfy-modal", { parent: document.body }, [ $el("div.comfy-modal-content", [...this.createButtons()]) ]); } createButtons() { return []; } createButton(name, callback) { var button = document.createElement("button"); button.style.pointerEvents = "auto"; button.innerText = name; button.addEventListener("click", callback); return button; } createLeftButton(name, callback) { var button = this.createButton(name, callback); button.style.cssFloat = "left"; button.style.marginRight = "4px"; return button; } createRightButton(name, callback) { var button = this.createButton(name, callback); button.style.cssFloat = "right"; button.style.marginLeft = "4px"; return button; } createLeftSlider(self2, name, callback) { const divElement = document.createElement("div"); divElement.id = "maskeditor-slider"; divElement.style.cssFloat = "left"; divElement.style.fontFamily = "sans-serif"; divElement.style.marginRight = "4px"; divElement.style.color = "var(--input-text)"; divElement.style.backgroundColor = "var(--comfy-input-bg)"; divElement.style.borderRadius = "8px"; divElement.style.borderColor = "var(--border-color)"; divElement.style.borderStyle = "solid"; divElement.style.fontSize = "15px"; divElement.style.height = "25px"; divElement.style.padding = "1px 6px"; divElement.style.display = "flex"; divElement.style.position = "relative"; divElement.style.top = "2px"; divElement.style.pointerEvents = "auto"; self2.brush_slider_input = document.createElement("input"); self2.brush_slider_input.setAttribute("type", "range"); self2.brush_slider_input.setAttribute("min", "1"); self2.brush_slider_input.setAttribute("max", "100"); self2.brush_slider_input.setAttribute("value", "10"); const labelElement = document.createElement("label"); labelElement.textContent = name; divElement.appendChild(labelElement); divElement.appendChild(self2.brush_slider_input); self2.brush_slider_input.addEventListener("change", callback); return divElement; } createOpacitySlider(self2, name, callback) { const divElement = document.createElement("div"); divElement.id = "maskeditor-opacity-slider"; divElement.style.cssFloat = "left"; divElement.style.fontFamily = "sans-serif"; divElement.style.marginRight = "4px"; divElement.style.color = "var(--input-text)"; divElement.style.backgroundColor = "var(--comfy-input-bg)"; divElement.style.borderRadius = "8px"; divElement.style.borderColor = "var(--border-color)"; divElement.style.borderStyle = "solid"; divElement.style.fontSize = "15px"; divElement.style.height = "25px"; divElement.style.padding = "1px 6px"; divElement.style.display = "flex"; divElement.style.position = "relative"; divElement.style.top = "2px"; divElement.style.pointerEvents = "auto"; self2.opacity_slider_input = document.createElement("input"); self2.opacity_slider_input.setAttribute("type", "range"); self2.opacity_slider_input.setAttribute("min", "0.1"); self2.opacity_slider_input.setAttribute("max", "1.0"); self2.opacity_slider_input.setAttribute("step", "0.01"); self2.opacity_slider_input.setAttribute("value", "0.7"); const labelElement = document.createElement("label"); labelElement.textContent = name; divElement.appendChild(labelElement); divElement.appendChild(self2.opacity_slider_input); self2.opacity_slider_input.addEventListener("input", callback); return divElement; } createPointerTypeSelect(self2) { const divElement = document.createElement("div"); divElement.id = "maskeditor-pointer-type"; divElement.style.cssFloat = "left"; divElement.style.fontFamily = "sans-serif"; divElement.style.marginRight = "4px"; divElement.style.color = "var(--input-text)"; divElement.style.backgroundColor = "var(--comfy-input-bg)"; divElement.style.borderRadius = "8px"; divElement.style.borderColor = "var(--border-color)"; divElement.style.borderStyle = "solid"; divElement.style.fontSize = "15px"; divElement.style.height = "25px"; divElement.style.padding = "1px 6px"; divElement.style.display = "flex"; divElement.style.position = "relative"; divElement.style.top = "2px"; divElement.style.pointerEvents = "auto"; const labelElement = document.createElement("label"); labelElement.textContent = "Pointer Type:"; const selectElement = document.createElement("select"); selectElement.style.borderRadius = "0"; selectElement.style.borderColor = "transparent"; selectElement.style.borderStyle = "unset"; selectElement.style.fontSize = "0.9em"; const optionArc = document.createElement("option"); optionArc.value = "arc"; optionArc.text = "Circle"; optionArc.selected = true; const optionRect = document.createElement("option"); optionRect.value = "rect"; optionRect.text = "Square"; selectElement.appendChild(optionArc); selectElement.appendChild(optionRect); selectElement.addEventListener("change", (event) => { const target = event.target; self2.pointer_type = target.value; this.setBrushBorderRadius(self2); }); divElement.appendChild(labelElement); divElement.appendChild(selectElement); return divElement; } setBrushBorderRadius(self2) { if (self2.pointer_type === "rect") { this.brush.style.borderRadius = "0%"; this.brush.style.MozBorderRadius = "0%"; this.brush.style.WebkitBorderRadius = "0%"; } else { this.brush.style.borderRadius = "50%"; this.brush.style.MozBorderRadius = "50%"; this.brush.style.WebkitBorderRadius = "50%"; } } setlayout(imgCanvas, maskCanvas) { const self2 = this; self2.pointer_type = "arc"; var bottom_panel = document.createElement("div"); bottom_panel.style.position = "absolute"; bottom_panel.style.bottom = "0px"; bottom_panel.style.left = "20px"; bottom_panel.style.right = "20px"; bottom_panel.style.height = "50px"; bottom_panel.style.pointerEvents = "none"; var brush = document.createElement("div"); brush.id = "brush"; brush.style.backgroundColor = "transparent"; brush.style.outline = "1px dashed black"; brush.style.boxShadow = "0 0 0 1px white"; brush.style.position = "absolute"; brush.style.zIndex = "8889"; brush.style.pointerEvents = "none"; this.brush = brush; this.setBrushBorderRadius(self2); this.element.appendChild(imgCanvas); this.element.appendChild(maskCanvas); this.element.appendChild(bottom_panel); document.body.appendChild(brush); var clearButton = this.createLeftButton("Clear", () => { self2.maskCtx.clearRect( 0, 0, self2.maskCanvas.width, self2.maskCanvas.height ); }); this.brush_size_slider = this.createLeftSlider( self2, "Thickness", (event) => { self2.brush_size = event.target.value; self2.updateBrushPreview(self2); } ); this.brush_opacity_slider = this.createOpacitySlider( self2, "Opacity", (event) => { self2.brush_opacity = event.target.value; if (self2.brush_color_mode !== "negative") { self2.maskCanvas.style.opacity = self2.brush_opacity.toString(); } } ); this.brush_pointer_type_select = this.createPointerTypeSelect(self2); this.colorButton = this.createLeftButton(this.getColorButtonText(), () => { if (self2.brush_color_mode === "black") { self2.brush_color_mode = "white"; } else if (self2.brush_color_mode === "white") { self2.brush_color_mode = "negative"; } else { self2.brush_color_mode = "black"; } self2.updateWhenBrushColorModeChanged(); }); var cancelButton = this.createRightButton("Cancel", () => { document.removeEventListener("keydown", MaskEditorDialogOld.handleKeyDown); self2.close(); }); this.saveButton = this.createRightButton("Save", () => { document.removeEventListener("keydown", MaskEditorDialogOld.handleKeyDown); self2.save(); }); this.element.appendChild(imgCanvas); this.element.appendChild(maskCanvas); this.element.appendChild(bottom_panel); bottom_panel.appendChild(clearButton); bottom_panel.appendChild(this.saveButton); bottom_panel.appendChild(cancelButton); bottom_panel.appendChild(this.brush_size_slider); bottom_panel.appendChild(this.brush_opacity_slider); bottom_panel.appendChild(this.brush_pointer_type_select); bottom_panel.appendChild(this.colorButton); imgCanvas.style.position = "absolute"; maskCanvas.style.position = "absolute"; imgCanvas.style.top = "200"; imgCanvas.style.left = "0"; maskCanvas.style.top = imgCanvas.style.top; maskCanvas.style.left = imgCanvas.style.left; const maskCanvasStyle = this.getMaskCanvasStyle(); maskCanvas.style.mixBlendMode = maskCanvasStyle.mixBlendMode; maskCanvas.style.opacity = maskCanvasStyle.opacity.toString(); } async show() { this.zoom_ratio = 1; this.pan_x = 0; this.pan_y = 0; if (!this.is_layout_created) { const imgCanvas = document.createElement("canvas"); const maskCanvas = document.createElement("canvas"); imgCanvas.id = "imageCanvas"; maskCanvas.id = "maskCanvas"; this.setlayout(imgCanvas, maskCanvas); this.imgCanvas = imgCanvas; this.maskCanvas = maskCanvas; this.maskCtx = maskCanvas.getContext("2d", { willReadFrequently: true }); this.setEventHandler(maskCanvas); this.is_layout_created = true; const self2 = this; const observer = new MutationObserver(function(mutations) { mutations.forEach(function(mutation) { if (mutation.type === "attributes" && mutation.attributeName === "style") { if (self2.last_display_style && self2.last_display_style != "none" && self2.element.style.display == "none") { self2.brush.style.display = "none"; ComfyApp.onClipspaceEditorClosed(); } self2.last_display_style = self2.element.style.display; } }); }); const config = { attributes: true }; observer.observe(this.element, config); } document.addEventListener("keydown", MaskEditorDialogOld.handleKeyDown); if (ComfyApp.clipspace_return_node) { this.saveButton.innerText = "Save to node"; } else { this.saveButton.innerText = "Save"; } this.saveButton.disabled = false; this.element.style.display = "block"; this.element.style.width = "85%"; this.element.style.margin = "0 7.5%"; this.element.style.height = "100vh"; this.element.style.top = "50%"; this.element.style.left = "42%"; this.element.style.zIndex = "8888"; await this.setImages(this.imgCanvas); this.is_visible = true; } isOpened() { return this.element.style.display == "block"; } invalidateCanvas(orig_image, mask_image) { this.imgCanvas.width = orig_image.width; this.imgCanvas.height = orig_image.height; this.maskCanvas.width = orig_image.width; this.maskCanvas.height = orig_image.height; let imgCtx = this.imgCanvas.getContext("2d", { willReadFrequently: true }); let maskCtx = this.maskCanvas.getContext("2d", { willReadFrequently: true }); imgCtx.drawImage(orig_image, 0, 0, orig_image.width, orig_image.height); prepare_mask(mask_image, this.maskCanvas, maskCtx, this.getMaskColor()); } async setImages(imgCanvas) { let self2 = this; const imgCtx = imgCanvas.getContext("2d", { willReadFrequently: true }); const maskCtx = this.maskCtx; const maskCanvas = this.maskCanvas; imgCtx.clearRect(0, 0, this.imgCanvas.width, this.imgCanvas.height); maskCtx.clearRect(0, 0, this.maskCanvas.width, this.maskCanvas.height); const filepath = ComfyApp.clipspace.images; const alpha_url = new URL( ComfyApp.clipspace.imgs[ComfyApp.clipspace["selectedIndex"]].src ); alpha_url.searchParams.delete("channel"); alpha_url.searchParams.delete("preview"); alpha_url.searchParams.set("channel", "a"); let mask_image = await loadImage(alpha_url); const rgb_url = new URL( ComfyApp.clipspace.imgs[ComfyApp.clipspace["selectedIndex"]].src ); rgb_url.searchParams.delete("channel"); rgb_url.searchParams.set("channel", "rgb"); this.image = new Image(); this.image.onload = function() { maskCanvas.width = self2.image.width; maskCanvas.height = self2.image.height; self2.invalidateCanvas(self2.image, mask_image); self2.initializeCanvasPanZoom(); }; this.image.src = rgb_url.toString(); } initializeCanvasPanZoom() { let drawWidth = this.image.width; let drawHeight = this.image.height; let width = this.element.clientWidth; let height = this.element.clientHeight; if (this.image.width > width) { drawWidth = width; drawHeight = drawWidth / this.image.width * this.image.height; } if (drawHeight > height) { drawHeight = height; drawWidth = drawHeight / this.image.height * this.image.width; } this.zoom_ratio = drawWidth / this.image.width; const canvasX = (width - drawWidth) / 2; const canvasY = (height - drawHeight) / 2; this.pan_x = canvasX; this.pan_y = canvasY; this.invalidatePanZoom(); } invalidatePanZoom() { let raw_width = this.image.width * this.zoom_ratio; let raw_height = this.image.height * this.zoom_ratio; if (this.pan_x + raw_width < 10) { this.pan_x = 10 - raw_width; } if (this.pan_y + raw_height < 10) { this.pan_y = 10 - raw_height; } let width = `${raw_width}px`; let height = `${raw_height}px`; let left = `${this.pan_x}px`; let top = `${this.pan_y}px`; this.maskCanvas.style.width = width; this.maskCanvas.style.height = height; this.maskCanvas.style.left = left; this.maskCanvas.style.top = top; this.imgCanvas.style.width = width; this.imgCanvas.style.height = height; this.imgCanvas.style.left = left; this.imgCanvas.style.top = top; } setEventHandler(maskCanvas) { const self2 = this; if (!this.handler_registered) { maskCanvas.addEventListener("contextmenu", (event) => { event.preventDefault(); }); this.element.addEventListener( "wheel", (event) => this.handleWheelEvent(self2, event) ); this.element.addEventListener( "pointermove", (event) => this.pointMoveEvent(self2, event) ); this.element.addEventListener( "touchmove", (event) => this.pointMoveEvent(self2, event) ); this.element.addEventListener("dragstart", (event) => { if (event.ctrlKey) { event.preventDefault(); } }); maskCanvas.addEventListener( "pointerdown", (event) => this.handlePointerDown(self2, event) ); maskCanvas.addEventListener( "pointermove", (event) => this.draw_move(self2, event) ); maskCanvas.addEventListener( "touchmove", (event) => this.draw_move(self2, event) ); maskCanvas.addEventListener("pointerover", (event) => { this.brush.style.display = "block"; }); maskCanvas.addEventListener("pointerleave", (event) => { this.brush.style.display = "none"; }); document.addEventListener( "pointerup", MaskEditorDialogOld.handlePointerUp ); this.handler_registered = true; } } getMaskCanvasStyle() { if (this.brush_color_mode === "negative") { return { mixBlendMode: "difference", opacity: "1" }; } else { return { mixBlendMode: "initial", opacity: this.brush_opacity }; } } getMaskColor() { if (this.brush_color_mode === "black") { return { r: 0, g: 0, b: 0 }; } if (this.brush_color_mode === "white") { return { r: 255, g: 255, b: 255 }; } if (this.brush_color_mode === "negative") { return { r: 255, g: 255, b: 255 }; } return { r: 0, g: 0, b: 0 }; } getMaskFillStyle() { const maskColor = this.getMaskColor(); return "rgb(" + maskColor.r + "," + maskColor.g + "," + maskColor.b + ")"; } getColorButtonText() { let colorCaption = "unknown"; if (this.brush_color_mode === "black") { colorCaption = "black"; } else if (this.brush_color_mode === "white") { colorCaption = "white"; } else if (this.brush_color_mode === "negative") { colorCaption = "negative"; } return "Color: " + colorCaption; } updateWhenBrushColorModeChanged() { this.colorButton.innerText = this.getColorButtonText(); const maskCanvasStyle = this.getMaskCanvasStyle(); this.maskCanvas.style.mixBlendMode = maskCanvasStyle.mixBlendMode; this.maskCanvas.style.opacity = maskCanvasStyle.opacity.toString(); const maskColor = this.getMaskColor(); const maskData = this.maskCtx.getImageData( 0, 0, this.maskCanvas.width, this.maskCanvas.height ); for (let i = 0; i < maskData.data.length; i += 4) { maskData.data[i] = maskColor.r; maskData.data[i + 1] = maskColor.g; maskData.data[i + 2] = maskColor.b; } this.maskCtx.putImageData(maskData, 0, 0); } brush_opacity = 0.7; brush_size = 10; brush_color_mode = "black"; drawing_mode = false; lastx = -1; lasty = -1; lasttime = 0; static handleKeyDown(event) { const self2 = MaskEditorDialogOld.instance; if (event.key === "]") { self2.brush_size = Math.min(self2.brush_size + 2, 100); self2.brush_slider_input.value = self2.brush_size; } else if (event.key === "[") { self2.brush_size = Math.max(self2.brush_size - 2, 1); self2.brush_slider_input.value = self2.brush_size; } else if (event.key === "Enter") { self2.save(); } self2.updateBrushPreview(self2); } static handlePointerUp(event) { event.preventDefault(); this.mousedown_x = null; this.mousedown_y = null; MaskEditorDialogOld.instance.drawing_mode = false; } updateBrushPreview(self2) { const brush = self2.brush; var centerX = self2.cursorX; var centerY = self2.cursorY; brush.style.width = self2.brush_size * 2 * this.zoom_ratio + "px"; brush.style.height = self2.brush_size * 2 * this.zoom_ratio + "px"; brush.style.left = centerX - self2.brush_size * this.zoom_ratio + "px"; brush.style.top = centerY - self2.brush_size * this.zoom_ratio + "px"; } handleWheelEvent(self2, event) { event.preventDefault(); if (event.ctrlKey) { if (event.deltaY < 0) { this.zoom_ratio = Math.min(10, this.zoom_ratio + 0.2); } else { this.zoom_ratio = Math.max(0.2, this.zoom_ratio - 0.2); } this.invalidatePanZoom(); } else { if (event.deltaY < 0) this.brush_size = Math.min(this.brush_size + 2, 100); else this.brush_size = Math.max(this.brush_size - 2, 1); this.brush_slider_input.value = this.brush_size.toString(); this.updateBrushPreview(this); } } pointMoveEvent(self2, event) { this.cursorX = event.pageX; this.cursorY = event.pageY; self2.updateBrushPreview(self2); if (event.ctrlKey) { event.preventDefault(); self2.pan_move(self2, event); } let left_button_down = window.TouchEvent && event instanceof TouchEvent || event.buttons == 1; if (event.shiftKey && left_button_down) { self2.drawing_mode = false; const y = event.clientY; let delta = (self2.zoom_lasty - y) * 5e-3; self2.zoom_ratio = Math.max( Math.min(10, self2.last_zoom_ratio - delta), 0.2 ); this.invalidatePanZoom(); return; } } pan_move(self2, event) { if (event.buttons == 1) { if (MaskEditorDialogOld.mousedown_x) { let deltaX = MaskEditorDialogOld.mousedown_x - event.clientX; let deltaY = MaskEditorDialogOld.mousedown_y - event.clientY; self2.pan_x = this.mousedown_pan_x - deltaX; self2.pan_y = this.mousedown_pan_y - deltaY; self2.invalidatePanZoom(); } } } draw_move(self2, event) { if (event.ctrlKey || event.shiftKey) { return; } event.preventDefault(); this.cursorX = event.pageX; this.cursorY = event.pageY; self2.updateBrushPreview(self2); let left_button_down = window.TouchEvent && event instanceof TouchEvent || event.buttons == 1; let right_button_down = [2, 5, 32].includes(event.buttons); if (!event.altKey && left_button_down) { var diff = performance.now() - self2.lasttime; const maskRect = self2.maskCanvas.getBoundingClientRect(); var x = event.offsetX; var y = event.offsetY; if (event.offsetX == null) { x = event.targetTouches[0].clientX - maskRect.left; } if (event.offsetY == null) { y = event.targetTouches[0].clientY - maskRect.top; } x /= self2.zoom_ratio; y /= self2.zoom_ratio; var brush_size = this.brush_size; if (event instanceof PointerEvent && event.pointerType == "pen") { brush_size *= event.pressure; this.last_pressure = event.pressure; } else if (window.TouchEvent && event instanceof TouchEvent && diff < 20) { brush_size *= this.last_pressure; } else { brush_size = this.brush_size; } if (diff > 20 && !this.drawing_mode) requestAnimationFrame(() => { self2.init_shape( self2, "source-over" /* SourceOver */ ); self2.draw_shape(self2, x, y, brush_size); self2.lastx = x; self2.lasty = y; }); else requestAnimationFrame(() => { self2.init_shape( self2, "source-over" /* SourceOver */ ); var dx = x - self2.lastx; var dy = y - self2.lasty; var distance = Math.sqrt(dx * dx + dy * dy); var directionX = dx / distance; var directionY = dy / distance; for (var i = 0; i < distance; i += 5) { var px2 = self2.lastx + directionX * i; var py2 = self2.lasty + directionY * i; self2.draw_shape(self2, px2, py2, brush_size); } self2.lastx = x; self2.lasty = y; }); self2.lasttime = performance.now(); } else if (event.altKey && left_button_down || right_button_down) { const maskRect = self2.maskCanvas.getBoundingClientRect(); const x2 = (event.offsetX || event.targetTouches[0].clientX - maskRect.left) / self2.zoom_ratio; const y2 = (event.offsetY || event.targetTouches[0].clientY - maskRect.top) / self2.zoom_ratio; var brush_size = this.brush_size; if (event instanceof PointerEvent && event.pointerType == "pen") { brush_size *= event.pressure; this.last_pressure = event.pressure; } else if (window.TouchEvent && event instanceof TouchEvent && diff < 20) { brush_size *= this.last_pressure; } else { brush_size = this.brush_size; } if (diff > 20 && !this.drawing_mode) requestAnimationFrame(() => { self2.init_shape( self2, "destination-out" /* DestinationOut */ ); self2.draw_shape(self2, x2, y2, brush_size); self2.lastx = x2; self2.lasty = y2; }); else requestAnimationFrame(() => { self2.init_shape( self2, "destination-out" /* DestinationOut */ ); var dx = x2 - self2.lastx; var dy = y2 - self2.lasty; var distance = Math.sqrt(dx * dx + dy * dy); var directionX = dx / distance; var directionY = dy / distance; for (var i = 0; i < distance; i += 5) { var px2 = self2.lastx + directionX * i; var py2 = self2.lasty + directionY * i; self2.draw_shape(self2, px2, py2, brush_size); } self2.lastx = x2; self2.lasty = y2; }); self2.lasttime = performance.now(); } } handlePointerDown(self2, event) { if (event.ctrlKey) { if (event.buttons == 1) { MaskEditorDialogOld.mousedown_x = event.clientX; MaskEditorDialogOld.mousedown_y = event.clientY; this.mousedown_pan_x = this.pan_x; this.mousedown_pan_y = this.pan_y; } return; } var brush_size = this.brush_size; if (event instanceof PointerEvent && event.pointerType == "pen") { brush_size *= event.pressure; this.last_pressure = event.pressure; } if ([0, 2, 5].includes(event.button)) { self2.drawing_mode = true; event.preventDefault(); if (event.shiftKey) { self2.zoom_lasty = event.clientY; self2.last_zoom_ratio = self2.zoom_ratio; return; } const maskRect = self2.maskCanvas.getBoundingClientRect(); const x = (event.offsetX || event.targetTouches[0].clientX - maskRect.left) / self2.zoom_ratio; const y = (event.offsetY || event.targetTouches[0].clientY - maskRect.top) / self2.zoom_ratio; if (!event.altKey && event.button == 0) { self2.init_shape( self2, "source-over" /* SourceOver */ ); } else { self2.init_shape( self2, "destination-out" /* DestinationOut */ ); } self2.draw_shape(self2, x, y, brush_size); self2.lastx = x; self2.lasty = y; self2.lasttime = performance.now(); } } init_shape(self2, compositionOperation) { self2.maskCtx.beginPath(); if (compositionOperation == "source-over") { self2.maskCtx.fillStyle = this.getMaskFillStyle(); self2.maskCtx.globalCompositeOperation = "source-over"; } else if (compositionOperation == "destination-out") { self2.maskCtx.globalCompositeOperation = "destination-out"; } } draw_shape(self2, x, y, brush_size) { if (self2.pointer_type === "rect") { self2.maskCtx.rect( x - brush_size, y - brush_size, brush_size * 2, brush_size * 2 ); } else { self2.maskCtx.arc(x, y, brush_size, 0, Math.PI * 2, false); } self2.maskCtx.fill(); } async save() { const backupCanvas = document.createElement("canvas"); const backupCtx = backupCanvas.getContext("2d", { willReadFrequently: true }); backupCanvas.width = this.image.width; backupCanvas.height = this.image.height; backupCtx.clearRect(0, 0, backupCanvas.width, backupCanvas.height); backupCtx.drawImage( this.maskCanvas, 0, 0, this.maskCanvas.width, this.maskCanvas.height, 0, 0, backupCanvas.width, backupCanvas.height ); const backupData = backupCtx.getImageData( 0, 0, backupCanvas.width, backupCanvas.height ); for (let i = 0; i < backupData.data.length; i += 4) { if (backupData.data[i + 3] == 255) backupData.data[i + 3] = 0; else backupData.data[i + 3] = 255; backupData.data[i] = 0; backupData.data[i + 1] = 0; backupData.data[i + 2] = 0; } backupCtx.globalCompositeOperation = "source-over"; backupCtx.putImageData(backupData, 0, 0); const formData = new FormData(); const filename = "clipspace-mask-" + performance.now() + ".png"; const item = { filename, subfolder: "clipspace", type: "input" }; if (ComfyApp.clipspace.images) ComfyApp.clipspace.images[0] = item; if (ComfyApp.clipspace.widgets) { const index = ComfyApp.clipspace.widgets.findIndex( (obj) => obj.name === "image" ); if (index >= 0) ComfyApp.clipspace.widgets[index].value = item; } const dataURL = backupCanvas.toDataURL(); const blob = dataURLToBlob(dataURL); let original_url = new URL(this.image.src); const original_ref = { filename: original_url.searchParams.get("filename") }; let original_subfolder = original_url.searchParams.get("subfolder"); if (original_subfolder) original_ref.subfolder = original_subfolder; let original_type = original_url.searchParams.get("type"); if (original_type) original_ref.type = original_type; formData.append("image", blob, filename); formData.append("original_ref", JSON.stringify(original_ref)); formData.append("type", "input"); formData.append("subfolder", "clipspace"); this.saveButton.innerText = "Saving..."; this.saveButton.disabled = true; await uploadMask(item, formData); ComfyApp.onClipspaceEditorSave(); this.close(); } } window.comfyAPI = window.comfyAPI || {}; window.comfyAPI.maskEditorOld = window.comfyAPI.maskEditorOld || {}; window.comfyAPI.maskEditorOld.MaskEditorDialogOld = MaskEditorDialogOld; var styles = ` #maskEditorContainer { display: fixed; } #maskEditor_brush { position: absolute; backgroundColor: transparent; z-index: 8889; pointer-events: none; border-radius: 50%; overflow: visible; outline: 1px dashed black; box-shadow: 0 0 0 1px white; } #maskEditor_brushPreviewGradient { position: absolute; width: 100%; height: 100%; border-radius: 50%; display: none; } #maskEditor { display: block; width: 100%; height: 100vh; left: 0; z-index: 8888; position: fixed; background: rgba(50,50,50,0.75); backdrop-filter: blur(10px); overflow: hidden; user-select: none; } #maskEditor_sidePanelContainer { height: 100%; width: 220px; z-index: 8888; display: flex; flex-direction: column; } #maskEditor_sidePanel { background: var(--comfy-menu-bg); height: 100%; display: flex; align-items: center; overflow-y: hidden; width: 220px; } #maskEditor_sidePanelShortcuts { display: flex; flex-direction: row; width: 200px; margin-top: 10px; gap: 10px; justify-content: center; } .maskEditor_sidePanelIconButton { width: 40px; height: 40px; pointer-events: auto; display: flex; justify-content: center; align-items: center; transition: background-color 0.1s; } .maskEditor_sidePanelIconButton:hover { background-color: rgba(0, 0, 0, 0.2); } #maskEditor_sidePanelBrushSettings { display: flex; flex-direction: column; gap: 10px; width: 200px; padding: 10px; } .maskEditor_sidePanelTitle { text-align: center; font-size: 15px; font-family: sans-serif; color: var(--descrip-text); margin-top: 10px; } #maskEditor_sidePanelBrushShapeContainer { display: flex; width: 180px; height: 50px; border: 1px solid var(--border-color); pointer-events: auto; background: rgba(0, 0, 0, 0.2); } #maskEditor_sidePanelBrushShapeCircle { width: 35px; height: 35px; border-radius: 50%; border: 1px solid var(--border-color); pointer-events: auto; transition: background 0.1s; margin-left: 7.5px; } .maskEditor_sidePanelBrushRange { width: 180px; -webkit-appearance: none; appearance: none; background: transparent; cursor: pointer; } .maskEditor_sidePanelBrushRange::-webkit-slider-thumb { height: 20px; width: 20px; border-radius: 50%; cursor: grab; margin-top: -8px; background: var(--p-surface-700); border: 1px solid var(--border-color); } .maskEditor_sidePanelBrushRange::-moz-range-thumb { height: 20px; width: 20px; border-radius: 50%; cursor: grab; background: var(--p-surface-800); border: 1px solid var(--border-color); } .maskEditor_sidePanelBrushRange::-webkit-slider-runnable-track { background: var(--p-surface-700); height: 3px; } .maskEditor_sidePanelBrushRange::-moz-range-track { background: var(--p-surface-700); height: 3px; } #maskEditor_sidePanelBrushShapeSquare { width: 35px; height: 35px; margin: 5px; border: 1px solid var(--border-color); pointer-events: auto; transition: background 0.1s; } .maskEditor_brushShape_dark { background: transparent; } .maskEditor_brushShape_dark:hover { background: var(--p-surface-900); } .maskEditor_brushShape_light { background: transparent; } .maskEditor_brushShape_light:hover { background: var(--comfy-menu-bg); } #maskEditor_sidePanelImageLayerSettings { display: flex; flex-direction: column; gap: 10px; width: 200px; align-items: center; } .maskEditor_sidePanelLayer { display: flex; width: 200px; height: 50px; } .maskEditor_sidePanelLayerVisibilityContainer { width: 50px; height: 50px; border-radius: 8px; display: flex; justify-content: center; align-items: center; } .maskEditor_sidePanelVisibilityToggle { width: 12px; height: 12px; border-radius: 50%; pointer-events: auto; } .maskEditor_sidePanelLayerIconContainer { width: 60px; height: 50px; border-radius: 8px; display: flex; justify-content: center; align-items: center; fill: var(--input-text); } .maskEditor_sidePanelLayerIconContainer svg { width: 30px; height: 30px; } #maskEditor_sidePanelMaskLayerBlendingContainer { width: 80px; height: 50px; border-radius: 8px; display: flex; justify-content: center; align-items: center; } #maskEditor_sidePanelMaskLayerBlendingSelect { width: 80px; height: 30px; border: 1px solid var(--border-color); background-color: rgba(0, 0, 0, 0.2); color: var(--input-text); font-family: sans-serif; font-size: 15px; pointer-events: auto; transition: background-color border 0.1s; } #maskEditor_sidePanelClearCanvasButton:hover { background-color: var(--p-overlaybadge-outline-color); border: none; } #maskEditor_sidePanelClearCanvasButton { width: 180px; height: 30px; border: none; background: rgba(0, 0, 0, 0.2); border: 1px solid var(--border-color); color: var(--input-text); font-family: sans-serif; font-size: 15px; pointer-events: auto; transition: background-color 0.1s; } #maskEditor_sidePanelClearCanvasButton:hover { background-color: var(--p-overlaybadge-outline-color); } #maskEditor_sidePanelHorizontalButtonContainer { display: flex; gap: 10px; height: 40px; } .maskEditor_sidePanelBigButton { width: 85px; height: 30px; border: none; background: rgba(0, 0, 0, 0.2); border: 1px solid var(--border-color); color: var(--input-text); font-family: sans-serif; font-size: 15px; pointer-events: auto; transition: background-color border 0.1s; } .maskEditor_sidePanelBigButton:hover { background-color: var(--p-overlaybadge-outline-color); border: none; } #maskEditor_toolPanel { height: 100%; width: var(--sidebar-width); z-index: 8888; background: var(--comfy-menu-bg); display: flex; flex-direction: column; } .maskEditor_toolPanelContainer { width: var(--sidebar-width); height: var(--sidebar-width); display: flex; justify-content: center; align-items: center; position: relative; transition: background-color 0.2s; } .maskEditor_toolPanelContainerSelected svg { fill: var(--p-button-text-primary-color) !important; } .maskEditor_toolPanelContainerSelected .maskEditor_toolPanelIndicator { display: block; } .maskEditor_toolPanelContainer svg { width: 75%; aspect-ratio: 1/1; fill: var(--p-button-text-secondary-color); } .maskEditor_toolPanelContainerDark:hover { background-color: var(--p-surface-800); } .maskEditor_toolPanelContainerLight:hover { background-color: var(--p-surface-300); } .maskEditor_toolPanelIndicator { display: none; height: 100%; width: 4px; position: absolute; left: 0; background: var(--p-button-text-primary-color); } #maskEditor_sidePanelPaintBucketSettings { display: flex; flex-direction: column; gap: 10px; width: 200px; padding: 10px; } #canvasBackground { background: white; width: 100%; height: 100%; } #maskEditor_sidePanelButtonsContainer { display: flex; flex-direction: column; gap: 10px; margin-top: 10px; } .maskEditor_sidePanelSeparator { width: 200px; height: 2px; background: var(--border-color); margin-top: 5px; margin-bottom: 5px; } #maskEditor_pointerZone { width: calc(100% - var(--sidebar-width) - 220px); height: 100%; } #maskEditor_uiContainer { width: 100%; height: 100%; position: absolute; z-index: 8888; display: flex; flex-direction: column; } #maskEditorCanvasContainer { position: absolute; width: 1000px; height: 667px; left: 359px; top: 280px; } #imageCanvas { width: 100%; height: 100%; } #maskCanvas { width: 100%; height: 100%; } #maskEditor_uiHorizontalContainer { width: 100%; height: 100%; display: flex; } #maskEditor_topBar { display: flex; height: 44px; align-items: center; background: var(--comfy-menu-bg); } #maskEditor_topBarTitle { margin: 0; margin-left: 0.5rem; margin-right: 0.5rem; font-size: 1.2em; } #maskEditor_topBarButtonContainer { display: flex; gap: 10px; margin-right: 0.5rem; position: absolute; right: 0; width: 200px; } #maskEditor_topBarShortcutsContainer { display: flex; gap: 10px; margin-left: 5px; } .maskEditor_topPanelIconButton_dark { width: 50px; height: 30px; pointer-events: auto; display: flex; justify-content: center; align-items: center; transition: background-color 0.1s; background: var(--p-surface-800); border: 1px solid var(--p-form-field-border-color); border-radius: 10px; } .maskEditor_topPanelIconButton_dark:hover { background-color: var(--p-surface-900); } .maskEditor_topPanelIconButton_dark svg { width: 25px; height: 25px; pointer-events: none; fill: var(--input-text); } .maskEditor_topPanelIconButton_light { width: 50px; height: 30px; pointer-events: auto; display: flex; justify-content: center; align-items: center; transition: background-color 0.1s; background: var(--comfy-menu-bg); border: 1px solid var(--p-form-field-border-color); border-radius: 10px; } .maskEditor_topPanelIconButton_light:hover { background-color: var(--p-surface-300); } .maskEditor_topPanelIconButton_light svg { width: 25px; height: 25px; pointer-events: none; fill: var(--input-text); } .maskEditor_topPanelButton_dark { height: 30px; background: var(--p-surface-800); border: 1px solid var(--p-form-field-border-color); border-radius: 10px; color: var(--input-text); font-family: sans-serif; pointer-events: auto; transition: 0.1s; width: 60px; } .maskEditor_topPanelButton_dark:hover { background-color: var(--p-surface-900); } .maskEditor_topPanelButton_light { height: 30px; background: var(--comfy-menu-bg); border: 1px solid var(--p-form-field-border-color); border-radius: 10px; color: var(--input-text); font-family: sans-serif; pointer-events: auto; transition: 0.1s; width: 60px; } .maskEditor_topPanelButton_light:hover { background-color: var(--p-surface-300); } #maskEditor_sidePanelColorSelectSettings { flex-direction: column; } .maskEditor_sidePanel_paintBucket_Container { width: 180px; display: flex; flex-direction: column; position: relative; } .maskEditor_sidePanel_colorSelect_Container { display: flex; width: 180px; align-items: center; gap: 5px; height: 30px; } #maskEditor_sidePanelVisibilityToggle { position: absolute; right: 0; } #maskEditor_sidePanelColorSelectMethodSelect { position: absolute; right: 0; height: 30px; border-radius: 0; border: 1px solid var(--border-color); background: rgba(0,0,0,0.2); } #maskEditor_sidePanelVisibilityToggle { position: absolute; right: 0; } .maskEditor_sidePanel_colorSelect_tolerance_container { display: flex; flex-direction: column; gap: 10px; margin-bottom: 10px; } .maskEditor_sidePanelContainerColumn { display: flex; flex-direction: column; gap: 12px; } .maskEditor_sidePanelContainerRow { display: flex; flex-direction: row; gap: 10px; align-items: center; min-height: 24px; position: relative; } .maskEditor_accent_bg_dark { background: var(--p-surface-800); } .maskEditor_accent_bg_very_dark { background: var(--p-surface-900); } .maskEditor_accent_bg_light { background: var(--p-surface-300); } .maskEditor_accent_bg_very_light { background: var(--comfy-menu-bg); } #maskEditor_paintBucketSettings { display: none; } #maskEditor_colorSelectSettings { display: none; } .maskEditor_sidePanelToggleContainer { cursor: pointer; display: inline-block; position: absolute; right: 0; } .maskEditor_toggle_bg_dark { background: var(--p-surface-700); } .maskEditor_toggle_bg_light { background: var(--p-surface-300); } .maskEditor_sidePanelToggleSwitch { display: inline-block; border-radius: 16px; width: 40px; height: 24px; position: relative; vertical-align: middle; transition: background 0.25s; } .maskEditor_sidePanelToggleSwitch:before, .maskEditor_sidePanelToggleSwitch:after { content: ""; } .maskEditor_sidePanelToggleSwitch:before { display: block; background: linear-gradient(to bottom, #fff 0%, #eee 100%); border-radius: 50%; width: 16px; height: 16px; position: absolute; top: 4px; left: 4px; transition: ease 0.2s; } .maskEditor_sidePanelToggleContainer:hover .maskEditor_sidePanelToggleSwitch:before { background: linear-gradient(to bottom, #fff 0%, #fff 100%); } .maskEditor_sidePanelToggleCheckbox:checked + .maskEditor_sidePanelToggleSwitch { background: var(--p-button-text-primary-color); } .maskEditor_sidePanelToggleCheckbox:checked + .maskEditor_toggle_bg_dark:before { background: var(--p-surface-900); } .maskEditor_sidePanelToggleCheckbox:checked + .maskEditor_toggle_bg_light:before { background: var(--comfy-menu-bg); } .maskEditor_sidePanelToggleCheckbox:checked + .maskEditor_sidePanelToggleSwitch:before { left: 20px; } .maskEditor_sidePanelToggleCheckbox { position: absolute; visibility: hidden; } .maskEditor_sidePanelDropdown_dark { border: 1px solid var(--p-form-field-border-color); background: var(--p-surface-900); height: 24px; padding-left: 5px; padding-right: 5px; border-radius: 6px; transition: background 0.1s; } .maskEditor_sidePanelDropdown_dark option { background: var(--p-surface-900); } .maskEditor_sidePanelDropdown_dark:focus { outline: 1px solid var(--p-button-text-primary-color); } .maskEditor_sidePanelDropdown_dark option:hover { background: white; } .maskEditor_sidePanelDropdown_dark option:active { background: var(--p-highlight-background); } .maskEditor_sidePanelDropdown_light { border: 1px solid var(--p-form-field-border-color); background: var(--comfy-menu-bg); height: 24px; padding-left: 5px; padding-right: 5px; border-radius: 6px; transition: background 0.1s; } .maskEditor_sidePanelDropdown_light option { background: var(--comfy-menu-bg); } .maskEditor_sidePanelDropdown_light:focus { outline: 1px solid var(--p-surface-300); } .maskEditor_sidePanelDropdown_light option:hover { background: white; } .maskEditor_sidePanelDropdown_light option:active { background: var(--p-surface-300); } .maskEditor_layerRow { height: 50px; width: 200px; border-radius: 10px; } .maskEditor_sidePanelLayerPreviewContainer { width: 40px; height: 30px; } .maskEditor_sidePanelLayerPreviewContainer > svg{ width: 100%; height: 100%; object-fit: contain; fill: var(--p-surface-100); } #maskEditor_sidePanelImageLayerImage { width: 100%; height: 100%; object-fit: contain; } .maskEditor_sidePanelSubTitle { text-align: left; font-size: 12px; font-family: sans-serif; color: var(--descrip-text); } .maskEditor_containerDropdown { position: absolute; right: 0; } .maskEditor_sidePanelLayerCheckbox { margin-left: 15px; } .maskEditor_toolPanelZoomIndicator { width: var(--sidebar-width); height: var(--sidebar-width); display: flex; flex-direction: column; justify-content: center; align-items: center; gap: 5px; color: var(--p-button-text-secondary-color); position: absolute; bottom: 0; transition: background-color 0.2s; } #maskEditor_toolPanelDimensionsText { font-size: 12px; } `; var styleSheet = document.createElement("style"); styleSheet.type = "text/css"; styleSheet.innerText = styles; document.head.appendChild(styleSheet); var BrushShape = /* @__PURE__ */ ((BrushShape2) => { BrushShape2["Arc"] = "arc"; BrushShape2["Rect"] = "rect"; return BrushShape2; })(BrushShape || {}); var Tools = /* @__PURE__ */ ((Tools2) => { Tools2["Pen"] = "pen"; Tools2["Eraser"] = "eraser"; Tools2["PaintBucket"] = "paintBucket"; Tools2["ColorSelect"] = "colorSelect"; return Tools2; })(Tools || {}); var CompositionOperation = /* @__PURE__ */ ((CompositionOperation2) => { CompositionOperation2["SourceOver"] = "source-over"; CompositionOperation2["DestinationOut"] = "destination-out"; return CompositionOperation2; })(CompositionOperation || {}); var MaskBlendMode = /* @__PURE__ */ ((MaskBlendMode2) => { MaskBlendMode2["Black"] = "black"; MaskBlendMode2["White"] = "white"; MaskBlendMode2["Negative"] = "negative"; return MaskBlendMode2; })(MaskBlendMode || {}); var ColorComparisonMethod = /* @__PURE__ */ ((ColorComparisonMethod2) => { ColorComparisonMethod2["Simple"] = "simple"; ColorComparisonMethod2["HSL"] = "hsl"; ColorComparisonMethod2["LAB"] = "lab"; return ColorComparisonMethod2; })(ColorComparisonMethod || {}); class MaskEditorDialog extends ComfyDialog { static { __name(this, "MaskEditorDialog"); } static instance = null; //new uiManager; toolManager; panAndZoomManager; brushTool; paintBucketTool; colorSelectTool; canvasHistory; messageBroker; keyboardManager; rootElement; imageURL; isLayoutCreated = false; isOpen = false; //variables needed? last_display_style = null; constructor() { super(); this.rootElement = $el( "div.maskEditor_hidden", { parent: document.body }, [] ); this.element = this.rootElement; } static getInstance() { if (!ComfyApp.clipspace || !ComfyApp.clipspace.imgs) { throw new Error("No clipspace images found"); } const currentSrc = ComfyApp.clipspace.imgs[ComfyApp.clipspace["selectedIndex"]].src; if (!MaskEditorDialog.instance || currentSrc !== MaskEditorDialog.instance.imageURL) { MaskEditorDialog.instance = new MaskEditorDialog(); } return MaskEditorDialog.instance; } async show() { this.cleanup(); if (!this.isLayoutCreated) { this.messageBroker = new MessageBroker(); this.canvasHistory = new CanvasHistory(this, 20); this.paintBucketTool = new PaintBucketTool(this); this.brushTool = new BrushTool(this); this.panAndZoomManager = new PanAndZoomManager(this); this.toolManager = new ToolManager(this); this.keyboardManager = new KeyboardManager(this); this.uiManager = new UIManager(this.rootElement, this); this.colorSelectTool = new ColorSelectTool(this); const self2 = this; const observer = new MutationObserver(function(mutations) { mutations.forEach(function(mutation) { if (mutation.type === "attributes" && mutation.attributeName === "style") { if (self2.last_display_style && self2.last_display_style != "none" && self2.element.style.display == "none") { ComfyApp.onClipspaceEditorClosed(); } self2.last_display_style = self2.element.style.display; } }); }); const config = { attributes: true }; observer.observe(this.rootElement, config); this.isLayoutCreated = true; await this.uiManager.setlayout(); } this.rootElement.id = "maskEditor"; this.rootElement.style.display = "flex"; this.element.style.display = "flex"; await this.uiManager.initUI(); this.paintBucketTool.initPaintBucketTool(); this.colorSelectTool.initColorSelectTool(); await this.canvasHistory.saveInitialState(); this.isOpen = true; if (ComfyApp.clipspace && ComfyApp.clipspace.imgs) { this.uiManager.setSidebarImage(); } this.keyboardManager.addListeners(); } cleanup() { const maskEditors = document.querySelectorAll('[id^="maskEditor"]'); maskEditors.forEach((element) => element.remove()); const brushElements = document.querySelectorAll("#maskEditor_brush"); brushElements.forEach((element) => element.remove()); } isOpened() { return this.isOpen; } async save() { const backupCanvas = document.createElement("canvas"); const imageCanvas = this.uiManager.getImgCanvas(); const maskCanvas = this.uiManager.getMaskCanvas(); const image = this.uiManager.getImage(); const backupCtx = backupCanvas.getContext("2d", { willReadFrequently: true }); backupCanvas.width = imageCanvas.width; backupCanvas.height = imageCanvas.height; if (!backupCtx) { return; } const maskImageLoaded = new Promise((resolve, reject) => { const maskImage = new Image(); maskImage.src = maskCanvas.toDataURL(); maskImage.onload = () => { resolve(); }; maskImage.onerror = (error) => { reject(error); }; }); try { await maskImageLoaded; } catch (error) { console.error("Error loading mask image:", error); return; } backupCtx.clearRect(0, 0, backupCanvas.width, backupCanvas.height); backupCtx.drawImage( maskCanvas, 0, 0, maskCanvas.width, maskCanvas.height, 0, 0, backupCanvas.width, backupCanvas.height ); let maskHasContent = false; const maskData = backupCtx.getImageData( 0, 0, backupCanvas.width, backupCanvas.height ); for (let i = 0; i < maskData.data.length; i += 4) { if (maskData.data[i + 3] !== 0) { maskHasContent = true; break; } } const backupData = backupCtx.getImageData( 0, 0, backupCanvas.width, backupCanvas.height ); let backupHasContent = false; for (let i = 0; i < backupData.data.length; i += 4) { if (backupData.data[i + 3] !== 0) { backupHasContent = true; break; } } if (maskHasContent && !backupHasContent) { console.error("Mask appears to be empty"); alert("Cannot save empty mask"); return; } for (let i = 0; i < backupData.data.length; i += 4) { const alpha = backupData.data[i + 3]; backupData.data[i] = 0; backupData.data[i + 1] = 0; backupData.data[i + 2] = 0; backupData.data[i + 3] = 255 - alpha; } backupCtx.globalCompositeOperation = "source-over"; backupCtx.putImageData(backupData, 0, 0); const formData = new FormData(); const filename = "clipspace-mask-" + performance.now() + ".png"; const item = { filename, subfolder: "clipspace", type: "input" }; if (ComfyApp?.clipspace?.widgets?.length) { const index = ComfyApp.clipspace.widgets.findIndex( (obj) => obj?.name === "image" ); if (index >= 0 && item !== void 0) { try { ComfyApp.clipspace.widgets[index].value = item; } catch (err2) { console.warn("Failed to set widget value:", err2); } } } const dataURL = backupCanvas.toDataURL(); const blob = this.dataURLToBlob(dataURL); let original_url = new URL(image.src); this.uiManager.setBrushOpacity(0); const filenameRef = original_url.searchParams.get("filename"); if (!filenameRef) { throw new Error("filename parameter is required"); } const original_ref = { filename: filenameRef }; let original_subfolder = original_url.searchParams.get("subfolder"); if (original_subfolder) original_ref.subfolder = original_subfolder; let original_type = original_url.searchParams.get("type"); if (original_type) original_ref.type = original_type; formData.append("image", blob, filename); formData.append("original_ref", JSON.stringify(original_ref)); formData.append("type", "input"); formData.append("subfolder", "clipspace"); this.uiManager.setSaveButtonText("Saving"); this.uiManager.setSaveButtonEnabled(false); this.keyboardManager.removeListeners(); const maxRetries = 3; let attempt = 0; let success = false; while (attempt < maxRetries && !success) { try { await this.uploadMask(item, formData); success = true; } catch (error) { console.error(`Upload attempt ${attempt + 1} failed:`, error); attempt++; if (attempt < maxRetries) { console.log("Retrying upload..."); } else { console.log("Max retries reached. Upload failed."); } } } if (success) { ComfyApp.onClipspaceEditorSave(); this.close(); this.isOpen = false; } else { this.uiManager.setSaveButtonText("Save"); this.uiManager.setSaveButtonEnabled(true); this.keyboardManager.addListeners(); } } getMessageBroker() { return this.messageBroker; } // Helper function to convert a data URL to a Blob object dataURLToBlob(dataURL) { const parts = dataURL.split(";base64,"); const contentType = parts[0].split(":")[1]; const byteString = atob(parts[1]); const arrayBuffer = new ArrayBuffer(byteString.length); const uint8Array = new Uint8Array(arrayBuffer); for (let i = 0; i < byteString.length; i++) { uint8Array[i] = byteString.charCodeAt(i); } return new Blob([arrayBuffer], { type: contentType }); } async uploadMask(filepath, formData, retries = 3) { if (retries <= 0) { throw new Error("Max retries reached"); return; } await api.fetchApi("/upload/mask", { method: "POST", body: formData }).then((response) => { if (!response.ok) { console.log("Failed to upload mask:", response); this.uploadMask(filepath, formData, 2); } }).catch((error) => { console.error("Error:", error); }); try { const selectedIndex = ComfyApp.clipspace?.selectedIndex; if (ComfyApp.clipspace?.imgs && selectedIndex !== void 0) { const newImage = new Image(); newImage.src = api.apiURL( "/view?" + new URLSearchParams(filepath).toString() + app.getPreviewFormatParam() + app.getRandParam() ); ComfyApp.clipspace.imgs[selectedIndex] = newImage; if (ComfyApp.clipspace.images) { ComfyApp.clipspace.images[selectedIndex] = filepath; } } } catch (err2) { console.warn("Failed to update clipspace image:", err2); } ClipspaceDialog.invalidatePreview(); } } class CanvasHistory { static { __name(this, "CanvasHistory"); } maskEditor; messageBroker; canvas; ctx; states = []; currentStateIndex = -1; maxStates = 20; initialized = false; constructor(maskEditor, maxStates = 20) { this.maskEditor = maskEditor; this.messageBroker = maskEditor.getMessageBroker(); this.maxStates = maxStates; this.createListeners(); } async pullCanvas() { this.canvas = await this.messageBroker.pull("maskCanvas"); this.ctx = await this.messageBroker.pull("maskCtx"); } createListeners() { this.messageBroker.subscribe("saveState", () => this.saveState()); this.messageBroker.subscribe("undo", () => this.undo()); this.messageBroker.subscribe("redo", () => this.redo()); } clearStates() { this.states = []; this.currentStateIndex = -1; this.initialized = false; } async saveInitialState() { await this.pullCanvas(); if (!this.canvas.width || !this.canvas.height) { requestAnimationFrame(() => this.saveInitialState()); return; } this.clearStates(); const state = this.ctx.getImageData( 0, 0, this.canvas.width, this.canvas.height ); this.states.push(state); this.currentStateIndex = 0; this.initialized = true; } saveState() { if (!this.initialized || this.currentStateIndex === -1) { this.saveInitialState(); return; } this.states = this.states.slice(0, this.currentStateIndex + 1); const state = this.ctx.getImageData( 0, 0, this.canvas.width, this.canvas.height ); this.states.push(state); this.currentStateIndex++; if (this.states.length > this.maxStates) { this.states.shift(); this.currentStateIndex--; } } undo() { if (this.states.length > 1 && this.currentStateIndex > 0) { this.currentStateIndex--; this.restoreState(this.states[this.currentStateIndex]); } else { alert("No more undo states available"); } } redo() { if (this.states.length > 1 && this.currentStateIndex < this.states.length - 1) { this.currentStateIndex++; this.restoreState(this.states[this.currentStateIndex]); } else { alert("No more redo states available"); } } restoreState(state) { if (state && this.initialized) { this.ctx.putImageData(state, 0, 0); } } } class PaintBucketTool { static { __name(this, "PaintBucketTool"); } maskEditor; messageBroker; canvas; ctx; width = null; height = null; imageData = null; data = null; tolerance = 5; constructor(maskEditor) { this.maskEditor = maskEditor; this.messageBroker = maskEditor.getMessageBroker(); this.createListeners(); this.addPullTopics(); } initPaintBucketTool() { this.pullCanvas(); } async pullCanvas() { this.canvas = await this.messageBroker.pull("maskCanvas"); this.ctx = await this.messageBroker.pull("maskCtx"); } createListeners() { this.messageBroker.subscribe( "setPaintBucketTolerance", (tolerance) => this.setTolerance(tolerance) ); this.messageBroker.subscribe( "paintBucketFill", (point) => this.floodFill(point) ); this.messageBroker.subscribe("invert", () => this.invertMask()); } addPullTopics() { this.messageBroker.createPullTopic( "getTolerance", async () => this.tolerance ); } getPixel(x, y) { return this.data[(y * this.width + x) * 4 + 3]; } setPixel(x, y, alpha, color) { const index = (y * this.width + x) * 4; this.data[index] = color.r; this.data[index + 1] = color.g; this.data[index + 2] = color.b; this.data[index + 3] = alpha; } shouldProcessPixel(currentAlpha, targetAlpha, tolerance, isFillMode) { if (currentAlpha === -1) return false; if (isFillMode) { return currentAlpha !== 255 && Math.abs(currentAlpha - targetAlpha) <= tolerance; } else { return currentAlpha === 255 || Math.abs(currentAlpha - targetAlpha) <= tolerance; } } async floodFill(point) { let startX = Math.floor(point.x); let startY = Math.floor(point.y); this.width = this.canvas.width; this.height = this.canvas.height; if (startX < 0 || startX >= this.width || startY < 0 || startY >= this.height) { return; } this.imageData = this.ctx.getImageData(0, 0, this.width, this.height); this.data = this.imageData.data; const targetAlpha = this.getPixel(startX, startY); const isFillMode = targetAlpha !== 255; if (targetAlpha === -1) return; const maskColor = await this.messageBroker.pull("getMaskColor"); const stack = []; const visited = new Uint8Array(this.width * this.height); if (this.shouldProcessPixel( targetAlpha, targetAlpha, this.tolerance, isFillMode )) { stack.push([startX, startY]); } while (stack.length > 0) { const [x, y] = stack.pop(); const visitedIndex = y * this.width + x; if (visited[visitedIndex]) continue; const currentAlpha = this.getPixel(x, y); if (!this.shouldProcessPixel( currentAlpha, targetAlpha, this.tolerance, isFillMode )) { continue; } visited[visitedIndex] = 1; this.setPixel(x, y, isFillMode ? 255 : 0, maskColor); const checkNeighbor = /* @__PURE__ */ __name((nx, ny) => { if (nx < 0 || nx >= this.width || ny < 0 || ny >= this.height) return; if (!visited[ny * this.width + nx]) { const alpha = this.getPixel(nx, ny); if (this.shouldProcessPixel( alpha, targetAlpha, this.tolerance, isFillMode )) { stack.push([nx, ny]); } } }, "checkNeighbor"); checkNeighbor(x - 1, y); checkNeighbor(x + 1, y); checkNeighbor(x, y - 1); checkNeighbor(x, y + 1); } this.ctx.putImageData(this.imageData, 0, 0); this.imageData = null; this.data = null; } setTolerance(tolerance) { this.tolerance = tolerance; } getTolerance() { return this.tolerance; } //invert mask invertMask() { const imageData = this.ctx.getImageData( 0, 0, this.canvas.width, this.canvas.height ); const data = imageData.data; let maskR = 0, maskG = 0, maskB = 0; for (let i = 0; i < data.length; i += 4) { if (data[i + 3] > 0) { maskR = data[i]; maskG = data[i + 1]; maskB = data[i + 2]; break; } } for (let i = 0; i < data.length; i += 4) { const alpha = data[i + 3]; data[i + 3] = 255 - alpha; if (alpha === 0) { data[i] = maskR; data[i + 1] = maskG; data[i + 2] = maskB; } } this.ctx.putImageData(imageData, 0, 0); this.messageBroker.publish("saveState"); } } class ColorSelectTool { static { __name(this, "ColorSelectTool"); } maskEditor; messageBroker; width = null; height = null; canvas; maskCTX; imageCTX; maskData = null; imageData = null; tolerance = 20; livePreview = false; lastPoint = null; colorComparisonMethod = "simple"; applyWholeImage = false; maskBoundry = false; maskTolerance = 0; constructor(maskEditor) { this.maskEditor = maskEditor; this.messageBroker = maskEditor.getMessageBroker(); this.createListeners(); this.addPullTopics(); } async initColorSelectTool() { await this.pullCanvas(); } async pullCanvas() { this.canvas = await this.messageBroker.pull("imgCanvas"); this.maskCTX = await this.messageBroker.pull("maskCtx"); this.imageCTX = await this.messageBroker.pull("imageCtx"); } createListeners() { this.messageBroker.subscribe( "colorSelectFill", (point) => this.fillColorSelection(point) ); this.messageBroker.subscribe( "setColorSelectTolerance", (tolerance) => this.setTolerance(tolerance) ); this.messageBroker.subscribe( "setLivePreview", (livePreview) => this.setLivePreview(livePreview) ); this.messageBroker.subscribe( "setColorComparisonMethod", (method) => this.setComparisonMethod(method) ); this.messageBroker.subscribe("clearLastPoint", () => this.clearLastPoint()); this.messageBroker.subscribe( "setWholeImage", (applyWholeImage) => this.setApplyWholeImage(applyWholeImage) ); this.messageBroker.subscribe( "setMaskBoundary", (maskBoundry) => this.setMaskBoundary(maskBoundry) ); this.messageBroker.subscribe( "setMaskTolerance", (maskTolerance) => this.setMaskTolerance(maskTolerance) ); } async addPullTopics() { this.messageBroker.createPullTopic( "getLivePreview", async () => this.livePreview ); } getPixel(x, y) { const index = (y * this.width + x) * 4; return { r: this.imageData[index], g: this.imageData[index + 1], b: this.imageData[index + 2] }; } getMaskAlpha(x, y) { return this.maskData[(y * this.width + x) * 4 + 3]; } isPixelInRange(pixel, target) { switch (this.colorComparisonMethod) { case "simple": return this.isPixelInRangeSimple(pixel, target); case "hsl": return this.isPixelInRangeHSL(pixel, target); case "lab": return this.isPixelInRangeLab(pixel, target); default: return this.isPixelInRangeSimple(pixel, target); } } isPixelInRangeSimple(pixel, target) { const distance = Math.sqrt( Math.pow(pixel.r - target.r, 2) + Math.pow(pixel.g - target.g, 2) + Math.pow(pixel.b - target.b, 2) ); return distance <= this.tolerance; } isPixelInRangeHSL(pixel, target) { const pixelHSL = this.rgbToHSL(pixel.r, pixel.g, pixel.b); const targetHSL = this.rgbToHSL(target.r, target.g, target.b); const hueDiff = Math.abs(pixelHSL.h - targetHSL.h); const satDiff = Math.abs(pixelHSL.s - targetHSL.s); const lightDiff = Math.abs(pixelHSL.l - targetHSL.l); const distance = Math.sqrt( Math.pow(hueDiff / 360 * 255, 2) + Math.pow(satDiff / 100 * 255, 2) + Math.pow(lightDiff / 100 * 255, 2) ); return distance <= this.tolerance; } rgbToHSL(r, g, b) { r /= 255; g /= 255; b /= 255; const max2 = Math.max(r, g, b); const min = Math.min(r, g, b); let h = 0, s = 0, l = (max2 + min) / 2; if (max2 !== min) { const d = max2 - min; s = l > 0.5 ? d / (2 - max2 - min) : d / (max2 + min); switch (max2) { case r: h = (g - b) / d + (g < b ? 6 : 0); break; case g: h = (b - r) / d + 2; break; case b: h = (r - g) / d + 4; break; } h /= 6; } return { h: h * 360, s: s * 100, l: l * 100 }; } isPixelInRangeLab(pixel, target) { const pixelLab = this.rgbToLab(pixel); const targetLab = this.rgbToLab(target); const deltaE = Math.sqrt( Math.pow(pixelLab.l - targetLab.l, 2) + Math.pow(pixelLab.a - targetLab.a, 2) + Math.pow(pixelLab.b - targetLab.b, 2) ); const normalizedDeltaE = deltaE / 100 * 255; return normalizedDeltaE <= this.tolerance; } rgbToLab(rgb) { let r = rgb.r / 255; let g = rgb.g / 255; let b = rgb.b / 255; r = r > 0.04045 ? Math.pow((r + 0.055) / 1.055, 2.4) : r / 12.92; g = g > 0.04045 ? Math.pow((g + 0.055) / 1.055, 2.4) : g / 12.92; b = b > 0.04045 ? Math.pow((b + 0.055) / 1.055, 2.4) : b / 12.92; r *= 100; g *= 100; b *= 100; const x = r * 0.4124 + g * 0.3576 + b * 0.1805; const y = r * 0.2126 + g * 0.7152 + b * 0.0722; const z = r * 0.0193 + g * 0.1192 + b * 0.9505; const xn = 95.047; const yn = 100; const zn = 108.883; const xyz = [x / xn, y / yn, z / zn]; for (let i = 0; i < xyz.length; i++) { xyz[i] = xyz[i] > 8856e-6 ? Math.pow(xyz[i], 1 / 3) : 7.787 * xyz[i] + 16 / 116; } return { l: 116 * xyz[1] - 16, a: 500 * (xyz[0] - xyz[1]), b: 200 * (xyz[1] - xyz[2]) }; } setPixel(x, y, alpha, color) { const index = (y * this.width + x) * 4; this.maskData[index] = color.r; this.maskData[index + 1] = color.g; this.maskData[index + 2] = color.b; this.maskData[index + 3] = alpha; } async fillColorSelection(point) { this.width = this.canvas.width; this.height = this.canvas.height; this.lastPoint = point; const maskData = this.maskCTX.getImageData(0, 0, this.width, this.height); this.maskData = maskData.data; this.imageData = this.imageCTX.getImageData( 0, 0, this.width, this.height ).data; if (this.applyWholeImage) { const targetPixel = this.getPixel( Math.floor(point.x), Math.floor(point.y) ); const maskColor = await this.messageBroker.pull("getMaskColor"); const width = this.width; const height = this.height; const CHUNK_SIZE = 1e4; for (let i = 0; i < width * height; i += CHUNK_SIZE) { const endIndex = Math.min(i + CHUNK_SIZE, width * height); for (let pixelIndex = i; pixelIndex < endIndex; pixelIndex++) { const x = pixelIndex % width; const y = Math.floor(pixelIndex / width); if (this.isPixelInRange(this.getPixel(x, y), targetPixel)) { this.setPixel(x, y, 255, maskColor); } } await new Promise((resolve) => setTimeout(resolve, 0)); } } else { let startX = Math.floor(point.x); let startY = Math.floor(point.y); if (startX < 0 || startX >= this.width || startY < 0 || startY >= this.height) { return; } const pixel = this.getPixel(startX, startY); const stack = []; const visited = new Uint8Array(this.width * this.height); stack.push([startX, startY]); const maskColor = await this.messageBroker.pull("getMaskColor"); while (stack.length > 0) { const [x, y] = stack.pop(); const visitedIndex = y * this.width + x; if (visited[visitedIndex] || !this.isPixelInRange(this.getPixel(x, y), pixel)) { continue; } visited[visitedIndex] = 1; this.setPixel(x, y, 255, maskColor); if (x > 0 && !visited[y * this.width + (x - 1)] && this.isPixelInRange(this.getPixel(x - 1, y), pixel)) { if (!this.maskBoundry || 255 - this.getMaskAlpha(x - 1, y) > this.maskTolerance) { stack.push([x - 1, y]); } } if (x < this.width - 1 && !visited[y * this.width + (x + 1)] && this.isPixelInRange(this.getPixel(x + 1, y), pixel)) { if (!this.maskBoundry || 255 - this.getMaskAlpha(x + 1, y) > this.maskTolerance) { stack.push([x + 1, y]); } } if (y > 0 && !visited[(y - 1) * this.width + x] && this.isPixelInRange(this.getPixel(x, y - 1), pixel)) { if (!this.maskBoundry || 255 - this.getMaskAlpha(x, y - 1) > this.maskTolerance) { stack.push([x, y - 1]); } } if (y < this.height - 1 && !visited[(y + 1) * this.width + x] && this.isPixelInRange(this.getPixel(x, y + 1), pixel)) { if (!this.maskBoundry || 255 - this.getMaskAlpha(x, y + 1) > this.maskTolerance) { stack.push([x, y + 1]); } } } } this.maskCTX.putImageData(maskData, 0, 0); this.messageBroker.publish("saveState"); this.maskData = null; this.imageData = null; } setTolerance(tolerance) { this.tolerance = tolerance; if (this.lastPoint && this.livePreview) { this.messageBroker.publish("undo"); this.fillColorSelection(this.lastPoint); } } setLivePreview(livePreview) { this.livePreview = livePreview; } setComparisonMethod(method) { this.colorComparisonMethod = method; if (this.lastPoint && this.livePreview) { this.messageBroker.publish("undo"); this.fillColorSelection(this.lastPoint); } } clearLastPoint() { this.lastPoint = null; } setApplyWholeImage(applyWholeImage) { this.applyWholeImage = applyWholeImage; } setMaskBoundary(maskBoundry) { this.maskBoundry = maskBoundry; } setMaskTolerance(maskTolerance) { this.maskTolerance = maskTolerance; } } class BrushTool { static { __name(this, "BrushTool"); } brushSettings; //this saves the current brush settings maskBlendMode; isDrawing = false; isDrawingLine = false; lineStartPoint = null; smoothingPrecision = 10; smoothingCordsArray = []; smoothingLastDrawTime; maskCtx = null; brushStrokeCanvas = null; brushStrokeCtx = null; //brush adjustment isBrushAdjusting = false; brushPreviewGradient = null; initialPoint = null; useDominantAxis = false; brushAdjustmentSpeed = 1; maskEditor; messageBroker; constructor(maskEditor) { this.maskEditor = maskEditor; this.messageBroker = maskEditor.getMessageBroker(); this.createListeners(); this.addPullTopics(); this.useDominantAxis = app.extensionManager.setting.get( "Comfy.MaskEditor.UseDominantAxis" ); this.brushAdjustmentSpeed = app.extensionManager.setting.get( "Comfy.MaskEditor.BrushAdjustmentSpeed" ); this.brushSettings = { size: 10, opacity: 100, hardness: 1, type: "arc" /* Arc */ }; this.maskBlendMode = "black"; } createListeners() { this.messageBroker.subscribe( "setBrushSize", (size) => this.setBrushSize(size) ); this.messageBroker.subscribe( "setBrushOpacity", (opacity) => this.setBrushOpacity(opacity) ); this.messageBroker.subscribe( "setBrushHardness", (hardness) => this.setBrushHardness(hardness) ); this.messageBroker.subscribe( "setBrushShape", (type) => this.setBrushType(type) ); this.messageBroker.subscribe( "setBrushSmoothingPrecision", (precision) => this.setBrushSmoothingPrecision(precision) ); this.messageBroker.subscribe( "brushAdjustmentStart", (event) => this.startBrushAdjustment(event) ); this.messageBroker.subscribe( "brushAdjustment", (event) => this.handleBrushAdjustment(event) ); this.messageBroker.subscribe( "drawStart", (event) => this.startDrawing(event) ); this.messageBroker.subscribe( "draw", (event) => this.handleDrawing(event) ); this.messageBroker.subscribe( "drawEnd", (event) => this.drawEnd(event) ); } addPullTopics() { this.messageBroker.createPullTopic( "brushSize", async () => this.brushSettings.size ); this.messageBroker.createPullTopic( "brushOpacity", async () => this.brushSettings.opacity ); this.messageBroker.createPullTopic( "brushHardness", async () => this.brushSettings.hardness ); this.messageBroker.createPullTopic( "brushType", async () => this.brushSettings.type ); this.messageBroker.createPullTopic( "maskBlendMode", async () => this.maskBlendMode ); this.messageBroker.createPullTopic( "brushSettings", async () => this.brushSettings ); } async createBrushStrokeCanvas() { if (this.brushStrokeCanvas !== null) { return; } const maskCanvas = await this.messageBroker.pull("maskCanvas"); const canvas = document.createElement("canvas"); canvas.width = maskCanvas.width; canvas.height = maskCanvas.height; this.brushStrokeCanvas = canvas; this.brushStrokeCtx = canvas.getContext("2d"); } async startDrawing(event) { this.isDrawing = true; let compositionOp; let currentTool = await this.messageBroker.pull("currentTool"); let coords = { x: event.offsetX, y: event.offsetY }; let coords_canvas = await this.messageBroker.pull("screenToCanvas", coords); await this.createBrushStrokeCanvas(); if (currentTool === "eraser" || event.buttons == 2) { compositionOp = "destination-out"; } else { compositionOp = "source-over"; } if (event.shiftKey && this.lineStartPoint) { this.isDrawingLine = true; this.drawLine(this.lineStartPoint, coords_canvas, compositionOp); } else { this.isDrawingLine = false; this.init_shape(compositionOp); this.draw_shape(coords_canvas); } this.lineStartPoint = coords_canvas; this.smoothingCordsArray = [coords_canvas]; this.smoothingLastDrawTime = /* @__PURE__ */ new Date(); } async handleDrawing(event) { var diff = performance.now() - this.smoothingLastDrawTime.getTime(); let coords = { x: event.offsetX, y: event.offsetY }; let coords_canvas = await this.messageBroker.pull("screenToCanvas", coords); let currentTool = await this.messageBroker.pull("currentTool"); if (diff > 20 && !this.isDrawing) requestAnimationFrame(() => { this.init_shape( "source-over" /* SourceOver */ ); this.draw_shape(coords_canvas); this.smoothingCordsArray.push(coords_canvas); }); else requestAnimationFrame(() => { if (currentTool === "eraser" || event.buttons == 2) { this.init_shape( "destination-out" /* DestinationOut */ ); } else { this.init_shape( "source-over" /* SourceOver */ ); } this.drawWithBetterSmoothing(coords_canvas); }); this.smoothingLastDrawTime = /* @__PURE__ */ new Date(); } async drawEnd(event) { const coords = { x: event.offsetX, y: event.offsetY }; const coords_canvas = await this.messageBroker.pull( "screenToCanvas", coords ); if (this.isDrawing) { this.isDrawing = false; this.messageBroker.publish("saveState"); this.lineStartPoint = coords_canvas; } } drawWithBetterSmoothing(point) { if (!this.smoothingCordsArray) { this.smoothingCordsArray = []; } this.smoothingCordsArray.push(point); const MAX_POINTS = 5; if (this.smoothingCordsArray.length > MAX_POINTS) { this.smoothingCordsArray.shift(); } if (this.smoothingCordsArray.length >= 3) { const dx = point.x - this.smoothingCordsArray[0].x; const dy = point.y - this.smoothingCordsArray[0].y; const distance = Math.sqrt(dx * dx + dy * dy); const step = 5; const steps = Math.ceil( distance / step * (this.smoothingPrecision / 10) ); const interpolatedPoints = this.calculateCubicSplinePoints( this.smoothingCordsArray, steps // number of segments between each pair of control points ); for (const point2 of interpolatedPoints) { this.draw_shape(point2); } this.smoothingCordsArray = [point]; } else { this.draw_shape(point); } } async drawLine(p1, p2, compositionOp) { const brush_size = await this.messageBroker.pull("brushSize"); const distance = Math.sqrt((p2.x - p1.x) ** 2 + (p2.y - p1.y) ** 2); const steps = Math.ceil(distance / (brush_size / 4)); this.init_shape(compositionOp); for (let i = 0; i <= steps; i++) { const t = i / steps; const x = p1.x + (p2.x - p1.x) * t; const y = p1.y + (p2.y - p1.y) * t; const point = { x, y }; this.draw_shape(point); } } //brush adjustment async startBrushAdjustment(event) { event.preventDefault(); const coords = { x: event.offsetX, y: event.offsetY }; let coords_canvas = await this.messageBroker.pull("screenToCanvas", coords); this.messageBroker.publish("setBrushPreviewGradientVisibility", true); this.initialPoint = coords_canvas; this.isBrushAdjusting = true; return; } async handleBrushAdjustment(event) { const coords = { x: event.offsetX, y: event.offsetY }; const brushDeadZone = 5; let coords_canvas = await this.messageBroker.pull("screenToCanvas", coords); const delta_x = coords_canvas.x - this.initialPoint.x; const delta_y = coords_canvas.y - this.initialPoint.y; const effectiveDeltaX = Math.abs(delta_x) < brushDeadZone ? 0 : delta_x; const effectiveDeltaY = Math.abs(delta_y) < brushDeadZone ? 0 : delta_y; let finalDeltaX = effectiveDeltaX; let finalDeltaY = effectiveDeltaY; console.log(this.useDominantAxis); if (this.useDominantAxis) { const ratio = Math.abs(effectiveDeltaX) / Math.abs(effectiveDeltaY); const threshold = 2; if (ratio > threshold) { finalDeltaY = 0; } else if (ratio < 1 / threshold) { finalDeltaX = 0; } } const cappedDeltaX = Math.max(-100, Math.min(100, finalDeltaX)); const cappedDeltaY = Math.max(-100, Math.min(100, finalDeltaY)); const sizeDelta = cappedDeltaX / 40; const hardnessDelta = cappedDeltaY / 800; const newSize = Math.max( 1, Math.min( 100, this.brushSettings.size + cappedDeltaX / 35 * this.brushAdjustmentSpeed ) ); const newHardness = Math.max( 0, Math.min( 1, this.brushSettings.hardness - cappedDeltaY / 4e3 * this.brushAdjustmentSpeed ) ); this.brushSettings.size = newSize; this.brushSettings.hardness = newHardness; this.messageBroker.publish("updateBrushPreview"); } //helper functions async draw_shape(point) { const brushSettings = this.brushSettings; const maskCtx = this.maskCtx || await this.messageBroker.pull("maskCtx"); const brushType = await this.messageBroker.pull("brushType"); const maskColor = await this.messageBroker.pull("getMaskColor"); const size = brushSettings.size; const opacity = brushSettings.opacity; const hardness = brushSettings.hardness; const x = point.x; const y = point.y; const extendedSize = size * (2 - hardness); let gradient = maskCtx.createRadialGradient(x, y, 0, x, y, extendedSize); const isErasing = maskCtx.globalCompositeOperation === "destination-out"; if (hardness === 1) { gradient.addColorStop( 0, isErasing ? `rgba(255, 255, 255, ${opacity})` : `rgba(${maskColor.r}, ${maskColor.g}, ${maskColor.b}, ${opacity})` ); gradient.addColorStop( 1, isErasing ? `rgba(255, 255, 255, ${opacity})` : `rgba(${maskColor.r}, ${maskColor.g}, ${maskColor.b}, ${opacity})` ); } else { let softness = 1 - hardness; let innerStop = Math.max(0, hardness - softness); let outerStop = size / extendedSize; if (isErasing) { gradient.addColorStop(0, `rgba(255, 255, 255, ${opacity})`); gradient.addColorStop(innerStop, `rgba(255, 255, 255, ${opacity})`); gradient.addColorStop(outerStop, `rgba(255, 255, 255, ${opacity / 2})`); gradient.addColorStop(1, `rgba(255, 255, 255, 0)`); } else { gradient.addColorStop( 0, `rgba(${maskColor.r}, ${maskColor.g}, ${maskColor.b}, ${opacity})` ); gradient.addColorStop( innerStop, `rgba(${maskColor.r}, ${maskColor.g}, ${maskColor.b}, ${opacity})` ); gradient.addColorStop( outerStop, `rgba(${maskColor.r}, ${maskColor.g}, ${maskColor.b}, ${opacity / 2})` ); gradient.addColorStop( 1, `rgba(${maskColor.r}, ${maskColor.g}, ${maskColor.b}, 0)` ); } } maskCtx.fillStyle = gradient; maskCtx.beginPath(); if (brushType === "rect") { maskCtx.rect( x - extendedSize, y - extendedSize, extendedSize * 2, extendedSize * 2 ); } else { maskCtx.arc(x, y, extendedSize, 0, Math.PI * 2, false); } maskCtx.fill(); } async init_shape(compositionOperation) { const maskBlendMode = await this.messageBroker.pull("maskBlendMode"); const maskCtx = this.maskCtx || await this.messageBroker.pull("maskCtx"); maskCtx.beginPath(); if (compositionOperation == "source-over") { maskCtx.fillStyle = maskBlendMode; maskCtx.globalCompositeOperation = "source-over"; } else if (compositionOperation == "destination-out") { maskCtx.globalCompositeOperation = "destination-out"; } } calculateCubicSplinePoints(points, numSegments = 10) { const result = []; const xCoords = points.map((p) => p.x); const yCoords = points.map((p) => p.y); const xDerivatives = this.calculateSplineCoefficients(xCoords); const yDerivatives = this.calculateSplineCoefficients(yCoords); for (let i = 0; i < points.length - 1; i++) { const p0 = points[i]; const p1 = points[i + 1]; const d0x = xDerivatives[i]; const d1x = xDerivatives[i + 1]; const d0y = yDerivatives[i]; const d1y = yDerivatives[i + 1]; for (let t = 0; t <= numSegments; t++) { const t_normalized = t / numSegments; const h00 = 2 * t_normalized ** 3 - 3 * t_normalized ** 2 + 1; const h10 = t_normalized ** 3 - 2 * t_normalized ** 2 + t_normalized; const h01 = -2 * t_normalized ** 3 + 3 * t_normalized ** 2; const h11 = t_normalized ** 3 - t_normalized ** 2; const x = h00 * p0.x + h10 * d0x + h01 * p1.x + h11 * d1x; const y = h00 * p0.y + h10 * d0y + h01 * p1.y + h11 * d1y; result.push({ x, y }); } } return result; } calculateSplineCoefficients(values) { const n = values.length - 1; const matrix = new Array(n + 1).fill(0).map(() => new Array(n + 1).fill(0)); const rhs = new Array(n + 1).fill(0); for (let i = 1; i < n; i++) { matrix[i][i - 1] = 1; matrix[i][i] = 4; matrix[i][i + 1] = 1; rhs[i] = 3 * (values[i + 1] - values[i - 1]); } matrix[0][0] = 2; matrix[0][1] = 1; matrix[n][n - 1] = 1; matrix[n][n] = 2; rhs[0] = 3 * (values[1] - values[0]); rhs[n] = 3 * (values[n] - values[n - 1]); for (let i = 1; i <= n; i++) { const m = matrix[i][i - 1] / matrix[i - 1][i - 1]; matrix[i][i] -= m * matrix[i - 1][i]; rhs[i] -= m * rhs[i - 1]; } const solution = new Array(n + 1); solution[n] = rhs[n] / matrix[n][n]; for (let i = n - 1; i >= 0; i--) { solution[i] = (rhs[i] - matrix[i][i + 1] * solution[i + 1]) / matrix[i][i]; } return solution; } setBrushSize(size) { this.brushSettings.size = size; } setBrushOpacity(opacity) { this.brushSettings.opacity = opacity; } setBrushHardness(hardness) { this.brushSettings.hardness = hardness; } setBrushType(type) { this.brushSettings.type = type; } setBrushSmoothingPrecision(precision) { this.smoothingPrecision = precision; } } class UIManager { static { __name(this, "UIManager"); } rootElement; brush; brushPreviewGradient; maskCtx; imageCtx; maskCanvas; imgCanvas; brushSettingsHTML; paintBucketSettingsHTML; colorSelectSettingsHTML; maskOpacitySlider; brushHardnessSlider; brushSizeSlider; brushOpacitySlider; sidebarImage; saveButton; toolPanel; sidePanel; pointerZone; canvasBackground; canvasContainer; image; imageURL; darkMode = true; maskEditor; messageBroker; mask_opacity = 0.7; maskBlendMode = "black"; zoomTextHTML; dimensionsTextHTML; constructor(rootElement, maskEditor) { this.rootElement = rootElement; this.maskEditor = maskEditor; this.messageBroker = maskEditor.getMessageBroker(); this.addListeners(); this.addPullTopics(); } addListeners() { this.messageBroker.subscribe( "updateBrushPreview", async () => this.updateBrushPreview() ); this.messageBroker.subscribe( "paintBucketCursor", (isPaintBucket) => this.handlePaintBucketCursor(isPaintBucket) ); this.messageBroker.subscribe( "panCursor", (isPan) => this.handlePanCursor(isPan) ); this.messageBroker.subscribe( "setBrushVisibility", (isVisible) => this.setBrushVisibility(isVisible) ); this.messageBroker.subscribe( "setBrushPreviewGradientVisibility", (isVisible) => this.setBrushPreviewGradientVisibility(isVisible) ); this.messageBroker.subscribe("updateCursor", () => this.updateCursor()); this.messageBroker.subscribe( "setZoomText", (text) => this.setZoomText(text) ); } addPullTopics() { this.messageBroker.createPullTopic( "maskCanvas", async () => this.maskCanvas ); this.messageBroker.createPullTopic("maskCtx", async () => this.maskCtx); this.messageBroker.createPullTopic("imageCtx", async () => this.imageCtx); this.messageBroker.createPullTopic("imgCanvas", async () => this.imgCanvas); this.messageBroker.createPullTopic( "screenToCanvas", async (coords) => this.screenToCanvas(coords) ); this.messageBroker.createPullTopic( "getCanvasContainer", async () => this.canvasContainer ); this.messageBroker.createPullTopic( "getMaskColor", async () => this.getMaskColor() ); } async setlayout() { this.detectLightMode(); var user_ui = await this.createUI(); var canvasContainer = this.createBackgroundUI(); var brush = await this.createBrush(); await this.setBrushBorderRadius(); this.setBrushOpacity(1); this.rootElement.appendChild(canvasContainer); this.rootElement.appendChild(user_ui); document.body.appendChild(brush); } async createUI() { var ui_container = document.createElement("div"); ui_container.id = "maskEditor_uiContainer"; var top_bar = await this.createTopBar(); var ui_horizontal_container = document.createElement("div"); ui_horizontal_container.id = "maskEditor_uiHorizontalContainer"; var side_panel_container = await this.createSidePanel(); var pointer_zone = this.createPointerZone(); var tool_panel = this.createToolPanel(); ui_horizontal_container.appendChild(tool_panel); ui_horizontal_container.appendChild(pointer_zone); ui_horizontal_container.appendChild(side_panel_container); ui_container.appendChild(top_bar); ui_container.appendChild(ui_horizontal_container); return ui_container; } createBackgroundUI() { const canvasContainer = document.createElement("div"); canvasContainer.id = "maskEditorCanvasContainer"; const imgCanvas = document.createElement("canvas"); imgCanvas.id = "imageCanvas"; const maskCanvas = document.createElement("canvas"); maskCanvas.id = "maskCanvas"; const canvas_background = document.createElement("div"); canvas_background.id = "canvasBackground"; canvasContainer.appendChild(imgCanvas); canvasContainer.appendChild(maskCanvas); canvasContainer.appendChild(canvas_background); this.imgCanvas = imgCanvas; this.maskCanvas = maskCanvas; this.canvasContainer = canvasContainer; this.canvasBackground = canvas_background; let maskCtx = maskCanvas.getContext("2d", { willReadFrequently: true }); if (maskCtx) { this.maskCtx = maskCtx; } let imgCtx = imgCanvas.getContext("2d", { willReadFrequently: true }); if (imgCtx) { this.imageCtx = imgCtx; } this.setEventHandler(); this.imgCanvas.style.position = "absolute"; this.maskCanvas.style.position = "absolute"; this.imgCanvas.style.top = "200"; this.imgCanvas.style.left = "0"; this.maskCanvas.style.top = this.imgCanvas.style.top; this.maskCanvas.style.left = this.imgCanvas.style.left; const maskCanvasStyle = this.getMaskCanvasStyle(); this.maskCanvas.style.mixBlendMode = maskCanvasStyle.mixBlendMode; this.maskCanvas.style.opacity = maskCanvasStyle.opacity.toString(); return canvasContainer; } async setBrushBorderRadius() { const brushSettings = await this.messageBroker.pull("brushSettings"); if (brushSettings.type === "rect") { this.brush.style.borderRadius = "0%"; this.brush.style.MozBorderRadius = "0%"; this.brush.style.WebkitBorderRadius = "0%"; } else { this.brush.style.borderRadius = "50%"; this.brush.style.MozBorderRadius = "50%"; this.brush.style.WebkitBorderRadius = "50%"; } } async initUI() { this.saveButton.innerText = "Save"; this.saveButton.disabled = false; await this.setImages(this.imgCanvas); } async createSidePanel() { const side_panel = this.createContainer(true); side_panel.id = "maskEditor_sidePanel"; const brush_settings = await this.createBrushSettings(); brush_settings.id = "maskEditor_brushSettings"; this.brushSettingsHTML = brush_settings; const paint_bucket_settings = await this.createPaintBucketSettings(); paint_bucket_settings.id = "maskEditor_paintBucketSettings"; this.paintBucketSettingsHTML = paint_bucket_settings; const color_select_settings = await this.createColorSelectSettings(); color_select_settings.id = "maskEditor_colorSelectSettings"; this.colorSelectSettingsHTML = color_select_settings; const image_layer_settings = await this.createImageLayerSettings(); const separator = this.createSeparator(); side_panel.appendChild(brush_settings); side_panel.appendChild(paint_bucket_settings); side_panel.appendChild(color_select_settings); side_panel.appendChild(separator); side_panel.appendChild(image_layer_settings); return side_panel; } async createBrushSettings() { const shapeColor = this.darkMode ? "maskEditor_brushShape_dark" : "maskEditor_brushShape_light"; const brush_settings_container = this.createContainer(true); const brush_settings_title = this.createHeadline("Brush Settings"); const brush_shape_outer_container = this.createContainer(true); const brush_shape_title = this.createContainerTitle("Brush Shape"); const brush_shape_container = this.createContainer(false); const accentColor = this.darkMode ? "maskEditor_accent_bg_dark" : "maskEditor_accent_bg_light"; brush_shape_container.classList.add(accentColor); brush_shape_container.classList.add("maskEditor_layerRow"); const circle_shape = document.createElement("div"); circle_shape.id = "maskEditor_sidePanelBrushShapeCircle"; circle_shape.classList.add(shapeColor); circle_shape.style.background = "var(--p-button-text-primary-color)"; circle_shape.addEventListener("click", () => { this.messageBroker.publish( "setBrushShape", "arc" /* Arc */ ); this.setBrushBorderRadius(); circle_shape.style.background = "var(--p-button-text-primary-color)"; square_shape.style.background = ""; }); const square_shape = document.createElement("div"); square_shape.id = "maskEditor_sidePanelBrushShapeSquare"; square_shape.classList.add(shapeColor); square_shape.style.background = ""; square_shape.addEventListener("click", () => { this.messageBroker.publish( "setBrushShape", "rect" /* Rect */ ); this.setBrushBorderRadius(); square_shape.style.background = "var(--p-button-text-primary-color)"; circle_shape.style.background = ""; }); brush_shape_container.appendChild(circle_shape); brush_shape_container.appendChild(square_shape); brush_shape_outer_container.appendChild(brush_shape_title); brush_shape_outer_container.appendChild(brush_shape_container); const thicknesSliderObj = this.createSlider( "Thickness", 1, 100, 1, 10, (event, value) => { this.messageBroker.publish("setBrushSize", parseInt(value)); this.updateBrushPreview(); } ); this.brushSizeSlider = thicknesSliderObj.slider; const opacitySliderObj = this.createSlider( "Opacity", 0.1, 1, 0.01, 0.7, (event, value) => { this.messageBroker.publish("setBrushOpacity", parseFloat(value)); this.updateBrushPreview(); } ); this.brushOpacitySlider = opacitySliderObj.slider; const hardnessSliderObj = this.createSlider( "Hardness", 0, 1, 0.01, 1, (event, value) => { this.messageBroker.publish("setBrushHardness", parseFloat(value)); this.updateBrushPreview(); } ); this.brushHardnessSlider = hardnessSliderObj.slider; const brushSmoothingPrecisionSliderObj = this.createSlider( "Smoothing Precision", 1, 100, 1, 10, (event, value) => { this.messageBroker.publish( "setBrushSmoothingPrecision", parseInt(value) ); } ); brush_settings_container.appendChild(brush_settings_title); brush_settings_container.appendChild(brush_shape_outer_container); brush_settings_container.appendChild(thicknesSliderObj.container); brush_settings_container.appendChild(opacitySliderObj.container); brush_settings_container.appendChild(hardnessSliderObj.container); brush_settings_container.appendChild( brushSmoothingPrecisionSliderObj.container ); return brush_settings_container; } async createPaintBucketSettings() { const paint_bucket_settings_container = this.createContainer(true); const paint_bucket_settings_title = this.createHeadline( "Paint Bucket Settings" ); const tolerance = await this.messageBroker.pull("getTolerance"); const paintBucketToleranceSliderObj = this.createSlider( "Tolerance", 0, 255, 1, tolerance, (event, value) => { this.messageBroker.publish("setPaintBucketTolerance", parseInt(value)); } ); paint_bucket_settings_container.appendChild(paint_bucket_settings_title); paint_bucket_settings_container.appendChild( paintBucketToleranceSliderObj.container ); return paint_bucket_settings_container; } async createColorSelectSettings() { const color_select_settings_container = this.createContainer(true); const color_select_settings_title = this.createHeadline( "Color Select Settings" ); var tolerance = await this.messageBroker.pull("getTolerance"); const colorSelectToleranceSliderObj = this.createSlider( "Tolerance", 0, 255, 1, tolerance, (event, value) => { this.messageBroker.publish("setColorSelectTolerance", parseInt(value)); } ); const livePreviewToggle = this.createToggle( "Live Preview", (event, value) => { this.messageBroker.publish("setLivePreview", value); } ); const wholeImageToggle = this.createToggle( "Apply to Whole Image", (event, value) => { this.messageBroker.publish("setWholeImage", value); } ); const methodOptions = Object.values(ColorComparisonMethod); const methodSelect = this.createDropdown( "Method", methodOptions, (event, value) => { this.messageBroker.publish("setColorComparisonMethod", value); } ); const maskBoundaryToggle = this.createToggle( "Stop at mask", (event, value) => { this.messageBroker.publish("setMaskBoundary", value); } ); const maskToleranceSliderObj = this.createSlider( "Mask Tolerance", 0, 255, 1, 0, (event, value) => { this.messageBroker.publish("setMaskTolerance", parseInt(value)); } ); color_select_settings_container.appendChild(color_select_settings_title); color_select_settings_container.appendChild( colorSelectToleranceSliderObj.container ); color_select_settings_container.appendChild(livePreviewToggle); color_select_settings_container.appendChild(wholeImageToggle); color_select_settings_container.appendChild(methodSelect); color_select_settings_container.appendChild(maskBoundaryToggle); color_select_settings_container.appendChild( maskToleranceSliderObj.container ); return color_select_settings_container; } async createImageLayerSettings() { const accentColor = this.darkMode ? "maskEditor_accent_bg_dark" : "maskEditor_accent_bg_light"; const image_layer_settings_container = this.createContainer(true); const image_layer_settings_title = this.createHeadline("Layers"); const mask_layer_title = this.createContainerTitle("Mask Layer"); const mask_layer_container = this.createContainer(false); mask_layer_container.classList.add(accentColor); mask_layer_container.classList.add("maskEditor_layerRow"); const mask_layer_visibility_checkbox = document.createElement("input"); mask_layer_visibility_checkbox.setAttribute("type", "checkbox"); mask_layer_visibility_checkbox.checked = true; mask_layer_visibility_checkbox.classList.add( "maskEditor_sidePanelLayerCheckbox" ); mask_layer_visibility_checkbox.addEventListener("change", (event) => { if (!event.target.checked) { this.maskCanvas.style.opacity = "0"; } else { this.maskCanvas.style.opacity = String(this.mask_opacity); } }); var mask_layer_image_container = document.createElement("div"); mask_layer_image_container.classList.add( "maskEditor_sidePanelLayerPreviewContainer" ); mask_layer_image_container.innerHTML = ' '; var blending_options = ["black", "white", "negative"]; const sidePanelDropdownAccent = this.darkMode ? "maskEditor_sidePanelDropdown_dark" : "maskEditor_sidePanelDropdown_light"; var mask_layer_dropdown = document.createElement("select"); mask_layer_dropdown.classList.add(sidePanelDropdownAccent); mask_layer_dropdown.classList.add(sidePanelDropdownAccent); blending_options.forEach((option) => { var option_element = document.createElement("option"); option_element.value = option; option_element.innerText = option; mask_layer_dropdown.appendChild(option_element); if (option == this.maskBlendMode) { option_element.selected = true; } }); mask_layer_dropdown.addEventListener("change", (event) => { const selectedValue = event.target.value; this.maskBlendMode = selectedValue; this.updateMaskColor(); }); mask_layer_container.appendChild(mask_layer_visibility_checkbox); mask_layer_container.appendChild(mask_layer_image_container); mask_layer_container.appendChild(mask_layer_dropdown); const mask_layer_opacity_sliderObj = this.createSlider( "Mask Opacity", 0, 1, 0.01, this.mask_opacity, (event, value) => { this.mask_opacity = parseFloat(value); this.maskCanvas.style.opacity = String(this.mask_opacity); if (this.mask_opacity == 0) { mask_layer_visibility_checkbox.checked = false; } else { mask_layer_visibility_checkbox.checked = true; } } ); this.maskOpacitySlider = mask_layer_opacity_sliderObj.slider; const image_layer_title = this.createContainerTitle("Image Layer"); const image_layer_container = this.createContainer(false); image_layer_container.classList.add(accentColor); image_layer_container.classList.add("maskEditor_layerRow"); const image_layer_visibility_checkbox = document.createElement("input"); image_layer_visibility_checkbox.setAttribute("type", "checkbox"); image_layer_visibility_checkbox.classList.add( "maskEditor_sidePanelLayerCheckbox" ); image_layer_visibility_checkbox.checked = true; image_layer_visibility_checkbox.addEventListener("change", (event) => { if (!event.target.checked) { this.imgCanvas.style.opacity = "0"; } else { this.imgCanvas.style.opacity = "1"; } }); const image_layer_image_container = document.createElement("div"); image_layer_image_container.classList.add( "maskEditor_sidePanelLayerPreviewContainer" ); const image_layer_image = document.createElement("img"); image_layer_image.id = "maskEditor_sidePanelImageLayerImage"; image_layer_image.src = ComfyApp.clipspace?.imgs?.[ComfyApp.clipspace?.selectedIndex ?? 0]?.src ?? ""; this.sidebarImage = image_layer_image; image_layer_image_container.appendChild(image_layer_image); image_layer_container.appendChild(image_layer_visibility_checkbox); image_layer_container.appendChild(image_layer_image_container); image_layer_settings_container.appendChild(image_layer_settings_title); image_layer_settings_container.appendChild(mask_layer_title); image_layer_settings_container.appendChild(mask_layer_container); image_layer_settings_container.appendChild( mask_layer_opacity_sliderObj.container ); image_layer_settings_container.appendChild(image_layer_title); image_layer_settings_container.appendChild(image_layer_container); return image_layer_settings_container; } createHeadline(title) { var headline = document.createElement("h3"); headline.classList.add("maskEditor_sidePanelTitle"); headline.innerText = title; return headline; } createContainer(flexDirection) { var container = document.createElement("div"); if (flexDirection) { container.classList.add("maskEditor_sidePanelContainerColumn"); } else { container.classList.add("maskEditor_sidePanelContainerRow"); } return container; } createContainerTitle(title) { var container_title = document.createElement("span"); container_title.classList.add("maskEditor_sidePanelSubTitle"); container_title.innerText = title; return container_title; } createSlider(title, min, max2, step, value, callback) { var slider_container = this.createContainer(true); var slider_title = this.createContainerTitle(title); var slider = document.createElement("input"); slider.classList.add("maskEditor_sidePanelBrushRange"); slider.setAttribute("type", "range"); slider.setAttribute("min", String(min)); slider.setAttribute("max", String(max2)); slider.setAttribute("step", String(step)); slider.setAttribute("value", String(value)); slider.addEventListener("input", (event) => { callback(event, event.target.value); }); slider_container.appendChild(slider_title); slider_container.appendChild(slider); return { container: slider_container, slider }; } createToggle(title, callback) { var outer_Container = this.createContainer(false); var toggle_title = this.createContainerTitle(title); var toggle_container = document.createElement("label"); toggle_container.classList.add("maskEditor_sidePanelToggleContainer"); var toggle_checkbox = document.createElement("input"); toggle_checkbox.setAttribute("type", "checkbox"); toggle_checkbox.classList.add("maskEditor_sidePanelToggleCheckbox"); toggle_checkbox.addEventListener("change", (event) => { callback(event, event.target.checked); }); var toggleAccentColor = this.darkMode ? "maskEditor_toggle_bg_dark" : "maskEditor_toggle_bg_light"; var toggle_switch = document.createElement("div"); toggle_switch.classList.add("maskEditor_sidePanelToggleSwitch"); toggle_switch.classList.add(toggleAccentColor); toggle_container.appendChild(toggle_checkbox); toggle_container.appendChild(toggle_switch); outer_Container.appendChild(toggle_title); outer_Container.appendChild(toggle_container); return outer_Container; } createDropdown(title, options, callback) { const sidePanelDropdownAccent = this.darkMode ? "maskEditor_sidePanelDropdown_dark" : "maskEditor_sidePanelDropdown_light"; var dropdown_container = this.createContainer(false); var dropdown_title = this.createContainerTitle(title); var dropdown = document.createElement("select"); dropdown.classList.add(sidePanelDropdownAccent); dropdown.classList.add("maskEditor_containerDropdown"); options.forEach((option) => { var option_element = document.createElement("option"); option_element.value = option; option_element.innerText = option; dropdown.appendChild(option_element); }); dropdown.addEventListener("change", (event) => { callback(event, event.target.value); }); dropdown_container.appendChild(dropdown_title); dropdown_container.appendChild(dropdown); return dropdown_container; } createSeparator() { var separator = document.createElement("div"); separator.classList.add("maskEditor_sidePanelSeparator"); return separator; } //---------------- async createTopBar() { const buttonAccentColor = this.darkMode ? "maskEditor_topPanelButton_dark" : "maskEditor_topPanelButton_light"; const iconButtonAccentColor = this.darkMode ? "maskEditor_topPanelIconButton_dark" : "maskEditor_topPanelIconButton_light"; var top_bar = document.createElement("div"); top_bar.id = "maskEditor_topBar"; var top_bar_title_container = document.createElement("div"); top_bar_title_container.id = "maskEditor_topBarTitleContainer"; var top_bar_title = document.createElement("h1"); top_bar_title.id = "maskEditor_topBarTitle"; top_bar_title.innerText = "ComfyUI"; top_bar_title_container.appendChild(top_bar_title); var top_bar_shortcuts_container = document.createElement("div"); top_bar_shortcuts_container.id = "maskEditor_topBarShortcutsContainer"; var top_bar_undo_button = document.createElement("div"); top_bar_undo_button.id = "maskEditor_topBarUndoButton"; top_bar_undo_button.classList.add(iconButtonAccentColor); top_bar_undo_button.innerHTML = ' '; top_bar_undo_button.addEventListener("click", () => { this.messageBroker.publish("undo"); }); var top_bar_redo_button = document.createElement("div"); top_bar_redo_button.id = "maskEditor_topBarRedoButton"; top_bar_redo_button.classList.add(iconButtonAccentColor); top_bar_redo_button.innerHTML = ' '; top_bar_redo_button.addEventListener("click", () => { this.messageBroker.publish("redo"); }); var top_bar_invert_button = document.createElement("button"); top_bar_invert_button.id = "maskEditor_topBarInvertButton"; top_bar_invert_button.classList.add(buttonAccentColor); top_bar_invert_button.innerText = "Invert"; top_bar_invert_button.addEventListener("click", () => { this.messageBroker.publish("invert"); }); var top_bar_clear_button = document.createElement("button"); top_bar_clear_button.id = "maskEditor_topBarClearButton"; top_bar_clear_button.classList.add(buttonAccentColor); top_bar_clear_button.innerText = "Clear"; top_bar_clear_button.addEventListener("click", () => { this.maskCtx.clearRect( 0, 0, this.maskCanvas.width, this.maskCanvas.height ); this.messageBroker.publish("saveState"); }); var top_bar_save_button = document.createElement("button"); top_bar_save_button.id = "maskEditor_topBarSaveButton"; top_bar_save_button.classList.add(buttonAccentColor); top_bar_save_button.innerText = "Save"; this.saveButton = top_bar_save_button; top_bar_save_button.addEventListener("click", () => { this.maskEditor.save(); }); var top_bar_cancel_button = document.createElement("button"); top_bar_cancel_button.id = "maskEditor_topBarCancelButton"; top_bar_cancel_button.classList.add(buttonAccentColor); top_bar_cancel_button.innerText = "Cancel"; top_bar_cancel_button.addEventListener("click", () => { this.maskEditor.close(); }); top_bar_shortcuts_container.appendChild(top_bar_undo_button); top_bar_shortcuts_container.appendChild(top_bar_redo_button); top_bar_shortcuts_container.appendChild(top_bar_invert_button); top_bar_shortcuts_container.appendChild(top_bar_clear_button); top_bar_shortcuts_container.appendChild(top_bar_save_button); top_bar_shortcuts_container.appendChild(top_bar_cancel_button); top_bar.appendChild(top_bar_title_container); top_bar.appendChild(top_bar_shortcuts_container); return top_bar; } createToolPanel() { var tool_panel = document.createElement("div"); tool_panel.id = "maskEditor_toolPanel"; this.toolPanel = tool_panel; var toolPanelHoverAccent = this.darkMode ? "maskEditor_toolPanelContainerDark" : "maskEditor_toolPanelContainerLight"; var toolElements = []; var toolPanel_brushToolContainer = document.createElement("div"); toolPanel_brushToolContainer.classList.add("maskEditor_toolPanelContainer"); toolPanel_brushToolContainer.classList.add( "maskEditor_toolPanelContainerSelected" ); toolPanel_brushToolContainer.classList.add(toolPanelHoverAccent); toolPanel_brushToolContainer.innerHTML = ` `; toolElements.push(toolPanel_brushToolContainer); toolPanel_brushToolContainer.addEventListener("click", () => { this.messageBroker.publish( "setTool", "pen" /* Pen */ ); for (let toolElement of toolElements) { if (toolElement != toolPanel_brushToolContainer) { toolElement.classList.remove("maskEditor_toolPanelContainerSelected"); } else { toolElement.classList.add("maskEditor_toolPanelContainerSelected"); this.brushSettingsHTML.style.display = "flex"; this.colorSelectSettingsHTML.style.display = "none"; this.paintBucketSettingsHTML.style.display = "none"; } } this.messageBroker.publish( "setTool", "pen" /* Pen */ ); this.pointerZone.style.cursor = "none"; }); var toolPanel_brushToolIndicator = document.createElement("div"); toolPanel_brushToolIndicator.classList.add("maskEditor_toolPanelIndicator"); toolPanel_brushToolContainer.appendChild(toolPanel_brushToolIndicator); var toolPanel_eraserToolContainer = document.createElement("div"); toolPanel_eraserToolContainer.classList.add("maskEditor_toolPanelContainer"); toolPanel_eraserToolContainer.classList.add(toolPanelHoverAccent); toolPanel_eraserToolContainer.innerHTML = ` `; toolElements.push(toolPanel_eraserToolContainer); toolPanel_eraserToolContainer.addEventListener("click", () => { this.messageBroker.publish( "setTool", "eraser" /* Eraser */ ); for (let toolElement of toolElements) { if (toolElement != toolPanel_eraserToolContainer) { toolElement.classList.remove("maskEditor_toolPanelContainerSelected"); } else { toolElement.classList.add("maskEditor_toolPanelContainerSelected"); this.brushSettingsHTML.style.display = "flex"; this.colorSelectSettingsHTML.style.display = "none"; this.paintBucketSettingsHTML.style.display = "none"; } } this.messageBroker.publish( "setTool", "eraser" /* Eraser */ ); this.pointerZone.style.cursor = "none"; }); var toolPanel_eraserToolIndicator = document.createElement("div"); toolPanel_eraserToolIndicator.classList.add("maskEditor_toolPanelIndicator"); toolPanel_eraserToolContainer.appendChild(toolPanel_eraserToolIndicator); var toolPanel_paintBucketToolContainer = document.createElement("div"); toolPanel_paintBucketToolContainer.classList.add( "maskEditor_toolPanelContainer" ); toolPanel_paintBucketToolContainer.classList.add(toolPanelHoverAccent); toolPanel_paintBucketToolContainer.innerHTML = ` `; toolElements.push(toolPanel_paintBucketToolContainer); toolPanel_paintBucketToolContainer.addEventListener("click", () => { this.messageBroker.publish( "setTool", "paintBucket" /* PaintBucket */ ); for (let toolElement of toolElements) { if (toolElement != toolPanel_paintBucketToolContainer) { toolElement.classList.remove("maskEditor_toolPanelContainerSelected"); } else { toolElement.classList.add("maskEditor_toolPanelContainerSelected"); this.brushSettingsHTML.style.display = "none"; this.colorSelectSettingsHTML.style.display = "none"; this.paintBucketSettingsHTML.style.display = "flex"; } } this.messageBroker.publish( "setTool", "paintBucket" /* PaintBucket */ ); this.pointerZone.style.cursor = "url('/cursor/paintBucket.png') 30 25, auto"; this.brush.style.opacity = "0"; }); var toolPanel_paintBucketToolIndicator = document.createElement("div"); toolPanel_paintBucketToolIndicator.classList.add( "maskEditor_toolPanelIndicator" ); toolPanel_paintBucketToolContainer.appendChild( toolPanel_paintBucketToolIndicator ); var toolPanel_colorSelectToolContainer = document.createElement("div"); toolPanel_colorSelectToolContainer.classList.add( "maskEditor_toolPanelContainer" ); toolPanel_colorSelectToolContainer.classList.add(toolPanelHoverAccent); toolPanel_colorSelectToolContainer.innerHTML = ` `; toolElements.push(toolPanel_colorSelectToolContainer); toolPanel_colorSelectToolContainer.addEventListener("click", () => { this.messageBroker.publish("setTool", "colorSelect"); for (let toolElement of toolElements) { if (toolElement != toolPanel_colorSelectToolContainer) { toolElement.classList.remove("maskEditor_toolPanelContainerSelected"); } else { toolElement.classList.add("maskEditor_toolPanelContainerSelected"); this.brushSettingsHTML.style.display = "none"; this.paintBucketSettingsHTML.style.display = "none"; this.colorSelectSettingsHTML.style.display = "flex"; } } this.messageBroker.publish( "setTool", "colorSelect" /* ColorSelect */ ); this.pointerZone.style.cursor = "url('/cursor/colorSelect.png') 15 25, auto"; this.brush.style.opacity = "0"; }); var toolPanel_colorSelectToolIndicator = document.createElement("div"); toolPanel_colorSelectToolIndicator.classList.add( "maskEditor_toolPanelIndicator" ); toolPanel_colorSelectToolContainer.appendChild( toolPanel_colorSelectToolIndicator ); var toolPanel_zoomIndicator = document.createElement("div"); toolPanel_zoomIndicator.classList.add("maskEditor_toolPanelZoomIndicator"); toolPanel_zoomIndicator.classList.add(toolPanelHoverAccent); var toolPanel_zoomText = document.createElement("span"); toolPanel_zoomText.id = "maskEditor_toolPanelZoomText"; toolPanel_zoomText.innerText = "100%"; this.zoomTextHTML = toolPanel_zoomText; var toolPanel_DimensionsText = document.createElement("span"); toolPanel_DimensionsText.id = "maskEditor_toolPanelDimensionsText"; toolPanel_DimensionsText.innerText = " "; this.dimensionsTextHTML = toolPanel_DimensionsText; toolPanel_zoomIndicator.appendChild(toolPanel_zoomText); toolPanel_zoomIndicator.appendChild(toolPanel_DimensionsText); toolPanel_zoomIndicator.addEventListener("click", () => { this.messageBroker.publish("resetZoom"); }); tool_panel.appendChild(toolPanel_brushToolContainer); tool_panel.appendChild(toolPanel_eraserToolContainer); tool_panel.appendChild(toolPanel_paintBucketToolContainer); tool_panel.appendChild(toolPanel_colorSelectToolContainer); tool_panel.appendChild(toolPanel_zoomIndicator); return tool_panel; } createPointerZone() { const pointer_zone = document.createElement("div"); pointer_zone.id = "maskEditor_pointerZone"; this.pointerZone = pointer_zone; pointer_zone.addEventListener("pointerdown", (event) => { this.messageBroker.publish("pointerDown", event); }); pointer_zone.addEventListener("pointermove", (event) => { this.messageBroker.publish("pointerMove", event); }); pointer_zone.addEventListener("pointerup", (event) => { this.messageBroker.publish("pointerUp", event); }); pointer_zone.addEventListener("pointerleave", (event) => { this.brush.style.opacity = "0"; this.pointerZone.style.cursor = ""; }); pointer_zone.addEventListener("touchstart", (event) => { this.messageBroker.publish("handleTouchStart", event); }); pointer_zone.addEventListener("touchmove", (event) => { this.messageBroker.publish("handleTouchMove", event); }); pointer_zone.addEventListener("touchend", (event) => { this.messageBroker.publish("handleTouchEnd", event); }); pointer_zone.addEventListener( "wheel", (event) => this.messageBroker.publish("wheel", event) ); pointer_zone.addEventListener( "pointerenter", async (event) => { this.updateCursor(); } ); return pointer_zone; } async screenToCanvas(clientPoint) { const zoomRatio = await this.messageBroker.pull("zoomRatio"); const canvasRect = this.maskCanvas.getBoundingClientRect(); const offsetX = clientPoint.x - canvasRect.left + this.toolPanel.clientWidth; const offsetY = clientPoint.y - canvasRect.top + 44; const x = offsetX / zoomRatio; const y = offsetY / zoomRatio; return { x, y }; } setEventHandler() { this.maskCanvas.addEventListener("contextmenu", (event) => { event.preventDefault(); }); this.rootElement.addEventListener("contextmenu", (event) => { event.preventDefault(); }); this.rootElement.addEventListener("dragstart", (event) => { if (event.ctrlKey) { event.preventDefault(); } }); } async createBrush() { var brush = document.createElement("div"); const brushSettings = await this.messageBroker.pull("brushSettings"); brush.id = "maskEditor_brush"; var brush_preview_gradient = document.createElement("div"); brush_preview_gradient.id = "maskEditor_brushPreviewGradient"; brush.appendChild(brush_preview_gradient); this.brush = brush; this.brushPreviewGradient = brush_preview_gradient; return brush; } async setImages(imgCanvas) { const imgCtx = imgCanvas.getContext("2d", { willReadFrequently: true }); const maskCtx = this.maskCtx; const maskCanvas = this.maskCanvas; imgCtx.clearRect(0, 0, this.imgCanvas.width, this.imgCanvas.height); maskCtx.clearRect(0, 0, this.maskCanvas.width, this.maskCanvas.height); const alpha_url = new URL( ComfyApp.clipspace?.imgs?.[ComfyApp.clipspace?.selectedIndex ?? 0]?.src ?? "" ); alpha_url.searchParams.delete("channel"); alpha_url.searchParams.delete("preview"); alpha_url.searchParams.set("channel", "a"); let mask_image = await this.loadImage(alpha_url); if (!ComfyApp.clipspace?.imgs?.[ComfyApp.clipspace?.selectedIndex ?? 0]?.src) { throw new Error( "Unable to access image source - clipspace or image is null" ); } const rgb_url = new URL( ComfyApp.clipspace.imgs[ComfyApp.clipspace.selectedIndex].src ); this.imageURL = rgb_url; console.log(rgb_url); rgb_url.searchParams.delete("channel"); rgb_url.searchParams.set("channel", "rgb"); this.image = new Image(); this.image = await new Promise((resolve, reject) => { const img = new Image(); img.onload = () => resolve(img); img.onerror = reject; img.src = rgb_url.toString(); }); maskCanvas.width = this.image.width; maskCanvas.height = this.image.height; this.dimensionsTextHTML.innerText = `${this.image.width}x${this.image.height}`; await this.invalidateCanvas(this.image, mask_image); this.messageBroker.publish("initZoomPan", [this.image, this.rootElement]); } async invalidateCanvas(orig_image, mask_image) { this.imgCanvas.width = orig_image.width; this.imgCanvas.height = orig_image.height; this.maskCanvas.width = orig_image.width; this.maskCanvas.height = orig_image.height; let imgCtx = this.imgCanvas.getContext("2d", { willReadFrequently: true }); let maskCtx = this.maskCanvas.getContext("2d", { willReadFrequently: true }); imgCtx.drawImage(orig_image, 0, 0, orig_image.width, orig_image.height); await this.prepare_mask( mask_image, this.maskCanvas, maskCtx, await this.getMaskColor() ); } async prepare_mask(image, maskCanvas, maskCtx, maskColor) { maskCtx.drawImage(image, 0, 0, maskCanvas.width, maskCanvas.height); const maskData = maskCtx.getImageData( 0, 0, maskCanvas.width, maskCanvas.height ); for (let i = 0; i < maskData.data.length; i += 4) { const alpha = maskData.data[i + 3]; maskData.data[i] = maskColor.r; maskData.data[i + 1] = maskColor.g; maskData.data[i + 2] = maskColor.b; maskData.data[i + 3] = 255 - alpha; } maskCtx.globalCompositeOperation = "source-over"; maskCtx.putImageData(maskData, 0, 0); } async updateMaskColor() { const maskCanvasStyle = this.getMaskCanvasStyle(); this.maskCanvas.style.mixBlendMode = maskCanvasStyle.mixBlendMode; this.maskCanvas.style.opacity = maskCanvasStyle.opacity.toString(); const maskColor = await this.getMaskColor(); this.maskCtx.fillStyle = `rgb(${maskColor.r}, ${maskColor.g}, ${maskColor.b})`; this.setCanvasBackground(); const maskData = this.maskCtx.getImageData( 0, 0, this.maskCanvas.width, this.maskCanvas.height ); for (let i = 0; i < maskData.data.length; i += 4) { maskData.data[i] = maskColor.r; maskData.data[i + 1] = maskColor.g; maskData.data[i + 2] = maskColor.b; } this.maskCtx.putImageData(maskData, 0, 0); } getMaskCanvasStyle() { if (this.maskBlendMode === "negative") { return { mixBlendMode: "difference", opacity: "1" }; } else { return { mixBlendMode: "initial", opacity: this.mask_opacity }; } } detectLightMode() { this.darkMode = document.body.classList.contains("dark-theme"); } loadImage(imagePath) { return new Promise((resolve, reject) => { const image = new Image(); image.onload = function() { resolve(image); }; image.onerror = function(error) { reject(error); }; image.src = imagePath.href; }); } async updateBrushPreview() { const cursorPoint = await this.messageBroker.pull("cursorPoint"); const pan_offset = await this.messageBroker.pull("panOffset"); const brushSettings = await this.messageBroker.pull("brushSettings"); const zoom_ratio = await this.messageBroker.pull("zoomRatio"); const centerX = cursorPoint.x + pan_offset.x; const centerY = cursorPoint.y + pan_offset.y; const brush = this.brush; const hardness = brushSettings.hardness; const extendedSize = brushSettings.size * (2 - hardness) * 2 * zoom_ratio; this.brushSizeSlider.value = String(brushSettings.size); this.brushHardnessSlider.value = String(hardness); brush.style.width = extendedSize + "px"; brush.style.height = extendedSize + "px"; brush.style.left = centerX - extendedSize / 2 + "px"; brush.style.top = centerY - extendedSize / 2 + "px"; if (hardness === 1) { this.brushPreviewGradient.style.background = "rgba(255, 0, 0, 0.5)"; return; } const opacityStop = hardness / 4 + 0.25; this.brushPreviewGradient.style.background = ` radial-gradient( circle, rgba(255, 0, 0, 0.5) 0%, rgba(255, 0, 0, ${opacityStop}) ${hardness * 100}%, rgba(255, 0, 0, 0) 100% ) `; } getMaskBlendMode() { return this.maskBlendMode; } setSidebarImage() { this.sidebarImage.src = this.imageURL.href; } async getMaskColor() { if (this.maskBlendMode === "black") { return { r: 0, g: 0, b: 0 }; } if (this.maskBlendMode === "white") { return { r: 255, g: 255, b: 255 }; } if (this.maskBlendMode === "negative") { return { r: 255, g: 255, b: 255 }; } return { r: 0, g: 0, b: 0 }; } async getMaskFillStyle() { const maskColor = await this.getMaskColor(); return "rgb(" + maskColor.r + "," + maskColor.g + "," + maskColor.b + ")"; } async setCanvasBackground() { if (this.maskBlendMode === "white") { this.canvasBackground.style.background = "black"; } else { this.canvasBackground.style.background = "white"; } } getMaskCanvas() { return this.maskCanvas; } getImgCanvas() { return this.imgCanvas; } getImage() { return this.image; } setBrushOpacity(opacity) { this.brush.style.opacity = String(opacity); } setSaveButtonEnabled(enabled) { this.saveButton.disabled = !enabled; } setSaveButtonText(text) { this.saveButton.innerText = text; } handlePaintBucketCursor(isPaintBucket) { if (isPaintBucket) { this.pointerZone.style.cursor = "url('/cursor/paintBucket.png') 30 25, auto"; } else { this.pointerZone.style.cursor = "none"; } } handlePanCursor(isPanning) { if (isPanning) { this.pointerZone.style.cursor = "grabbing"; } else { this.pointerZone.style.cursor = "none"; } } setBrushVisibility(visible) { this.brush.style.opacity = visible ? "1" : "0"; } setBrushPreviewGradientVisibility(visible) { this.brushPreviewGradient.style.display = visible ? "block" : "none"; } async updateCursor() { const currentTool = await this.messageBroker.pull("currentTool"); if (currentTool === "paintBucket") { this.pointerZone.style.cursor = "url('/cursor/paintBucket.png') 30 25, auto"; this.setBrushOpacity(0); } else if (currentTool === "colorSelect") { this.pointerZone.style.cursor = "url('/cursor/colorSelect.png') 15 25, auto"; this.setBrushOpacity(0); } else { this.pointerZone.style.cursor = "none"; this.setBrushOpacity(1); } this.updateBrushPreview(); this.setBrushPreviewGradientVisibility(false); } setZoomText(zoomText) { this.zoomTextHTML.innerText = zoomText; } setDimensionsText(dimensionsText) { this.dimensionsTextHTML.innerText = dimensionsText; } } class ToolManager { static { __name(this, "ToolManager"); } maskEditor; messageBroker; mouseDownPoint = null; currentTool = "pen"; isAdjustingBrush = false; // is user adjusting brush size or hardness with alt + right mouse button constructor(maskEditor) { this.maskEditor = maskEditor; this.messageBroker = maskEditor.getMessageBroker(); this.addListeners(); this.addPullTopics(); } addListeners() { this.messageBroker.subscribe("setTool", async (tool) => { this.setTool(tool); }); this.messageBroker.subscribe("pointerDown", async (event) => { this.handlePointerDown(event); }); this.messageBroker.subscribe("pointerMove", async (event) => { this.handlePointerMove(event); }); this.messageBroker.subscribe("pointerUp", async (event) => { this.handlePointerUp(event); }); this.messageBroker.subscribe("wheel", async (event) => { this.handleWheelEvent(event); }); } async addPullTopics() { this.messageBroker.createPullTopic( "currentTool", async () => this.getCurrentTool() ); } //tools setTool(tool) { this.currentTool = tool; if (tool != "colorSelect") { this.messageBroker.publish("clearLastPoint"); } } getCurrentTool() { return this.currentTool; } async handlePointerDown(event) { event.preventDefault(); if (event.pointerType == "touch") return; var isSpacePressed = await this.messageBroker.pull("isKeyPressed", " "); if (event.buttons === 4 || event.buttons === 1 && isSpacePressed) { this.messageBroker.publish("panStart", event); this.messageBroker.publish("setBrushVisibility", false); return; } if (this.currentTool === "paintBucket" && event.button === 0) { const offset = { x: event.offsetX, y: event.offsetY }; const coords_canvas = await this.messageBroker.pull( "screenToCanvas", offset ); this.messageBroker.publish("paintBucketFill", coords_canvas); this.messageBroker.publish("saveState"); return; } if (this.currentTool === "colorSelect" && event.button === 0) { const offset = { x: event.offsetX, y: event.offsetY }; const coords_canvas = await this.messageBroker.pull( "screenToCanvas", offset ); this.messageBroker.publish("colorSelectFill", coords_canvas); return; } if (event.altKey && event.button === 2) { this.isAdjustingBrush = true; this.messageBroker.publish("brushAdjustmentStart", event); return; } var isDrawingTool = [ "pen", "eraser" /* Eraser */ ].includes(this.currentTool); if ([0, 2].includes(event.button) && isDrawingTool) { this.messageBroker.publish("drawStart", event); return; } } async handlePointerMove(event) { event.preventDefault(); if (event.pointerType == "touch") return; const newCursorPoint = { x: event.clientX, y: event.clientY }; this.messageBroker.publish("cursorPoint", newCursorPoint); var isSpacePressed = await this.messageBroker.pull("isKeyPressed", " "); this.messageBroker.publish("updateBrushPreview"); if (event.buttons === 4 || event.buttons === 1 && isSpacePressed) { this.messageBroker.publish("panMove", event); return; } var isDrawingTool = [ "pen", "eraser" /* Eraser */ ].includes(this.currentTool); if (!isDrawingTool) return; if (this.isAdjustingBrush && (this.currentTool === "pen" || this.currentTool === "eraser") && event.altKey && event.buttons === 2) { this.messageBroker.publish("brushAdjustment", event); return; } if (event.buttons == 1 || event.buttons == 2) { this.messageBroker.publish("draw", event); return; } } handlePointerUp(event) { this.messageBroker.publish("panCursor", false); if (event.pointerType === "touch") return; this.messageBroker.publish("updateCursor"); this.isAdjustingBrush = false; this.messageBroker.publish("drawEnd", event); this.mouseDownPoint = null; } handleWheelEvent(event) { this.messageBroker.publish("zoom", event); const newCursorPoint = { x: event.clientX, y: event.clientY }; this.messageBroker.publish("cursorPoint", newCursorPoint); } } class PanAndZoomManager { static { __name(this, "PanAndZoomManager"); } maskEditor; messageBroker; DOUBLE_TAP_DELAY = 300; lastTwoFingerTap = 0; isTouchZooming = false; lastTouchZoomDistance = 0; lastTouchMidPoint = { x: 0, y: 0 }; lastTouchPoint = { x: 0, y: 0 }; zoom_ratio = 1; interpolatedZoomRatio = 1; pan_offset = { x: 0, y: 0 }; mouseDownPoint = null; initialPan = { x: 0, y: 0 }; canvasContainer = null; maskCanvas = null; rootElement = null; image = null; imageRootWidth = 0; imageRootHeight = 0; cursorPoint = { x: 0, y: 0 }; constructor(maskEditor) { this.maskEditor = maskEditor; this.messageBroker = maskEditor.getMessageBroker(); this.addListeners(); this.addPullTopics(); } addListeners() { this.messageBroker.subscribe( "initZoomPan", async (args) => { await this.initializeCanvasPanZoom(args[0], args[1]); } ); this.messageBroker.subscribe("panStart", async (event) => { this.handlePanStart(event); }); this.messageBroker.subscribe("panMove", async (event) => { this.handlePanMove(event); }); this.messageBroker.subscribe("zoom", async (event) => { this.zoom(event); }); this.messageBroker.subscribe("cursorPoint", async (point) => { this.updateCursorPosition(point); }); this.messageBroker.subscribe( "handleTouchStart", async (event) => { this.handleTouchStart(event); } ); this.messageBroker.subscribe( "handleTouchMove", async (event) => { this.handleTouchMove(event); } ); this.messageBroker.subscribe( "handleTouchEnd", async (event) => { this.handleTouchEnd(event); } ); this.messageBroker.subscribe("resetZoom", async () => { if (this.interpolatedZoomRatio === 1) return; await this.smoothResetView(); }); } addPullTopics() { this.messageBroker.createPullTopic( "cursorPoint", async () => this.cursorPoint ); this.messageBroker.createPullTopic("zoomRatio", async () => this.zoom_ratio); this.messageBroker.createPullTopic("panOffset", async () => this.pan_offset); } handleTouchStart(event) { event.preventDefault(); if (event.touches[0].touchType === "stylus") return; this.messageBroker.publish("setBrushVisibility", false); if (event.touches.length === 2) { const currentTime = (/* @__PURE__ */ new Date()).getTime(); const tapTimeDiff = currentTime - this.lastTwoFingerTap; if (tapTimeDiff < this.DOUBLE_TAP_DELAY) { this.handleDoubleTap(); this.lastTwoFingerTap = 0; } else { this.lastTwoFingerTap = currentTime; this.isTouchZooming = true; this.lastTouchZoomDistance = this.getTouchDistance(event.touches); const midpoint = this.getTouchMidpoint(event.touches); this.lastTouchMidPoint = midpoint; } } else if (event.touches.length === 1) { this.lastTouchPoint = { x: event.touches[0].clientX, y: event.touches[0].clientY }; } } async handleTouchMove(event) { event.preventDefault(); if (event.touches[0].touchType === "stylus") return; this.lastTwoFingerTap = 0; if (this.isTouchZooming && event.touches.length === 2) { const newDistance = this.getTouchDistance(event.touches); const zoomFactor = newDistance / this.lastTouchZoomDistance; const oldZoom = this.zoom_ratio; this.zoom_ratio = Math.max( 0.2, Math.min(10, this.zoom_ratio * zoomFactor) ); const newZoom = this.zoom_ratio; const midpoint = this.getTouchMidpoint(event.touches); if (this.lastTouchMidPoint) { const deltaX = midpoint.x - this.lastTouchMidPoint.x; const deltaY = midpoint.y - this.lastTouchMidPoint.y; this.pan_offset.x += deltaX; this.pan_offset.y += deltaY; } if (this.maskCanvas === null) { this.maskCanvas = await this.messageBroker.pull("maskCanvas"); } const rect = this.maskCanvas.getBoundingClientRect(); const touchX = midpoint.x - rect.left; const touchY = midpoint.y - rect.top; const scaleFactor = newZoom / oldZoom; this.pan_offset.x += touchX - touchX * scaleFactor; this.pan_offset.y += touchY - touchY * scaleFactor; this.invalidatePanZoom(); this.lastTouchZoomDistance = newDistance; this.lastTouchMidPoint = midpoint; } else if (event.touches.length === 1) { this.handleSingleTouchPan(event.touches[0]); } } handleTouchEnd(event) { event.preventDefault(); if (event.touches.length === 0 && event.touches[0].touchType === "stylus") { return; } this.isTouchZooming = false; this.lastTouchMidPoint = { x: 0, y: 0 }; if (event.touches.length === 0) { this.lastTouchPoint = { x: 0, y: 0 }; } else if (event.touches.length === 1) { this.lastTouchPoint = { x: event.touches[0].clientX, y: event.touches[0].clientY }; } } getTouchDistance(touches) { const dx = touches[0].clientX - touches[1].clientX; const dy = touches[0].clientY - touches[1].clientY; return Math.sqrt(dx * dx + dy * dy); } getTouchMidpoint(touches) { return { x: (touches[0].clientX + touches[1].clientX) / 2, y: (touches[0].clientY + touches[1].clientY) / 2 }; } async handleSingleTouchPan(touch) { if (this.lastTouchPoint === null) { this.lastTouchPoint = { x: touch.clientX, y: touch.clientY }; return; } const deltaX = touch.clientX - this.lastTouchPoint.x; const deltaY = touch.clientY - this.lastTouchPoint.y; this.pan_offset.x += deltaX; this.pan_offset.y += deltaY; await this.invalidatePanZoom(); this.lastTouchPoint = { x: touch.clientX, y: touch.clientY }; } updateCursorPosition(clientPoint) { var cursorX = clientPoint.x - this.pan_offset.x; var cursorY = clientPoint.y - this.pan_offset.y; this.cursorPoint = { x: cursorX, y: cursorY }; } //prob redundant handleDoubleTap() { this.messageBroker.publish("undo"); } async zoom(event) { const cursorPoint = { x: event.clientX, y: event.clientY }; const oldZoom = this.zoom_ratio; const zoomFactor = event.deltaY < 0 ? 1.1 : 0.9; this.zoom_ratio = Math.max( 0.2, Math.min(10, this.zoom_ratio * zoomFactor) ); const newZoom = this.zoom_ratio; const maskCanvas = await this.messageBroker.pull("maskCanvas"); const rect = maskCanvas.getBoundingClientRect(); const mouseX = cursorPoint.x - rect.left; const mouseY = cursorPoint.y - rect.top; console.log(oldZoom, newZoom); const scaleFactor = newZoom / oldZoom; this.pan_offset.x += mouseX - mouseX * scaleFactor; this.pan_offset.y += mouseY - mouseY * scaleFactor; console.log(this.imageRootWidth, this.imageRootHeight); await this.invalidatePanZoom(); const newImageWidth = maskCanvas.clientWidth; const zoomRatio = newImageWidth / this.imageRootWidth; this.interpolatedZoomRatio = zoomRatio; this.messageBroker.publish("setZoomText", `${Math.round(zoomRatio * 100)}%`); this.updateCursorPosition(cursorPoint); requestAnimationFrame(() => { this.messageBroker.publish("updateBrushPreview"); }); } async smoothResetView(duration = 500) { const startZoom = this.zoom_ratio; const startPan = { ...this.pan_offset }; const sidePanelWidth = 220; const toolPanelWidth = 64; const topBarHeight = 44; const availableWidth = this.rootElement.clientWidth - sidePanelWidth - toolPanelWidth; const availableHeight = this.rootElement.clientHeight - topBarHeight; const zoomRatioWidth = availableWidth / this.image.width; const zoomRatioHeight = availableHeight / this.image.height; const targetZoom = Math.min(zoomRatioWidth, zoomRatioHeight); const aspectRatio = this.image.width / this.image.height; let finalWidth = 0; let finalHeight = 0; const targetPan = { x: toolPanelWidth, y: topBarHeight }; if (zoomRatioHeight > zoomRatioWidth) { finalWidth = availableWidth; finalHeight = finalWidth / aspectRatio; targetPan.y = (availableHeight - finalHeight) / 2 + topBarHeight; } else { finalHeight = availableHeight; finalWidth = finalHeight * aspectRatio; targetPan.x = (availableWidth - finalWidth) / 2 + toolPanelWidth; } const startTime = performance.now(); const animate = /* @__PURE__ */ __name((currentTime) => { const elapsed = currentTime - startTime; const progress = Math.min(elapsed / duration, 1); const eased = 1 - Math.pow(1 - progress, 3); const currentZoom = startZoom + (targetZoom - startZoom) * eased; this.zoom_ratio = currentZoom; this.pan_offset.x = startPan.x + (targetPan.x - startPan.x) * eased; this.pan_offset.y = startPan.y + (targetPan.y - startPan.y) * eased; this.invalidatePanZoom(); const interpolatedZoomRatio = startZoom + (1 - startZoom) * eased; this.messageBroker.publish( "setZoomText", `${Math.round(interpolatedZoomRatio * 100)}%` ); if (progress < 1) { requestAnimationFrame(animate); } }, "animate"); requestAnimationFrame(animate); this.interpolatedZoomRatio = 1; } async initializeCanvasPanZoom(image, rootElement) { let sidePanelWidth = 220; const toolPanelWidth = 64; let topBarHeight = 44; this.rootElement = rootElement; let availableWidth = rootElement.clientWidth - sidePanelWidth - toolPanelWidth; let availableHeight = rootElement.clientHeight - topBarHeight; let zoomRatioWidth = availableWidth / image.width; let zoomRatioHeight = availableHeight / image.height; let aspectRatio = image.width / image.height; let finalWidth = 0; let finalHeight = 0; let pan_offset = { x: toolPanelWidth, y: topBarHeight }; if (zoomRatioHeight > zoomRatioWidth) { finalWidth = availableWidth; finalHeight = finalWidth / aspectRatio; pan_offset.y = (availableHeight - finalHeight) / 2 + topBarHeight; } else { finalHeight = availableHeight; finalWidth = finalHeight * aspectRatio; pan_offset.x = (availableWidth - finalWidth) / 2 + toolPanelWidth; } if (this.image === null) { this.image = image; } this.imageRootWidth = finalWidth; this.imageRootHeight = finalHeight; this.zoom_ratio = Math.min(zoomRatioWidth, zoomRatioHeight); this.pan_offset = pan_offset; await this.invalidatePanZoom(); } async invalidatePanZoom() { if (!this.image?.width || !this.image?.height || !this.pan_offset || !this.zoom_ratio) { console.warn("Missing required properties for pan/zoom"); return; } const raw_width = this.image.width * this.zoom_ratio; const raw_height = this.image.height * this.zoom_ratio; this.canvasContainer ??= await this.messageBroker?.pull("getCanvasContainer"); if (!this.canvasContainer) return; Object.assign(this.canvasContainer.style, { width: `${raw_width}px`, height: `${raw_height}px`, left: `${this.pan_offset.x}px`, top: `${this.pan_offset.y}px` }); } handlePanStart(event) { let coords_canvas = this.messageBroker.pull("screenToCanvas", { x: event.offsetX, y: event.offsetY }); this.mouseDownPoint = { x: event.clientX, y: event.clientY }; this.messageBroker.publish("panCursor", true); this.initialPan = this.pan_offset; return; } handlePanMove(event) { if (this.mouseDownPoint === null) throw new Error("mouseDownPoint is null"); let deltaX = this.mouseDownPoint.x - event.clientX; let deltaY = this.mouseDownPoint.y - event.clientY; let pan_x = this.initialPan.x - deltaX; let pan_y = this.initialPan.y - deltaY; this.pan_offset = { x: pan_x, y: pan_y }; this.invalidatePanZoom(); } } class MessageBroker { static { __name(this, "MessageBroker"); } pushTopics = {}; pullTopics = {}; constructor() { this.registerListeners(); } // Push registerListeners() { this.createPushTopic("panStart"); this.createPushTopic("paintBucketFill"); this.createPushTopic("saveState"); this.createPushTopic("brushAdjustmentStart"); this.createPushTopic("drawStart"); this.createPushTopic("panMove"); this.createPushTopic("updateBrushPreview"); this.createPushTopic("brushAdjustment"); this.createPushTopic("draw"); this.createPushTopic("paintBucketCursor"); this.createPushTopic("panCursor"); this.createPushTopic("drawEnd"); this.createPushTopic("zoom"); this.createPushTopic("undo"); this.createPushTopic("redo"); this.createPushTopic("cursorPoint"); this.createPushTopic("panOffset"); this.createPushTopic("zoomRatio"); this.createPushTopic("getMaskCanvas"); this.createPushTopic("getCanvasContainer"); this.createPushTopic("screenToCanvas"); this.createPushTopic("isKeyPressed"); this.createPushTopic("isCombinationPressed"); this.createPushTopic("setPaintBucketTolerance"); this.createPushTopic("setBrushSize"); this.createPushTopic("setBrushHardness"); this.createPushTopic("setBrushOpacity"); this.createPushTopic("setBrushShape"); this.createPushTopic("initZoomPan"); this.createPushTopic("setTool"); this.createPushTopic("pointerDown"); this.createPushTopic("pointerMove"); this.createPushTopic("pointerUp"); this.createPushTopic("wheel"); this.createPushTopic("initPaintBucketTool"); this.createPushTopic("setBrushVisibility"); this.createPushTopic("setBrushPreviewGradientVisibility"); this.createPushTopic("handleTouchStart"); this.createPushTopic("handleTouchMove"); this.createPushTopic("handleTouchEnd"); this.createPushTopic("colorSelectFill"); this.createPushTopic("setColorSelectTolerance"); this.createPushTopic("setLivePreview"); this.createPushTopic("updateCursor"); this.createPushTopic("setColorComparisonMethod"); this.createPushTopic("clearLastPoint"); this.createPushTopic("setWholeImage"); this.createPushTopic("setMaskBoundary"); this.createPushTopic("setMaskTolerance"); this.createPushTopic("setBrushSmoothingPrecision"); this.createPushTopic("setZoomText"); this.createPushTopic("resetZoom"); this.createPushTopic("invert"); } /** * Creates a new push topic (listener is notified) * * @param {string} topicName - The name of the topic to create. * @throws {Error} If the topic already exists. */ createPushTopic(topicName) { if (this.topicExists(this.pushTopics, topicName)) { throw new Error("Topic already exists"); } this.pushTopics[topicName] = []; } /** * Subscribe a callback function to the given topic. * * @param {string} topicName - The name of the topic to subscribe to. * @param {Callback} callback - The callback function to be subscribed. * @throws {Error} If the topic does not exist. */ subscribe(topicName, callback) { if (!this.topicExists(this.pushTopics, topicName)) { throw new Error(`Topic "${topicName}" does not exist!`); } this.pushTopics[topicName].push(callback); } /** * Removes a callback function from the list of subscribers for a given topic. * * @param {string} topicName - The name of the topic to unsubscribe from. * @param {Callback} callback - The callback function to remove from the subscribers list. * @throws {Error} If the topic does not exist in the list of topics. */ unsubscribe(topicName, callback) { if (!this.topicExists(this.pushTopics, topicName)) { throw new Error("Topic does not exist"); } const index = this.pushTopics[topicName].indexOf(callback); if (index > -1) { this.pushTopics[topicName].splice(index, 1); } } /** * Publishes data to a specified topic with variable number of arguments. * @param {string} topicName - The name of the topic to publish to. * @param {...any[]} args - Variable number of arguments to pass to subscribers * @throws {Error} If the specified topic does not exist. */ publish(topicName, ...args) { if (!this.topicExists(this.pushTopics, topicName)) { throw new Error(`Topic "${topicName}" does not exist!`); } this.pushTopics[topicName].forEach((callback) => { callback(...args); }); } // Pull /** * Creates a new pull topic (listener must request data) * * @param {string} topicName - The name of the topic to create. * @param {() => Promise} callBack - The callback function to be called when data is requested. * @throws {Error} If the topic already exists. */ createPullTopic(topicName, callBack) { if (this.topicExists(this.pullTopics, topicName)) { throw new Error("Topic already exists"); } this.pullTopics[topicName] = callBack; } /** * Requests data from a specified pull topic. * @param {string} topicName - The name of the topic to request data from. * @returns {Promise} - The data from the pull topic. * @throws {Error} If the specified topic does not exist. */ async pull(topicName, data) { if (!this.topicExists(this.pullTopics, topicName)) { throw new Error("Topic does not exist"); } const callBack = this.pullTopics[topicName]; try { const result = await callBack(data); return result; } catch (error) { console.error(`Error pulling data from topic "${topicName}":`, error); throw error; } } // Helper Methods /** * Checks if a topic exists in the given topics object. * @param {Record} topics - The topics object to check. * @param {string} topicName - The name of the topic to check. * @returns {boolean} - True if the topic exists, false otherwise. */ topicExists(topics, topicName) { return topics.hasOwnProperty(topicName); } } class KeyboardManager { static { __name(this, "KeyboardManager"); } keysDown = []; maskEditor; messageBroker; constructor(maskEditor) { this.maskEditor = maskEditor; this.messageBroker = maskEditor.getMessageBroker(); this.addPullTopics(); } addPullTopics() { this.messageBroker.createPullTopic( "isKeyPressed", (key) => Promise.resolve(this.isKeyDown(key)) ); } addListeners() { document.addEventListener("keydown", (event) => this.handleKeyDown(event)); document.addEventListener("keyup", (event) => this.handleKeyUp(event)); window.addEventListener("blur", () => this.clearKeys()); } removeListeners() { document.removeEventListener( "keydown", (event) => this.handleKeyDown(event) ); document.removeEventListener("keyup", (event) => this.handleKeyUp(event)); } clearKeys() { this.keysDown = []; } handleKeyDown(event) { if (!this.keysDown.includes(event.key)) { this.keysDown.push(event.key); } } handleKeyUp(event) { this.keysDown = this.keysDown.filter((key) => key !== event.key); } isKeyDown(key) { return this.keysDown.includes(key); } // combinations undoCombinationPressed() { const combination = ["ctrl", "z"]; const keysDownLower = this.keysDown.map((key) => key.toLowerCase()); const result = combination.every((key) => keysDownLower.includes(key)); if (result) this.messageBroker.publish("undo"); return result; } redoCombinationPressed() { const combination = ["ctrl", "shift", "z"]; const keysDownLower = this.keysDown.map((key) => key.toLowerCase()); const result = combination.every((key) => keysDownLower.includes(key)); if (result) this.messageBroker.publish("redo"); return result; } } app.registerExtension({ name: "Comfy.MaskEditor", settings: [ { id: "Comfy.MaskEditor.UseNewEditor", category: ["Mask Editor", "NewEditor"], name: "Use new mask editor", tooltip: "Switch to the new mask editor interface", type: "boolean", defaultValue: true, experimental: true }, { id: "Comfy.MaskEditor.BrushAdjustmentSpeed", category: ["Mask Editor", "BrushAdjustment", "Sensitivity"], name: "Brush adjustment speed multiplier", tooltip: "Controls how quickly the brush size and hardness change when adjusting. Higher values mean faster changes.", experimental: true, type: "slider", attrs: { min: 0.1, max: 2, step: 0.1 }, defaultValue: 1, versionAdded: "1.0.0" }, { id: "Comfy.MaskEditor.UseDominantAxis", category: ["Mask Editor", "BrushAdjustment", "UseDominantAxis"], name: "Lock brush adjustment to dominant axis", tooltip: "When enabled, brush adjustments will only affect size OR hardness based on which direction you move more", type: "boolean", defaultValue: true, experimental: true } ], init(app2) { function openMaskEditor() { const useNewEditor = app2.extensionManager.setting.get( "Comfy.MaskEditor.UseNewEditor" ); if (useNewEditor) { const dlg = MaskEditorDialog.getInstance(); if (dlg?.isOpened && !dlg.isOpened()) { dlg.show(); } } else { const dlg = MaskEditorDialogOld.getInstance(); if (dlg?.isOpened && !dlg.isOpened()) { dlg.show(); } } } __name(openMaskEditor, "openMaskEditor"); ; ComfyApp.open_maskeditor = openMaskEditor; const context_predicate = /* @__PURE__ */ __name(() => { return !!(ComfyApp.clipspace && ComfyApp.clipspace.imgs && ComfyApp.clipspace.imgs.length > 0); }, "context_predicate"); ClipspaceDialog.registerButton( "MaskEditor", context_predicate, openMaskEditor ); } }); const id = "Comfy.NodeTemplates"; const file = "comfy.templates.json"; class ManageTemplates extends ComfyDialog { static { __name(this, "ManageTemplates"); } templates; draggedEl; saveVisualCue; emptyImg; importInput; constructor() { super(); this.load().then((v) => { this.templates = v; }); this.element.classList.add("comfy-manage-templates"); this.draggedEl = null; this.saveVisualCue = null; this.emptyImg = new Image(); this.emptyImg.src = ""; this.importInput = $el("input", { type: "file", accept: ".json", multiple: true, style: { display: "none" }, parent: document.body, onchange: /* @__PURE__ */ __name(() => this.importAll(), "onchange") }); } createButtons() { const btns = super.createButtons(); btns[0].textContent = "Close"; btns[0].onclick = (e) => { clearTimeout(this.saveVisualCue); this.close(); }; btns.unshift( $el("button", { type: "button", textContent: "Export", onclick: /* @__PURE__ */ __name(() => this.exportAll(), "onclick") }) ); btns.unshift( $el("button", { type: "button", textContent: "Import", onclick: /* @__PURE__ */ __name(() => { this.importInput.click(); }, "onclick") }) ); return btns; } async load() { let templates = []; if (app.storageLocation === "server") { if (app.isNewUserSession) { const json = localStorage.getItem(id); if (json) { templates = JSON.parse(json); } await api.storeUserData(file, json, { stringify: false }); } else { const res = await api.getUserData(file); if (res.status === 200) { try { templates = await res.json(); } catch (error) { } } else if (res.status !== 404) { console.error(res.status + " " + res.statusText); } } } else { const json = localStorage.getItem(id); if (json) { templates = JSON.parse(json); } } return templates ?? []; } async store() { if (app.storageLocation === "server") { const templates = JSON.stringify(this.templates, void 0, 4); localStorage.setItem(id, templates); try { await api.storeUserData(file, templates, { stringify: false }); } catch (error) { console.error(error); useToastStore().addAlert(error.message); } } else { localStorage.setItem(id, JSON.stringify(this.templates)); } } async importAll() { for (const file2 of this.importInput.files) { if (file2.type === "application/json" || file2.name.endsWith(".json")) { const reader = new FileReader(); reader.onload = async () => { const importFile = JSON.parse(reader.result); if (importFile?.templates) { for (const template of importFile.templates) { if (template?.name && template?.data) { this.templates.push(template); } } await this.store(); } }; await reader.readAsText(file2); } } this.importInput.value = null; this.close(); } exportAll() { if (this.templates.length == 0) { useToastStore().addAlert("No templates to export."); return; } const json = JSON.stringify({ templates: this.templates }, null, 2); const blob = new Blob([json], { type: "application/json" }); const url = URL.createObjectURL(blob); const a = $el("a", { href: url, download: "node_templates.json", style: { display: "none" }, parent: document.body }); a.click(); setTimeout(function() { a.remove(); window.URL.revokeObjectURL(url); }, 0); } show() { super.show( $el( "div", {}, this.templates.flatMap((t, i) => { let nameInput; return [ $el( "div", { dataset: { id: i.toString() }, className: "templateManagerRow", style: { display: "grid", gridTemplateColumns: "1fr auto", border: "1px dashed transparent", gap: "5px", backgroundColor: "var(--comfy-menu-bg)" }, ondragstart: /* @__PURE__ */ __name((e) => { this.draggedEl = e.currentTarget; e.currentTarget.style.opacity = "0.6"; e.currentTarget.style.border = "1px dashed yellow"; e.dataTransfer.effectAllowed = "move"; e.dataTransfer.setDragImage(this.emptyImg, 0, 0); }, "ondragstart"), ondragend: /* @__PURE__ */ __name((e) => { e.target.style.opacity = "1"; e.currentTarget.style.border = "1px dashed transparent"; e.currentTarget.removeAttribute("draggable"); this.element.querySelectorAll(".templateManagerRow").forEach((el, i2) => { var prev_i = Number.parseInt(el.dataset.id); if (el == this.draggedEl && prev_i != i2) { this.templates.splice( i2, 0, this.templates.splice(prev_i, 1)[0] ); } el.dataset.id = i2.toString(); }); this.store(); }, "ondragend"), ondragover: /* @__PURE__ */ __name((e) => { e.preventDefault(); if (e.currentTarget == this.draggedEl) return; let rect = e.currentTarget.getBoundingClientRect(); if (e.clientY > rect.top + rect.height / 2) { e.currentTarget.parentNode.insertBefore( this.draggedEl, e.currentTarget.nextSibling ); } else { e.currentTarget.parentNode.insertBefore( this.draggedEl, e.currentTarget ); } }, "ondragover") }, [ $el( "label", { textContent: "Name: ", style: { cursor: "grab" }, onmousedown: /* @__PURE__ */ __name((e) => { if (e.target.localName == "label") e.currentTarget.parentNode.draggable = "true"; }, "onmousedown") }, [ $el("input", { value: t.name, dataset: { name: t.name }, style: { transitionProperty: "background-color", transitionDuration: "0s" }, onchange: /* @__PURE__ */ __name((e) => { clearTimeout(this.saveVisualCue); var el = e.target; var row = el.parentNode.parentNode; this.templates[row.dataset.id].name = el.value.trim() || "untitled"; this.store(); el.style.backgroundColor = "rgb(40, 95, 40)"; el.style.transitionDuration = "0s"; this.saveVisualCue = setTimeout(function() { el.style.transitionDuration = ".7s"; el.style.backgroundColor = "var(--comfy-input-bg)"; }, 15); }, "onchange"), onkeypress: /* @__PURE__ */ __name((e) => { var el = e.target; clearTimeout(this.saveVisualCue); el.style.transitionDuration = "0s"; el.style.backgroundColor = "var(--comfy-input-bg)"; }, "onkeypress"), $: /* @__PURE__ */ __name((el) => nameInput = el, "$") }) ] ), $el("div", {}, [ $el("button", { textContent: "Export", style: { fontSize: "12px", fontWeight: "normal" }, onclick: /* @__PURE__ */ __name((e) => { const json = JSON.stringify({ templates: [t] }, null, 2); const blob = new Blob([json], { type: "application/json" }); const url = URL.createObjectURL(blob); const a = $el("a", { href: url, download: (nameInput.value || t.name) + ".json", style: { display: "none" }, parent: document.body }); a.click(); setTimeout(function() { a.remove(); window.URL.revokeObjectURL(url); }, 0); }, "onclick") }), $el("button", { textContent: "Delete", style: { fontSize: "12px", color: "red", fontWeight: "normal" }, onclick: /* @__PURE__ */ __name((e) => { const item = e.target.parentNode.parentNode; item.parentNode.removeChild(item); this.templates.splice(item.dataset.id * 1, 1); this.store(); var that = this; setTimeout(function() { that.element.querySelectorAll(".templateManagerRow").forEach((el, i2) => { el.dataset.id = i2.toString(); }); }, 0); }, "onclick") }) ]) ] ) ]; }) ) ); } } app.registerExtension({ name: id, setup() { const manage = new ManageTemplates(); const clipboardAction = /* @__PURE__ */ __name(async (cb) => { const old = localStorage.getItem("litegrapheditor_clipboard"); await cb(); localStorage.setItem("litegrapheditor_clipboard", old); }, "clipboardAction"); const orig = LGraphCanvas.prototype.getCanvasMenuOptions; LGraphCanvas.prototype.getCanvasMenuOptions = function() { const options = orig.apply(this, arguments); options.push(null); options.push({ content: `Save Selected as Template`, disabled: !Object.keys(app.canvas.selected_nodes || {}).length, callback: /* @__PURE__ */ __name(() => { const name = prompt("Enter name"); if (!name?.trim()) return; clipboardAction(() => { app.canvas.copyToClipboard(); let data = localStorage.getItem("litegrapheditor_clipboard"); data = JSON.parse(data); const nodeIds = Object.keys(app.canvas.selected_nodes); for (let i = 0; i < nodeIds.length; i++) { const node = app.graph.getNodeById(nodeIds[i]); const nodeData = node?.constructor.nodeData; let groupData = GroupNodeHandler.getGroupData(node); if (groupData) { groupData = groupData.nodeData; if (!data.groupNodes) { data.groupNodes = {}; } data.groupNodes[nodeData.name] = groupData; data.nodes[i].type = nodeData.name; } } manage.templates.push({ name, data: JSON.stringify(data) }); manage.store(); }); }, "callback") }); const subItems = manage.templates.map((t) => { return { content: t.name, callback: /* @__PURE__ */ __name(() => { clipboardAction(async () => { const data = JSON.parse(t.data); await GroupNodeConfig.registerFromWorkflow(data.groupNodes, {}); if (!data.reroutes) { deserialiseAndCreate(t.data, app.canvas); } else { localStorage.setItem("litegrapheditor_clipboard", t.data); app.canvas.pasteFromClipboard(); } }); }, "callback") }; }); subItems.push(null, { content: "Manage", callback: /* @__PURE__ */ __name(() => manage.show(), "callback") }); options.push({ content: "Node Templates", submenu: { options: subItems } }); return options; }; } }); app.registerExtension({ name: "Comfy.NoteNode", registerCustomNodes() { class NoteNode extends LGraphNode { static { __name(this, "NoteNode"); } static category; color = LGraphCanvas.node_colors.yellow.color; bgcolor = LGraphCanvas.node_colors.yellow.bgcolor; groupcolor = LGraphCanvas.node_colors.yellow.groupcolor; isVirtualNode; collapsable; title_mode; constructor(title) { super(title); if (!this.properties) { this.properties = { text: "" }; } ComfyWidgets.STRING( // Should we extends LGraphNode? Yesss this, "", ["", { default: this.properties.text, multiline: true }], app ); this.serialize_widgets = true; this.isVirtualNode = true; } } LiteGraph.registerNodeType( "Note", Object.assign(NoteNode, { title_mode: LiteGraph.NORMAL_TITLE, title: "Note", collapsable: true }) ); NoteNode.category = "utils"; } }); app.registerExtension({ name: "Comfy.RerouteNode", registerCustomNodes(app2) { class RerouteNode extends LGraphNode { static { __name(this, "RerouteNode"); } static category; static defaultVisibility = false; constructor(title) { super(title); if (!this.properties) { this.properties = {}; } this.properties.showOutputText = RerouteNode.defaultVisibility; this.properties.horizontal = false; this.addInput("", "*"); this.addOutput(this.properties.showOutputText ? "*" : "", "*"); this.onAfterGraphConfigured = function() { requestAnimationFrame(() => { this.onConnectionsChange(LiteGraph.INPUT, null, true, null); }); }; this.onConnectionsChange = (type, index, connected, link_info) => { this.applyOrientation(); if (connected && type === LiteGraph.OUTPUT) { const types = new Set( this.outputs[0].links.map((l) => app2.graph.links[l].type).filter((t) => t !== "*") ); if (types.size > 1) { const linksToDisconnect = []; for (let i = 0; i < this.outputs[0].links.length - 1; i++) { const linkId = this.outputs[0].links[i]; const link = app2.graph.links[linkId]; linksToDisconnect.push(link); } for (const link of linksToDisconnect) { const node = app2.graph.getNodeById(link.target_id); node.disconnectInput(link.target_slot); } } } let currentNode = this; let updateNodes = []; let inputType = null; let inputNode = null; while (currentNode) { updateNodes.unshift(currentNode); const linkId = currentNode.inputs[0].link; if (linkId !== null) { const link = app2.graph.links[linkId]; if (!link) return; const node = app2.graph.getNodeById(link.origin_id); const type2 = node.constructor.type; if (type2 === "Reroute") { if (node === this) { currentNode.disconnectInput(link.target_slot); currentNode = null; } else { currentNode = node; } } else { inputNode = currentNode; inputType = node.outputs[link.origin_slot]?.type ?? null; break; } } else { currentNode = null; break; } } const nodes = [this]; let outputType = null; while (nodes.length) { currentNode = nodes.pop(); const outputs = (currentNode.outputs ? currentNode.outputs[0].links : []) || []; if (outputs.length) { for (const linkId of outputs) { const link = app2.graph.links[linkId]; if (!link) continue; const node = app2.graph.getNodeById(link.target_id); const type2 = node.constructor.type; if (type2 === "Reroute") { nodes.push(node); updateNodes.push(node); } else { const nodeOutType = node.inputs && node.inputs[link?.target_slot] && node.inputs[link.target_slot].type ? node.inputs[link.target_slot].type : null; if (inputType && !LiteGraph.isValidConnection(inputType, nodeOutType)) { node.disconnectInput(link.target_slot); } else { outputType = nodeOutType; } } } } else { } } const displayType = inputType || outputType || "*"; const color = LGraphCanvas.link_type_colors[displayType]; let widgetConfig; let targetWidget; let widgetType; for (const node of updateNodes) { node.outputs[0].type = inputType || "*"; node.__outputType = displayType; node.outputs[0].name = node.properties.showOutputText ? displayType : ""; node.size = node.computeSize(); node.applyOrientation(); for (const l of node.outputs[0].links || []) { const link = app2.graph.links[l]; if (link) { link.color = color; if (app2.configuringGraph) continue; const targetNode = app2.graph.getNodeById(link.target_id); const targetInput = targetNode.inputs?.[link.target_slot]; if (targetInput?.widget) { const config = getWidgetConfig(targetInput); if (!widgetConfig) { widgetConfig = config[1] ?? {}; widgetType = config[0]; } if (!targetWidget) { targetWidget = targetNode.widgets?.find( (w) => w.name === targetInput.widget.name ); } const merged = mergeIfValid(targetInput, [ config[0], widgetConfig ]); if (merged.customConfig) { widgetConfig = merged.customConfig; } } } } } for (const node of updateNodes) { if (widgetConfig && outputType) { node.inputs[0].widget = { name: "value" }; setWidgetConfig( node.inputs[0], [widgetType ?? displayType, widgetConfig], targetWidget ); } else { setWidgetConfig(node.inputs[0], null); } } if (inputNode) { const link = app2.graph.links[inputNode.inputs[0].link]; if (link) { link.color = color; } } }; this.clone = function() { const cloned = RerouteNode.prototype.clone.apply(this); cloned.removeOutput(0); cloned.addOutput(this.properties.showOutputText ? "*" : "", "*"); cloned.size = cloned.computeSize(); return cloned; }; this.isVirtualNode = true; } getExtraMenuOptions(_, options) { options.unshift( { content: (this.properties.showOutputText ? "Hide" : "Show") + " Type", callback: /* @__PURE__ */ __name(() => { this.properties.showOutputText = !this.properties.showOutputText; if (this.properties.showOutputText) { this.outputs[0].name = this.__outputType || this.outputs[0].type; } else { this.outputs[0].name = ""; } this.size = this.computeSize(); this.applyOrientation(); app2.graph.setDirtyCanvas(true, true); }, "callback") }, { content: (RerouteNode.defaultVisibility ? "Hide" : "Show") + " Type By Default", callback: /* @__PURE__ */ __name(() => { RerouteNode.setDefaultTextVisibility( !RerouteNode.defaultVisibility ); }, "callback") }, { // naming is inverted with respect to LiteGraphNode.horizontal // LiteGraphNode.horizontal == true means that // each slot in the inputs and outputs are laid out horizontally, // which is the opposite of the visual orientation of the inputs and outputs as a node content: "Set " + (this.properties.horizontal ? "Horizontal" : "Vertical"), callback: /* @__PURE__ */ __name(() => { this.properties.horizontal = !this.properties.horizontal; this.applyOrientation(); }, "callback") } ); return []; } applyOrientation() { this.horizontal = this.properties.horizontal; if (this.horizontal) { this.inputs[0].pos = [this.size[0] / 2, 0]; } else { delete this.inputs[0].pos; } app2.graph.setDirtyCanvas(true, true); } computeSize() { return [ this.properties.showOutputText && this.outputs && this.outputs.length ? Math.max( 75, LiteGraph.NODE_TEXT_SIZE * this.outputs[0].name.length * 0.6 + 40 ) : 75, 26 ]; } static setDefaultTextVisibility(visible) { RerouteNode.defaultVisibility = visible; if (visible) { localStorage["Comfy.RerouteNode.DefaultVisibility"] = "true"; } else { delete localStorage["Comfy.RerouteNode.DefaultVisibility"]; } } } RerouteNode.setDefaultTextVisibility( !!localStorage["Comfy.RerouteNode.DefaultVisibility"] ); LiteGraph.registerNodeType( "Reroute", Object.assign(RerouteNode, { title_mode: LiteGraph.NO_TITLE, title: "Reroute", collapsable: false }) ); RerouteNode.category = "utils"; } }); app.registerExtension({ name: "Comfy.SaveImageExtraOutput", async beforeRegisterNodeDef(nodeType, nodeData, app2) { if (nodeData.name === "SaveImage" || nodeData.name === "SaveAnimatedWEBP") { const onNodeCreated = nodeType.prototype.onNodeCreated; nodeType.prototype.onNodeCreated = function() { const r = onNodeCreated ? onNodeCreated.apply(this, arguments) : void 0; const widget = this.widgets.find((w) => w.name === "filename_prefix"); widget.serializeValue = () => { return applyTextReplacements(app2, widget.value); }; return r; }; } else { const onNodeCreated = nodeType.prototype.onNodeCreated; nodeType.prototype.onNodeCreated = function() { const r = onNodeCreated ? onNodeCreated.apply(this, arguments) : void 0; if (!this.properties || !("Node name for S&R" in this.properties)) { this.addProperty("Node name for S&R", this.constructor.type, "string"); } return r; }; } } }); let touchZooming; let touchCount = 0; app.registerExtension({ name: "Comfy.SimpleTouchSupport", setup() { let touchDist; let touchTime; let lastTouch; let lastScale; function getMultiTouchPos(e) { return Math.hypot( e.touches[0].clientX - e.touches[1].clientX, e.touches[0].clientY - e.touches[1].clientY ); } __name(getMultiTouchPos, "getMultiTouchPos"); function getMultiTouchCenter(e) { return { clientX: (e.touches[0].clientX + e.touches[1].clientX) / 2, clientY: (e.touches[0].clientY + e.touches[1].clientY) / 2 }; } __name(getMultiTouchCenter, "getMultiTouchCenter"); app.canvasEl.parentElement.addEventListener( "touchstart", (e) => { touchCount++; lastTouch = null; lastScale = null; if (e.touches?.length === 1) { touchTime = /* @__PURE__ */ new Date(); lastTouch = e.touches[0]; } else { touchTime = null; if (e.touches?.length === 2) { lastScale = app.canvas.ds.scale; lastTouch = getMultiTouchCenter(e); touchDist = getMultiTouchPos(e); app.canvas.pointer.isDown = false; } } }, true ); app.canvasEl.parentElement.addEventListener("touchend", (e) => { touchCount--; if (e.touches?.length !== 1) touchZooming = false; if (touchTime && !e.touches?.length) { if ((/* @__PURE__ */ new Date()).getTime() - touchTime > 600) { if (e.target === app.canvasEl) { app.canvasEl.dispatchEvent( new PointerEvent("pointerdown", { button: 2, clientX: e.changedTouches[0].clientX, clientY: e.changedTouches[0].clientY }) ); e.preventDefault(); } } touchTime = null; } }); app.canvasEl.parentElement.addEventListener( "touchmove", (e) => { touchTime = null; if (e.touches?.length === 2 && lastTouch && !e.ctrlKey && !e.shiftKey) { e.preventDefault(); app.canvas.pointer.isDown = false; touchZooming = true; LiteGraph.closeAllContextMenus(window); app.canvas.search_box?.close(); const newTouchDist = getMultiTouchPos(e); const center = getMultiTouchCenter(e); let scale = lastScale * newTouchDist / touchDist; const newX = (center.clientX - lastTouch.clientX) / scale; const newY = (center.clientY - lastTouch.clientY) / scale; if (scale < app.canvas.ds.min_scale) { scale = app.canvas.ds.min_scale; } else if (scale > app.canvas.ds.max_scale) { scale = app.canvas.ds.max_scale; } const oldScale = app.canvas.ds.scale; app.canvas.ds.scale = scale; if (Math.abs(app.canvas.ds.scale - 1) < 0.01) { app.canvas.ds.scale = 1; } const newScale = app.canvas.ds.scale; const convertScaleToOffset = /* @__PURE__ */ __name((scale2) => [ center.clientX / scale2 - app.canvas.ds.offset[0], center.clientY / scale2 - app.canvas.ds.offset[1] ], "convertScaleToOffset"); var oldCenter = convertScaleToOffset(oldScale); var newCenter = convertScaleToOffset(newScale); app.canvas.ds.offset[0] += newX + newCenter[0] - oldCenter[0]; app.canvas.ds.offset[1] += newY + newCenter[1] - oldCenter[1]; lastTouch.clientX = center.clientX; lastTouch.clientY = center.clientY; app.canvas.setDirty(true, true); } }, true ); } }); const processMouseDown = LGraphCanvas.prototype.processMouseDown; LGraphCanvas.prototype.processMouseDown = function(e) { if (touchZooming || touchCount) { return; } app.canvas.pointer.isDown = false; return processMouseDown.apply(this, arguments); }; const processMouseMove = LGraphCanvas.prototype.processMouseMove; LGraphCanvas.prototype.processMouseMove = function(e) { if (touchZooming || touchCount > 1) { return; } return processMouseMove.apply(this, arguments); }; app.registerExtension({ name: "Comfy.SlotDefaults", suggestionsNumber: null, init() { LiteGraph.search_filter_enabled = true; LiteGraph.middle_click_slot_add_default_node = true; this.suggestionsNumber = app.ui.settings.addSetting({ id: "Comfy.NodeSuggestions.number", category: ["Comfy", "Node Search Box", "NodeSuggestions"], name: "Number of nodes suggestions", tooltip: "Only for litegraph searchbox/context menu", type: "slider", attrs: { min: 1, max: 100, step: 1 }, defaultValue: 5, onChange: /* @__PURE__ */ __name((newVal, oldVal) => { this.setDefaults(newVal); }, "onChange") }); }, slot_types_default_out: {}, slot_types_default_in: {}, async beforeRegisterNodeDef(nodeType, nodeData, app2) { var nodeId = nodeData.name; const inputs = nodeData["input"]?.["required"]; for (const inputKey in inputs) { var input = inputs[inputKey]; if (typeof input[0] !== "string") continue; var type = input[0]; if (type in ComfyWidgets) { var customProperties = input[1]; if (!customProperties?.forceInput) continue; } if (!(type in this.slot_types_default_out)) { this.slot_types_default_out[type] = ["Reroute"]; } if (this.slot_types_default_out[type].includes(nodeId)) continue; this.slot_types_default_out[type].push(nodeId); const lowerType = type.toLocaleLowerCase(); if (!(lowerType in LiteGraph.registered_slot_in_types)) { LiteGraph.registered_slot_in_types[lowerType] = { nodes: [] }; } LiteGraph.registered_slot_in_types[lowerType].nodes.push( nodeType.comfyClass ); } var outputs = nodeData["output"] ?? []; for (const el of outputs) { const type2 = el; if (!(type2 in this.slot_types_default_in)) { this.slot_types_default_in[type2] = ["Reroute"]; } this.slot_types_default_in[type2].push(nodeId); if (!(type2 in LiteGraph.registered_slot_out_types)) { LiteGraph.registered_slot_out_types[type2] = { nodes: [] }; } LiteGraph.registered_slot_out_types[type2].nodes.push(nodeType.comfyClass); if (!LiteGraph.slot_types_out.includes(type2)) { LiteGraph.slot_types_out.push(type2); } } var maxNum = this.suggestionsNumber.value; this.setDefaults(maxNum); }, setDefaults(maxNum) { LiteGraph.slot_types_default_out = {}; LiteGraph.slot_types_default_in = {}; for (const type in this.slot_types_default_out) { LiteGraph.slot_types_default_out[type] = this.slot_types_default_out[type].slice(0, maxNum); } for (const type in this.slot_types_default_in) { LiteGraph.slot_types_default_in[type] = this.slot_types_default_in[type].slice(0, maxNum); } } }); app.registerExtension({ name: "Comfy.UploadImage", beforeRegisterNodeDef(nodeType, nodeData) { if (nodeData?.input?.required?.image?.[1]?.image_upload === true) { nodeData.input.required.upload = ["IMAGEUPLOAD"]; } } }); const WEBCAM_READY = Symbol(); app.registerExtension({ name: "Comfy.WebcamCapture", getCustomWidgets(app2) { return { WEBCAM(node, inputName) { let res; node[WEBCAM_READY] = new Promise((resolve) => res = resolve); const container = document.createElement("div"); container.style.background = "rgba(0,0,0,0.25)"; container.style.textAlign = "center"; const video = document.createElement("video"); video.style.height = video.style.width = "100%"; const loadVideo = /* @__PURE__ */ __name(async () => { try { const stream = await navigator.mediaDevices.getUserMedia({ video: true, audio: false }); container.replaceChildren(video); setTimeout(() => res(video), 500); video.addEventListener("loadedmetadata", () => res(video), false); video.srcObject = stream; video.play(); } catch (error) { const label = document.createElement("div"); label.style.color = "red"; label.style.overflow = "auto"; label.style.maxHeight = "100%"; label.style.whiteSpace = "pre-wrap"; if (window.isSecureContext) { label.textContent = "Unable to load webcam, please ensure access is granted:\n" + error.message; } else { label.textContent = "Unable to load webcam. A secure context is required, if you are not accessing ComfyUI on localhost (127.0.0.1) you will have to enable TLS (https)\n\n" + error.message; } container.replaceChildren(label); } }, "loadVideo"); loadVideo(); return { widget: node.addDOMWidget(inputName, "WEBCAM", container) }; } }; }, nodeCreated(node) { if (node.type, node.constructor.comfyClass !== "WebcamCapture") return; let video; const camera = node.widgets.find((w2) => w2.name === "image"); const w = node.widgets.find((w2) => w2.name === "width"); const h = node.widgets.find((w2) => w2.name === "height"); const captureOnQueue = node.widgets.find( (w2) => w2.name === "capture_on_queue" ); const canvas = document.createElement("canvas"); const capture = /* @__PURE__ */ __name(() => { canvas.width = w.value; canvas.height = h.value; const ctx = canvas.getContext("2d"); ctx.drawImage(video, 0, 0, w.value, h.value); const data = canvas.toDataURL("image/png"); const img = new Image(); img.onload = () => { node.imgs = [img]; app.graph.setDirtyCanvas(true); requestAnimationFrame(() => { node.setSizeForImage?.(); }); }; img.src = data; }, "capture"); const btn = node.addWidget( "button", "waiting for camera...", "capture", capture ); btn.disabled = true; btn.serializeValue = () => void 0; camera.serializeValue = async () => { if (captureOnQueue.value) { capture(); } else if (!node.imgs?.length) { const err2 = `No webcam image captured`; useToastStore().addAlert(err2); throw new Error(err2); } const blob = await new Promise((r) => canvas.toBlob(r)); const name = `${+/* @__PURE__ */ new Date()}.png`; const file2 = new File([blob], name); const body = new FormData(); body.append("image", file2); body.append("subfolder", "webcam"); body.append("type", "temp"); const resp = await api.fetchApi("/upload/image", { method: "POST", body }); if (resp.status !== 200) { const err2 = `Error uploading camera image: ${resp.status} - ${resp.statusText}`; useToastStore().addAlert(err2); throw new Error(err2); } return `webcam/${name} [temp]`; }; node[WEBCAM_READY].then((v) => { video = v; if (!w.value) { w.value = video.videoWidth || 640; h.value = video.videoHeight || 480; } btn.disabled = false; btn.label = "capture"; }); } }); function splitFilePath$1(path) { const folder_separator = path.lastIndexOf("/"); if (folder_separator === -1) { return ["", path]; } return [ path.substring(0, folder_separator), path.substring(folder_separator + 1) ]; } __name(splitFilePath$1, "splitFilePath$1"); function getResourceURL$1(subfolder, filename, type = "input") { const params = [ "filename=" + encodeURIComponent(filename), "type=" + type, "subfolder=" + subfolder, app.getRandParam().substring(1) ].join("&"); return `/view?${params}`; } __name(getResourceURL$1, "getResourceURL$1"); async function uploadFile$1(audioWidget, audioUIWidget, file2, updateNode, pasted = false) { try { const body = new FormData(); body.append("image", file2); if (pasted) body.append("subfolder", "pasted"); const resp = await api.fetchApi("/upload/image", { method: "POST", body }); if (resp.status === 200) { const data = await resp.json(); let path = data.name; if (data.subfolder) path = data.subfolder + "/" + path; if (!audioWidget.options.values.includes(path)) { audioWidget.options.values.push(path); } if (updateNode) { audioUIWidget.element.src = api.apiURL( getResourceURL$1(...splitFilePath$1(path)) ); audioWidget.value = path; } } else { useToastStore().addAlert(resp.status + " - " + resp.statusText); } } catch (error) { useToastStore().addAlert(error); } } __name(uploadFile$1, "uploadFile$1"); app.registerExtension({ name: "Comfy.AudioWidget", async beforeRegisterNodeDef(nodeType, nodeData) { if (["LoadAudio", "SaveAudio", "PreviewAudio"].includes(nodeType.comfyClass)) { nodeData.input.required.audioUI = ["AUDIO_UI"]; } }, getCustomWidgets() { return { AUDIO_UI(node, inputName) { const audio = document.createElement("audio"); audio.controls = true; audio.classList.add("comfy-audio"); audio.setAttribute("name", "media"); const audioUIWidget = node.addDOMWidget( inputName, /* name=*/ "audioUI", audio, { serialize: false } ); const isOutputNode = node.constructor.nodeData.output_node; if (isOutputNode) { audioUIWidget.element.classList.add("empty-audio-widget"); const onExecuted = node.onExecuted; node.onExecuted = function(message) { onExecuted?.apply(this, arguments); const audios = message.audio; if (!audios) return; const audio2 = audios[0]; audioUIWidget.element.src = api.apiURL( getResourceURL$1(audio2.subfolder, audio2.filename, audio2.type) ); audioUIWidget.element.classList.remove("empty-audio-widget"); }; } return { widget: audioUIWidget }; } }; }, onNodeOutputsUpdated(nodeOutputs) { for (const [nodeId, output] of Object.entries(nodeOutputs)) { const node = app.graph.getNodeById(nodeId); if ("audio" in output) { const audioUIWidget = node.widgets.find( (w) => w.name === "audioUI" ); const audio = output.audio[0]; audioUIWidget.element.src = api.apiURL( getResourceURL$1(audio.subfolder, audio.filename, audio.type) ); audioUIWidget.element.classList.remove("empty-audio-widget"); } } } }); app.registerExtension({ name: "Comfy.UploadAudio", async beforeRegisterNodeDef(nodeType, nodeData) { if (nodeData?.input?.required?.audio?.[1]?.audio_upload === true) { nodeData.input.required.upload = ["AUDIOUPLOAD"]; } }, getCustomWidgets() { return { AUDIOUPLOAD(node, inputName) { const audioWidget = node.widgets.find( (w) => w.name === "audio" ); const audioUIWidget = node.widgets.find( (w) => w.name === "audioUI" ); const onAudioWidgetUpdate = /* @__PURE__ */ __name(() => { audioUIWidget.element.src = api.apiURL( getResourceURL$1(...splitFilePath$1(audioWidget.value)) ); }, "onAudioWidgetUpdate"); if (audioWidget.value) { onAudioWidgetUpdate(); } audioWidget.callback = onAudioWidgetUpdate; const onGraphConfigured = node.onGraphConfigured; node.onGraphConfigured = function() { onGraphConfigured?.apply(this, arguments); if (audioWidget.value) { onAudioWidgetUpdate(); } }; const fileInput = document.createElement("input"); fileInput.type = "file"; fileInput.accept = "audio/*"; fileInput.style.display = "none"; fileInput.onchange = () => { if (fileInput.files.length) { uploadFile$1(audioWidget, audioUIWidget, fileInput.files[0], true); } }; const uploadWidget = node.addWidget( "button", inputName, /* value=*/ "", () => { fileInput.click(); }, { serialize: false } ); uploadWidget.label = "choose file to upload"; return { widget: uploadWidget }; } }; } }); (async () => { if (!isElectron()) return; const electronAPI$1 = electronAPI(); const desktopAppVersion = await electronAPI$1.getElectronVersion(); const onChangeRestartApp = /* @__PURE__ */ __name((newValue, oldValue) => { if (oldValue !== void 0 && newValue !== oldValue) { electronAPI$1.restartApp("Restart ComfyUI to apply changes.", 1500); } }, "onChangeRestartApp"); app.registerExtension({ name: "Comfy.ElectronAdapter", settings: [ { id: "Comfy-Desktop.AutoUpdate", category: ["Comfy-Desktop", "General", "AutoUpdate"], name: "Automatically check for updates", type: "boolean", defaultValue: true, onChange: onChangeRestartApp }, { id: "Comfy-Desktop.SendStatistics", category: ["Comfy-Desktop", "General", "Send Statistics"], name: "Send anonymous crash reports", type: "boolean", defaultValue: true, onChange: onChangeRestartApp } ], commands: [ { id: "Comfy-Desktop.Folders.OpenLogsFolder", label: "Open Logs Folder", icon: "pi pi-folder-open", function() { electronAPI$1.openLogsFolder(); } }, { id: "Comfy-Desktop.Folders.OpenModelsFolder", label: "Open Models Folder", icon: "pi pi-folder-open", function() { electronAPI$1.openModelsFolder(); } }, { id: "Comfy-Desktop.Folders.OpenOutputsFolder", label: "Open Outputs Folder", icon: "pi pi-folder-open", function() { electronAPI$1.openOutputsFolder(); } }, { id: "Comfy-Desktop.Folders.OpenInputsFolder", label: "Open Inputs Folder", icon: "pi pi-folder-open", function() { electronAPI$1.openInputsFolder(); } }, { id: "Comfy-Desktop.Folders.OpenCustomNodesFolder", label: "Open Custom Nodes Folder", icon: "pi pi-folder-open", function() { electronAPI$1.openCustomNodesFolder(); } }, { id: "Comfy-Desktop.Folders.OpenModelConfig", label: "Open extra_model_paths.yaml", icon: "pi pi-file", function() { electronAPI$1.openModelConfig(); } }, { id: "Comfy-Desktop.OpenDevTools", label: "Open DevTools", icon: "pi pi-code", function() { electronAPI$1.openDevTools(); } }, { id: "Comfy-Desktop.OpenFeedbackPage", label: "Feedback", icon: "pi pi-envelope", function() { window.open("https://forum.comfy.org/c/v1-feedback/", "_blank"); } }, { id: "Comfy-Desktop.Reinstall", label: "Reinstall", icon: "pi pi-refresh", function() { electronAPI$1.reinstall(); } }, { id: "Comfy-Desktop.Restart", label: "Restart", icon: "pi pi-refresh", function() { electronAPI$1.restartApp(); } } ], menuCommands: [ { path: ["Help"], commands: ["Comfy-Desktop.OpenFeedbackPage"] }, { path: ["Help"], commands: ["Comfy-Desktop.OpenDevTools"] }, { path: ["Help", "Open Folder"], commands: [ "Comfy-Desktop.Folders.OpenLogsFolder", "Comfy-Desktop.Folders.OpenModelsFolder", "Comfy-Desktop.Folders.OpenOutputsFolder", "Comfy-Desktop.Folders.OpenInputsFolder", "Comfy-Desktop.Folders.OpenCustomNodesFolder", "Comfy-Desktop.Folders.OpenModelConfig" ] }, { path: ["Help"], commands: ["Comfy-Desktop.Reinstall"] } ], aboutPageBadges: [ { label: "ComfyUI_Desktop " + desktopAppVersion, url: "https://github.com/Comfy-Org/electron", icon: "pi pi-github" } ] }); })(); /** * @license * Copyright 2010-2024 Three.js Authors * SPDX-License-Identifier: MIT */ const REVISION = "170"; const MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 }; const TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 }; const CullFaceNone = 0; const CullFaceBack = 1; const CullFaceFront = 2; const CullFaceFrontBack = 3; const BasicShadowMap = 0; const PCFShadowMap = 1; const PCFSoftShadowMap = 2; const VSMShadowMap = 3; const FrontSide = 0; const BackSide = 1; const DoubleSide = 2; const NoBlending = 0; const NormalBlending = 1; const AdditiveBlending = 2; const SubtractiveBlending = 3; const MultiplyBlending = 4; const CustomBlending = 5; const AddEquation = 100; const SubtractEquation = 101; const ReverseSubtractEquation = 102; const MinEquation = 103; const MaxEquation = 104; const ZeroFactor = 200; const OneFactor = 201; const SrcColorFactor = 202; const OneMinusSrcColorFactor = 203; const SrcAlphaFactor = 204; const OneMinusSrcAlphaFactor = 205; const DstAlphaFactor = 206; const OneMinusDstAlphaFactor = 207; const DstColorFactor = 208; const OneMinusDstColorFactor = 209; const SrcAlphaSaturateFactor = 210; const ConstantColorFactor = 211; const OneMinusConstantColorFactor = 212; const ConstantAlphaFactor = 213; const OneMinusConstantAlphaFactor = 214; const NeverDepth = 0; const AlwaysDepth = 1; const LessDepth = 2; const LessEqualDepth = 3; const EqualDepth = 4; const GreaterEqualDepth = 5; const GreaterDepth = 6; const NotEqualDepth = 7; const MultiplyOperation = 0; const MixOperation = 1; const AddOperation = 2; const NoToneMapping = 0; const LinearToneMapping = 1; const ReinhardToneMapping = 2; const CineonToneMapping = 3; const ACESFilmicToneMapping = 4; const CustomToneMapping = 5; const AgXToneMapping = 6; const NeutralToneMapping = 7; const AttachedBindMode = "attached"; const DetachedBindMode = "detached"; const UVMapping = 300; const CubeReflectionMapping = 301; const CubeRefractionMapping = 302; const EquirectangularReflectionMapping = 303; const EquirectangularRefractionMapping = 304; const CubeUVReflectionMapping = 306; const RepeatWrapping = 1e3; const ClampToEdgeWrapping = 1001; const MirroredRepeatWrapping = 1002; const NearestFilter = 1003; const NearestMipmapNearestFilter = 1004; const NearestMipMapNearestFilter = 1004; const NearestMipmapLinearFilter = 1005; const NearestMipMapLinearFilter = 1005; const LinearFilter = 1006; const LinearMipmapNearestFilter = 1007; const LinearMipMapNearestFilter = 1007; const LinearMipmapLinearFilter = 1008; const LinearMipMapLinearFilter = 1008; const UnsignedByteType = 1009; const ByteType = 1010; const ShortType = 1011; const UnsignedShortType = 1012; const IntType = 1013; const UnsignedIntType = 1014; const FloatType = 1015; const HalfFloatType = 1016; const UnsignedShort4444Type = 1017; const UnsignedShort5551Type = 1018; const UnsignedInt248Type = 1020; const UnsignedInt5999Type = 35902; const AlphaFormat = 1021; const RGBFormat = 1022; const RGBAFormat = 1023; const LuminanceFormat = 1024; const LuminanceAlphaFormat = 1025; const DepthFormat = 1026; const DepthStencilFormat = 1027; const RedFormat = 1028; const RedIntegerFormat = 1029; const RGFormat = 1030; const RGIntegerFormat = 1031; const RGBIntegerFormat = 1032; const RGBAIntegerFormat = 1033; const RGB_S3TC_DXT1_Format = 33776; const RGBA_S3TC_DXT1_Format = 33777; const RGBA_S3TC_DXT3_Format = 33778; const RGBA_S3TC_DXT5_Format = 33779; const RGB_PVRTC_4BPPV1_Format = 35840; const RGB_PVRTC_2BPPV1_Format = 35841; const RGBA_PVRTC_4BPPV1_Format = 35842; const RGBA_PVRTC_2BPPV1_Format = 35843; const RGB_ETC1_Format = 36196; const RGB_ETC2_Format = 37492; const RGBA_ETC2_EAC_Format = 37496; const RGBA_ASTC_4x4_Format = 37808; const RGBA_ASTC_5x4_Format = 37809; const RGBA_ASTC_5x5_Format = 37810; const RGBA_ASTC_6x5_Format = 37811; const RGBA_ASTC_6x6_Format = 37812; const RGBA_ASTC_8x5_Format = 37813; const RGBA_ASTC_8x6_Format = 37814; const RGBA_ASTC_8x8_Format = 37815; const RGBA_ASTC_10x5_Format = 37816; const RGBA_ASTC_10x6_Format = 37817; const RGBA_ASTC_10x8_Format = 37818; const RGBA_ASTC_10x10_Format = 37819; const RGBA_ASTC_12x10_Format = 37820; const RGBA_ASTC_12x12_Format = 37821; const RGBA_BPTC_Format = 36492; const RGB_BPTC_SIGNED_Format = 36494; const RGB_BPTC_UNSIGNED_Format = 36495; const RED_RGTC1_Format = 36283; const SIGNED_RED_RGTC1_Format = 36284; const RED_GREEN_RGTC2_Format = 36285; const SIGNED_RED_GREEN_RGTC2_Format = 36286; const LoopOnce = 2200; const LoopRepeat = 2201; const LoopPingPong = 2202; const InterpolateDiscrete = 2300; const InterpolateLinear = 2301; const InterpolateSmooth = 2302; const ZeroCurvatureEnding = 2400; const ZeroSlopeEnding = 2401; const WrapAroundEnding = 2402; const NormalAnimationBlendMode = 2500; const AdditiveAnimationBlendMode = 2501; const TrianglesDrawMode = 0; const TriangleStripDrawMode = 1; const TriangleFanDrawMode = 2; const BasicDepthPacking = 3200; const RGBADepthPacking = 3201; const RGBDepthPacking = 3202; const RGDepthPacking = 3203; const TangentSpaceNormalMap = 0; const ObjectSpaceNormalMap = 1; const NoColorSpace = ""; const SRGBColorSpace = "srgb"; const LinearSRGBColorSpace = "srgb-linear"; const LinearTransfer = "linear"; const SRGBTransfer = "srgb"; const ZeroStencilOp = 0; const KeepStencilOp = 7680; const ReplaceStencilOp = 7681; const IncrementStencilOp = 7682; const DecrementStencilOp = 7683; const IncrementWrapStencilOp = 34055; const DecrementWrapStencilOp = 34056; const InvertStencilOp = 5386; const NeverStencilFunc = 512; const LessStencilFunc = 513; const EqualStencilFunc = 514; const LessEqualStencilFunc = 515; const GreaterStencilFunc = 516; const NotEqualStencilFunc = 517; const GreaterEqualStencilFunc = 518; const AlwaysStencilFunc = 519; const NeverCompare = 512; const LessCompare = 513; const EqualCompare = 514; const LessEqualCompare = 515; const GreaterCompare = 516; const NotEqualCompare = 517; const GreaterEqualCompare = 518; const AlwaysCompare = 519; const StaticDrawUsage = 35044; const DynamicDrawUsage = 35048; const StreamDrawUsage = 35040; const StaticReadUsage = 35045; const DynamicReadUsage = 35049; const StreamReadUsage = 35041; const StaticCopyUsage = 35046; const DynamicCopyUsage = 35050; const StreamCopyUsage = 35042; const GLSL1 = "100"; const GLSL3 = "300 es"; const WebGLCoordinateSystem = 2e3; const WebGPUCoordinateSystem = 2001; class EventDispatcher { static { __name(this, "EventDispatcher"); } addEventListener(type, listener) { if (this._listeners === void 0) this._listeners = {}; const listeners = this._listeners; if (listeners[type] === void 0) { listeners[type] = []; } if (listeners[type].indexOf(listener) === -1) { listeners[type].push(listener); } } hasEventListener(type, listener) { if (this._listeners === void 0) return false; const listeners = this._listeners; return listeners[type] !== void 0 && listeners[type].indexOf(listener) !== -1; } removeEventListener(type, listener) { if (this._listeners === void 0) return; const listeners = this._listeners; const listenerArray = listeners[type]; if (listenerArray !== void 0) { const index = listenerArray.indexOf(listener); if (index !== -1) { listenerArray.splice(index, 1); } } } dispatchEvent(event) { if (this._listeners === void 0) return; const listeners = this._listeners; const listenerArray = listeners[event.type]; if (listenerArray !== void 0) { event.target = this; const array = listenerArray.slice(0); for (let i = 0, l = array.length; i < l; i++) { array[i].call(this, event); } event.target = null; } } } const _lut = ["00", "01", "02", "03", "04", "05", "06", "07", "08", "09", "0a", "0b", "0c", "0d", "0e", "0f", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "1a", "1b", "1c", "1d", "1e", "1f", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "2a", "2b", "2c", "2d", "2e", "2f", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "3a", "3b", "3c", "3d", "3e", "3f", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "4a", "4b", "4c", "4d", "4e", "4f", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "5a", "5b", "5c", "5d", "5e", "5f", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "6a", "6b", "6c", "6d", "6e", "6f", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "7a", "7b", "7c", "7d", "7e", "7f", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "8a", "8b", "8c", "8d", "8e", "8f", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "9a", "9b", "9c", "9d", "9e", "9f", "a0", "a1", "a2", "a3", "a4", "a5", "a6", "a7", "a8", "a9", "aa", "ab", "ac", "ad", "ae", "af", "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", "b8", "b9", "ba", "bb", "bc", "bd", "be", "bf", "c0", "c1", "c2", "c3", "c4", "c5", "c6", "c7", "c8", "c9", "ca", "cb", "cc", "cd", "ce", "cf", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "da", "db", "dc", "dd", "de", "df", "e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7", "e8", "e9", "ea", "eb", "ec", "ed", "ee", "ef", "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "fa", "fb", "fc", "fd", "fe", "ff"]; let _seed = 1234567; const DEG2RAD = Math.PI / 180; const RAD2DEG = 180 / Math.PI; function generateUUID() { const d0 = Math.random() * 4294967295 | 0; const d1 = Math.random() * 4294967295 | 0; const d2 = Math.random() * 4294967295 | 0; const d3 = Math.random() * 4294967295 | 0; const uuid = _lut[d0 & 255] + _lut[d0 >> 8 & 255] + _lut[d0 >> 16 & 255] + _lut[d0 >> 24 & 255] + "-" + _lut[d1 & 255] + _lut[d1 >> 8 & 255] + "-" + _lut[d1 >> 16 & 15 | 64] + _lut[d1 >> 24 & 255] + "-" + _lut[d2 & 63 | 128] + _lut[d2 >> 8 & 255] + "-" + _lut[d2 >> 16 & 255] + _lut[d2 >> 24 & 255] + _lut[d3 & 255] + _lut[d3 >> 8 & 255] + _lut[d3 >> 16 & 255] + _lut[d3 >> 24 & 255]; return uuid.toLowerCase(); } __name(generateUUID, "generateUUID"); function clamp(value, min, max2) { return Math.max(min, Math.min(max2, value)); } __name(clamp, "clamp"); function euclideanModulo(n, m) { return (n % m + m) % m; } __name(euclideanModulo, "euclideanModulo"); function mapLinear(x, a1, a2, b1, b22) { return b1 + (x - a1) * (b22 - b1) / (a2 - a1); } __name(mapLinear, "mapLinear"); function inverseLerp(x, y, value) { if (x !== y) { return (value - x) / (y - x); } else { return 0; } } __name(inverseLerp, "inverseLerp"); function lerp(x, y, t) { return (1 - t) * x + t * y; } __name(lerp, "lerp"); function damp(x, y, lambda, dt) { return lerp(x, y, 1 - Math.exp(-lambda * dt)); } __name(damp, "damp"); function pingpong(x, length = 1) { return length - Math.abs(euclideanModulo(x, length * 2) - length); } __name(pingpong, "pingpong"); function smoothstep(x, min, max2) { if (x <= min) return 0; if (x >= max2) return 1; x = (x - min) / (max2 - min); return x * x * (3 - 2 * x); } __name(smoothstep, "smoothstep"); function smootherstep(x, min, max2) { if (x <= min) return 0; if (x >= max2) return 1; x = (x - min) / (max2 - min); return x * x * x * (x * (x * 6 - 15) + 10); } __name(smootherstep, "smootherstep"); function randInt(low, high) { return low + Math.floor(Math.random() * (high - low + 1)); } __name(randInt, "randInt"); function randFloat(low, high) { return low + Math.random() * (high - low); } __name(randFloat, "randFloat"); function randFloatSpread(range) { return range * (0.5 - Math.random()); } __name(randFloatSpread, "randFloatSpread"); function seededRandom(s) { if (s !== void 0) _seed = s; let t = _seed += 1831565813; t = Math.imul(t ^ t >>> 15, t | 1); t ^= t + Math.imul(t ^ t >>> 7, t | 61); return ((t ^ t >>> 14) >>> 0) / 4294967296; } __name(seededRandom, "seededRandom"); function degToRad(degrees) { return degrees * DEG2RAD; } __name(degToRad, "degToRad"); function radToDeg(radians) { return radians * RAD2DEG; } __name(radToDeg, "radToDeg"); function isPowerOfTwo(value) { return (value & value - 1) === 0 && value !== 0; } __name(isPowerOfTwo, "isPowerOfTwo"); function ceilPowerOfTwo(value) { return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2)); } __name(ceilPowerOfTwo, "ceilPowerOfTwo"); function floorPowerOfTwo(value) { return Math.pow(2, Math.floor(Math.log(value) / Math.LN2)); } __name(floorPowerOfTwo, "floorPowerOfTwo"); function setQuaternionFromProperEuler(q, a, b, c, order) { const cos = Math.cos; const sin = Math.sin; const c2 = cos(b / 2); const s2 = sin(b / 2); const c13 = cos((a + c) / 2); const s13 = sin((a + c) / 2); const c1_3 = cos((a - c) / 2); const s1_3 = sin((a - c) / 2); const c3_1 = cos((c - a) / 2); const s3_1 = sin((c - a) / 2); switch (order) { case "XYX": q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13); break; case "YZY": q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13); break; case "ZXZ": q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13); break; case "XZX": q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13); break; case "YXY": q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13); break; case "ZYZ": q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13); break; default: console.warn("THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: " + order); } } __name(setQuaternionFromProperEuler, "setQuaternionFromProperEuler"); function denormalize(value, array) { switch (array.constructor) { case Float32Array: return value; case Uint32Array: return value / 4294967295; case Uint16Array: return value / 65535; case Uint8Array: return value / 255; case Int32Array: return Math.max(value / 2147483647, -1); case Int16Array: return Math.max(value / 32767, -1); case Int8Array: return Math.max(value / 127, -1); default: throw new Error("Invalid component type."); } } __name(denormalize, "denormalize"); function normalize(value, array) { switch (array.constructor) { case Float32Array: return value; case Uint32Array: return Math.round(value * 4294967295); case Uint16Array: return Math.round(value * 65535); case Uint8Array: return Math.round(value * 255); case Int32Array: return Math.round(value * 2147483647); case Int16Array: return Math.round(value * 32767); case Int8Array: return Math.round(value * 127); default: throw new Error("Invalid component type."); } } __name(normalize, "normalize"); const MathUtils = { DEG2RAD, RAD2DEG, generateUUID, clamp, euclideanModulo, mapLinear, inverseLerp, lerp, damp, pingpong, smoothstep, smootherstep, randInt, randFloat, randFloatSpread, seededRandom, degToRad, radToDeg, isPowerOfTwo, ceilPowerOfTwo, floorPowerOfTwo, setQuaternionFromProperEuler, normalize, denormalize }; class Vector2 { static { __name(this, "Vector2"); } constructor(x = 0, y = 0) { Vector2.prototype.isVector2 = true; this.x = x; this.y = y; } get width() { return this.x; } set width(value) { this.x = value; } get height() { return this.y; } set height(value) { this.y = value; } set(x, y) { this.x = x; this.y = y; return this; } setScalar(scalar) { this.x = scalar; this.y = scalar; return this; } setX(x) { this.x = x; return this; } setY(y) { this.y = y; return this; } setComponent(index, value) { switch (index) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error("index is out of range: " + index); } return this; } getComponent(index) { switch (index) { case 0: return this.x; case 1: return this.y; default: throw new Error("index is out of range: " + index); } } clone() { return new this.constructor(this.x, this.y); } copy(v) { this.x = v.x; this.y = v.y; return this; } add(v) { this.x += v.x; this.y += v.y; return this; } addScalar(s) { this.x += s; this.y += s; return this; } addVectors(a, b) { this.x = a.x + b.x; this.y = a.y + b.y; return this; } addScaledVector(v, s) { this.x += v.x * s; this.y += v.y * s; return this; } sub(v) { this.x -= v.x; this.y -= v.y; return this; } subScalar(s) { this.x -= s; this.y -= s; return this; } subVectors(a, b) { this.x = a.x - b.x; this.y = a.y - b.y; return this; } multiply(v) { this.x *= v.x; this.y *= v.y; return this; } multiplyScalar(scalar) { this.x *= scalar; this.y *= scalar; return this; } divide(v) { this.x /= v.x; this.y /= v.y; return this; } divideScalar(scalar) { return this.multiplyScalar(1 / scalar); } applyMatrix3(m) { const x = this.x, y = this.y; const e = m.elements; this.x = e[0] * x + e[3] * y + e[6]; this.y = e[1] * x + e[4] * y + e[7]; return this; } min(v) { this.x = Math.min(this.x, v.x); this.y = Math.min(this.y, v.y); return this; } max(v) { this.x = Math.max(this.x, v.x); this.y = Math.max(this.y, v.y); return this; } clamp(min, max2) { this.x = Math.max(min.x, Math.min(max2.x, this.x)); this.y = Math.max(min.y, Math.min(max2.y, this.y)); return this; } clampScalar(minVal, maxVal) { this.x = Math.max(minVal, Math.min(maxVal, this.x)); this.y = Math.max(minVal, Math.min(maxVal, this.y)); return this; } clampLength(min, max2) { const length = this.length(); return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max2, length))); } floor() { this.x = Math.floor(this.x); this.y = Math.floor(this.y); return this; } ceil() { this.x = Math.ceil(this.x); this.y = Math.ceil(this.y); return this; } round() { this.x = Math.round(this.x); this.y = Math.round(this.y); return this; } roundToZero() { this.x = Math.trunc(this.x); this.y = Math.trunc(this.y); return this; } negate() { this.x = -this.x; this.y = -this.y; return this; } dot(v) { return this.x * v.x + this.y * v.y; } cross(v) { return this.x * v.y - this.y * v.x; } lengthSq() { return this.x * this.x + this.y * this.y; } length() { return Math.sqrt(this.x * this.x + this.y * this.y); } manhattanLength() { return Math.abs(this.x) + Math.abs(this.y); } normalize() { return this.divideScalar(this.length() || 1); } angle() { const angle = Math.atan2(-this.y, -this.x) + Math.PI; return angle; } angleTo(v) { const denominator = Math.sqrt(this.lengthSq() * v.lengthSq()); if (denominator === 0) return Math.PI / 2; const theta = this.dot(v) / denominator; return Math.acos(clamp(theta, -1, 1)); } distanceTo(v) { return Math.sqrt(this.distanceToSquared(v)); } distanceToSquared(v) { const dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; } manhattanDistanceTo(v) { return Math.abs(this.x - v.x) + Math.abs(this.y - v.y); } setLength(length) { return this.normalize().multiplyScalar(length); } lerp(v, alpha) { this.x += (v.x - this.x) * alpha; this.y += (v.y - this.y) * alpha; return this; } lerpVectors(v1, v2, alpha) { this.x = v1.x + (v2.x - v1.x) * alpha; this.y = v1.y + (v2.y - v1.y) * alpha; return this; } equals(v) { return v.x === this.x && v.y === this.y; } fromArray(array, offset = 0) { this.x = array[offset]; this.y = array[offset + 1]; return this; } toArray(array = [], offset = 0) { array[offset] = this.x; array[offset + 1] = this.y; return array; } fromBufferAttribute(attribute, index) { this.x = attribute.getX(index); this.y = attribute.getY(index); return this; } rotateAround(center, angle) { const c = Math.cos(angle), s = Math.sin(angle); const x = this.x - center.x; const y = this.y - center.y; this.x = x * c - y * s + center.x; this.y = x * s + y * c + center.y; return this; } random() { this.x = Math.random(); this.y = Math.random(); return this; } *[Symbol.iterator]() { yield this.x; yield this.y; } } class Matrix3 { static { __name(this, "Matrix3"); } constructor(n11, n12, n13, n21, n22, n23, n31, n32, n33) { Matrix3.prototype.isMatrix3 = true; this.elements = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if (n11 !== void 0) { this.set(n11, n12, n13, n21, n22, n23, n31, n32, n33); } } set(n11, n12, n13, n21, n22, n23, n31, n32, n33) { const te2 = this.elements; te2[0] = n11; te2[1] = n21; te2[2] = n31; te2[3] = n12; te2[4] = n22; te2[5] = n32; te2[6] = n13; te2[7] = n23; te2[8] = n33; return this; } identity() { this.set( 1, 0, 0, 0, 1, 0, 0, 0, 1 ); return this; } copy(m) { const te2 = this.elements; const me = m.elements; te2[0] = me[0]; te2[1] = me[1]; te2[2] = me[2]; te2[3] = me[3]; te2[4] = me[4]; te2[5] = me[5]; te2[6] = me[6]; te2[7] = me[7]; te2[8] = me[8]; return this; } extractBasis(xAxis, yAxis, zAxis) { xAxis.setFromMatrix3Column(this, 0); yAxis.setFromMatrix3Column(this, 1); zAxis.setFromMatrix3Column(this, 2); return this; } setFromMatrix4(m) { const me = m.elements; this.set( me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10] ); return this; } multiply(m) { return this.multiplyMatrices(this, m); } premultiply(m) { return this.multiplyMatrices(m, this); } multiplyMatrices(a, b) { const ae = a.elements; const be = b.elements; const te2 = this.elements; const a11 = ae[0], a12 = ae[3], a13 = ae[6]; const a21 = ae[1], a22 = ae[4], a23 = ae[7]; const a31 = ae[2], a32 = ae[5], a33 = ae[8]; const b11 = be[0], b12 = be[3], b13 = be[6]; const b21 = be[1], b22 = be[4], b23 = be[7]; const b31 = be[2], b32 = be[5], b33 = be[8]; te2[0] = a11 * b11 + a12 * b21 + a13 * b31; te2[3] = a11 * b12 + a12 * b22 + a13 * b32; te2[6] = a11 * b13 + a12 * b23 + a13 * b33; te2[1] = a21 * b11 + a22 * b21 + a23 * b31; te2[4] = a21 * b12 + a22 * b22 + a23 * b32; te2[7] = a21 * b13 + a22 * b23 + a23 * b33; te2[2] = a31 * b11 + a32 * b21 + a33 * b31; te2[5] = a31 * b12 + a32 * b22 + a33 * b32; te2[8] = a31 * b13 + a32 * b23 + a33 * b33; return this; } multiplyScalar(s) { const te2 = this.elements; te2[0] *= s; te2[3] *= s; te2[6] *= s; te2[1] *= s; te2[4] *= s; te2[7] *= s; te2[2] *= s; te2[5] *= s; te2[8] *= s; return this; } determinant() { const te2 = this.elements; const a = te2[0], b = te2[1], c = te2[2], d = te2[3], e = te2[4], f = te2[5], g = te2[6], h = te2[7], i = te2[8]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; } invert() { const te2 = this.elements, n11 = te2[0], n21 = te2[1], n31 = te2[2], n12 = te2[3], n22 = te2[4], n32 = te2[5], n13 = te2[6], n23 = te2[7], n33 = te2[8], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13; if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0); const detInv = 1 / det; te2[0] = t11 * detInv; te2[1] = (n31 * n23 - n33 * n21) * detInv; te2[2] = (n32 * n21 - n31 * n22) * detInv; te2[3] = t12 * detInv; te2[4] = (n33 * n11 - n31 * n13) * detInv; te2[5] = (n31 * n12 - n32 * n11) * detInv; te2[6] = t13 * detInv; te2[7] = (n21 * n13 - n23 * n11) * detInv; te2[8] = (n22 * n11 - n21 * n12) * detInv; return this; } transpose() { let tmp2; const m = this.elements; tmp2 = m[1]; m[1] = m[3]; m[3] = tmp2; tmp2 = m[2]; m[2] = m[6]; m[6] = tmp2; tmp2 = m[5]; m[5] = m[7]; m[7] = tmp2; return this; } getNormalMatrix(matrix4) { return this.setFromMatrix4(matrix4).invert().transpose(); } transposeIntoArray(r) { const m = this.elements; r[0] = m[0]; r[1] = m[3]; r[2] = m[6]; r[3] = m[1]; r[4] = m[4]; r[5] = m[7]; r[6] = m[2]; r[7] = m[5]; r[8] = m[8]; return this; } setUvTransform(tx, ty, sx, sy, rotation, cx, cy) { const c = Math.cos(rotation); const s = Math.sin(rotation); this.set( sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1 ); return this; } // scale(sx, sy) { this.premultiply(_m3.makeScale(sx, sy)); return this; } rotate(theta) { this.premultiply(_m3.makeRotation(-theta)); return this; } translate(tx, ty) { this.premultiply(_m3.makeTranslation(tx, ty)); return this; } // for 2D Transforms makeTranslation(x, y) { if (x.isVector2) { this.set( 1, 0, x.x, 0, 1, x.y, 0, 0, 1 ); } else { this.set( 1, 0, x, 0, 1, y, 0, 0, 1 ); } return this; } makeRotation(theta) { const c = Math.cos(theta); const s = Math.sin(theta); this.set( c, -s, 0, s, c, 0, 0, 0, 1 ); return this; } makeScale(x, y) { this.set( x, 0, 0, 0, y, 0, 0, 0, 1 ); return this; } // equals(matrix) { const te2 = this.elements; const me = matrix.elements; for (let i = 0; i < 9; i++) { if (te2[i] !== me[i]) return false; } return true; } fromArray(array, offset = 0) { for (let i = 0; i < 9; i++) { this.elements[i] = array[i + offset]; } return this; } toArray(array = [], offset = 0) { const te2 = this.elements; array[offset] = te2[0]; array[offset + 1] = te2[1]; array[offset + 2] = te2[2]; array[offset + 3] = te2[3]; array[offset + 4] = te2[4]; array[offset + 5] = te2[5]; array[offset + 6] = te2[6]; array[offset + 7] = te2[7]; array[offset + 8] = te2[8]; return array; } clone() { return new this.constructor().fromArray(this.elements); } } const _m3 = /* @__PURE__ */ new Matrix3(); function arrayNeedsUint32(array) { for (let i = array.length - 1; i >= 0; --i) { if (array[i] >= 65535) return true; } return false; } __name(arrayNeedsUint32, "arrayNeedsUint32"); const TYPED_ARRAYS = { Int8Array, Uint8Array, Uint8ClampedArray, Int16Array, Uint16Array, Int32Array, Uint32Array, Float32Array, Float64Array }; function getTypedArray(type, buffer) { return new TYPED_ARRAYS[type](buffer); } __name(getTypedArray, "getTypedArray"); function createElementNS(name) { return document.createElementNS("http://www.w3.org/1999/xhtml", name); } __name(createElementNS, "createElementNS"); function createCanvasElement() { const canvas = createElementNS("canvas"); canvas.style.display = "block"; return canvas; } __name(createCanvasElement, "createCanvasElement"); const _cache = {}; function warnOnce(message) { if (message in _cache) return; _cache[message] = true; console.warn(message); } __name(warnOnce, "warnOnce"); function probeAsync(gl, sync, interval) { return new Promise(function(resolve, reject) { function probe() { switch (gl.clientWaitSync(sync, gl.SYNC_FLUSH_COMMANDS_BIT, 0)) { case gl.WAIT_FAILED: reject(); break; case gl.TIMEOUT_EXPIRED: setTimeout(probe, interval); break; default: resolve(); } } __name(probe, "probe"); setTimeout(probe, interval); }); } __name(probeAsync, "probeAsync"); function toNormalizedProjectionMatrix(projectionMatrix) { const m = projectionMatrix.elements; m[2] = 0.5 * m[2] + 0.5 * m[3]; m[6] = 0.5 * m[6] + 0.5 * m[7]; m[10] = 0.5 * m[10] + 0.5 * m[11]; m[14] = 0.5 * m[14] + 0.5 * m[15]; } __name(toNormalizedProjectionMatrix, "toNormalizedProjectionMatrix"); function toReversedProjectionMatrix(projectionMatrix) { const m = projectionMatrix.elements; const isPerspectiveMatrix = m[11] === -1; if (isPerspectiveMatrix) { m[10] = -m[10] - 1; m[14] = -m[14]; } else { m[10] = -m[10]; m[14] = -m[14] + 1; } } __name(toReversedProjectionMatrix, "toReversedProjectionMatrix"); const ColorManagement = { enabled: true, workingColorSpace: LinearSRGBColorSpace, /** * Implementations of supported color spaces. * * Required: * - primaries: chromaticity coordinates [ rx ry gx gy bx by ] * - whitePoint: reference white [ x y ] * - transfer: transfer function (pre-defined) * - toXYZ: Matrix3 RGB to XYZ transform * - fromXYZ: Matrix3 XYZ to RGB transform * - luminanceCoefficients: RGB luminance coefficients * * Optional: * - outputColorSpaceConfig: { drawingBufferColorSpace: ColorSpace } * - workingColorSpaceConfig: { unpackColorSpace: ColorSpace } * * Reference: * - https://www.russellcottrell.com/photo/matrixCalculator.htm */ spaces: {}, convert: /* @__PURE__ */ __name(function(color, sourceColorSpace, targetColorSpace) { if (this.enabled === false || sourceColorSpace === targetColorSpace || !sourceColorSpace || !targetColorSpace) { return color; } if (this.spaces[sourceColorSpace].transfer === SRGBTransfer) { color.r = SRGBToLinear(color.r); color.g = SRGBToLinear(color.g); color.b = SRGBToLinear(color.b); } if (this.spaces[sourceColorSpace].primaries !== this.spaces[targetColorSpace].primaries) { color.applyMatrix3(this.spaces[sourceColorSpace].toXYZ); color.applyMatrix3(this.spaces[targetColorSpace].fromXYZ); } if (this.spaces[targetColorSpace].transfer === SRGBTransfer) { color.r = LinearToSRGB(color.r); color.g = LinearToSRGB(color.g); color.b = LinearToSRGB(color.b); } return color; }, "convert"), fromWorkingColorSpace: /* @__PURE__ */ __name(function(color, targetColorSpace) { return this.convert(color, this.workingColorSpace, targetColorSpace); }, "fromWorkingColorSpace"), toWorkingColorSpace: /* @__PURE__ */ __name(function(color, sourceColorSpace) { return this.convert(color, sourceColorSpace, this.workingColorSpace); }, "toWorkingColorSpace"), getPrimaries: /* @__PURE__ */ __name(function(colorSpace) { return this.spaces[colorSpace].primaries; }, "getPrimaries"), getTransfer: /* @__PURE__ */ __name(function(colorSpace) { if (colorSpace === NoColorSpace) return LinearTransfer; return this.spaces[colorSpace].transfer; }, "getTransfer"), getLuminanceCoefficients: /* @__PURE__ */ __name(function(target, colorSpace = this.workingColorSpace) { return target.fromArray(this.spaces[colorSpace].luminanceCoefficients); }, "getLuminanceCoefficients"), define: /* @__PURE__ */ __name(function(colorSpaces) { Object.assign(this.spaces, colorSpaces); }, "define"), // Internal APIs _getMatrix: /* @__PURE__ */ __name(function(targetMatrix, sourceColorSpace, targetColorSpace) { return targetMatrix.copy(this.spaces[sourceColorSpace].toXYZ).multiply(this.spaces[targetColorSpace].fromXYZ); }, "_getMatrix"), _getDrawingBufferColorSpace: /* @__PURE__ */ __name(function(colorSpace) { return this.spaces[colorSpace].outputColorSpaceConfig.drawingBufferColorSpace; }, "_getDrawingBufferColorSpace"), _getUnpackColorSpace: /* @__PURE__ */ __name(function(colorSpace = this.workingColorSpace) { return this.spaces[colorSpace].workingColorSpaceConfig.unpackColorSpace; }, "_getUnpackColorSpace") }; function SRGBToLinear(c) { return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4); } __name(SRGBToLinear, "SRGBToLinear"); function LinearToSRGB(c) { return c < 31308e-7 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055; } __name(LinearToSRGB, "LinearToSRGB"); const REC709_PRIMARIES = [0.64, 0.33, 0.3, 0.6, 0.15, 0.06]; const REC709_LUMINANCE_COEFFICIENTS = [0.2126, 0.7152, 0.0722]; const D65 = [0.3127, 0.329]; const LINEAR_REC709_TO_XYZ = /* @__PURE__ */ new Matrix3().set( 0.4123908, 0.3575843, 0.1804808, 0.212639, 0.7151687, 0.0721923, 0.0193308, 0.1191948, 0.9505322 ); const XYZ_TO_LINEAR_REC709 = /* @__PURE__ */ new Matrix3().set( 3.2409699, -1.5373832, -0.4986108, -0.9692436, 1.8759675, 0.0415551, 0.0556301, -0.203977, 1.0569715 ); ColorManagement.define({ [LinearSRGBColorSpace]: { primaries: REC709_PRIMARIES, whitePoint: D65, transfer: LinearTransfer, toXYZ: LINEAR_REC709_TO_XYZ, fromXYZ: XYZ_TO_LINEAR_REC709, luminanceCoefficients: REC709_LUMINANCE_COEFFICIENTS, workingColorSpaceConfig: { unpackColorSpace: SRGBColorSpace }, outputColorSpaceConfig: { drawingBufferColorSpace: SRGBColorSpace } }, [SRGBColorSpace]: { primaries: REC709_PRIMARIES, whitePoint: D65, transfer: SRGBTransfer, toXYZ: LINEAR_REC709_TO_XYZ, fromXYZ: XYZ_TO_LINEAR_REC709, luminanceCoefficients: REC709_LUMINANCE_COEFFICIENTS, outputColorSpaceConfig: { drawingBufferColorSpace: SRGBColorSpace } } }); let _canvas; class ImageUtils { static { __name(this, "ImageUtils"); } static getDataURL(image) { if (/^data:/i.test(image.src)) { return image.src; } if (typeof HTMLCanvasElement === "undefined") { return image.src; } let canvas; if (image instanceof HTMLCanvasElement) { canvas = image; } else { if (_canvas === void 0) _canvas = createElementNS("canvas"); _canvas.width = image.width; _canvas.height = image.height; const context = _canvas.getContext("2d"); if (image instanceof ImageData) { context.putImageData(image, 0, 0); } else { context.drawImage(image, 0, 0, image.width, image.height); } canvas = _canvas; } if (canvas.width > 2048 || canvas.height > 2048) { console.warn("THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons", image); return canvas.toDataURL("image/jpeg", 0.6); } else { return canvas.toDataURL("image/png"); } } static sRGBToLinear(image) { if (typeof HTMLImageElement !== "undefined" && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== "undefined" && image instanceof HTMLCanvasElement || typeof ImageBitmap !== "undefined" && image instanceof ImageBitmap) { const canvas = createElementNS("canvas"); canvas.width = image.width; canvas.height = image.height; const context = canvas.getContext("2d"); context.drawImage(image, 0, 0, image.width, image.height); const imageData = context.getImageData(0, 0, image.width, image.height); const data = imageData.data; for (let i = 0; i < data.length; i++) { data[i] = SRGBToLinear(data[i] / 255) * 255; } context.putImageData(imageData, 0, 0); return canvas; } else if (image.data) { const data = image.data.slice(0); for (let i = 0; i < data.length; i++) { if (data instanceof Uint8Array || data instanceof Uint8ClampedArray) { data[i] = Math.floor(SRGBToLinear(data[i] / 255) * 255); } else { data[i] = SRGBToLinear(data[i]); } } return { data, width: image.width, height: image.height }; } else { console.warn("THREE.ImageUtils.sRGBToLinear(): Unsupported image type. No color space conversion applied."); return image; } } } let _sourceId = 0; class Source { static { __name(this, "Source"); } constructor(data = null) { this.isSource = true; Object.defineProperty(this, "id", { value: _sourceId++ }); this.uuid = generateUUID(); this.data = data; this.dataReady = true; this.version = 0; } set needsUpdate(value) { if (value === true) this.version++; } toJSON(meta) { const isRootObject = meta === void 0 || typeof meta === "string"; if (!isRootObject && meta.images[this.uuid] !== void 0) { return meta.images[this.uuid]; } const output = { uuid: this.uuid, url: "" }; const data = this.data; if (data !== null) { let url; if (Array.isArray(data)) { url = []; for (let i = 0, l = data.length; i < l; i++) { if (data[i].isDataTexture) { url.push(serializeImage(data[i].image)); } else { url.push(serializeImage(data[i])); } } } else { url = serializeImage(data); } output.url = url; } if (!isRootObject) { meta.images[this.uuid] = output; } return output; } } function serializeImage(image) { if (typeof HTMLImageElement !== "undefined" && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== "undefined" && image instanceof HTMLCanvasElement || typeof ImageBitmap !== "undefined" && image instanceof ImageBitmap) { return ImageUtils.getDataURL(image); } else { if (image.data) { return { data: Array.from(image.data), width: image.width, height: image.height, type: image.data.constructor.name }; } else { console.warn("THREE.Texture: Unable to serialize Texture."); return {}; } } } __name(serializeImage, "serializeImage"); let _textureId = 0; class Texture extends EventDispatcher { static { __name(this, "Texture"); } constructor(image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = Texture.DEFAULT_ANISOTROPY, colorSpace = NoColorSpace) { super(); this.isTexture = true; Object.defineProperty(this, "id", { value: _textureId++ }); this.uuid = generateUUID(); this.name = ""; this.source = new Source(image); this.mipmaps = []; this.mapping = mapping; this.channel = 0; this.wrapS = wrapS; this.wrapT = wrapT; this.magFilter = magFilter; this.minFilter = minFilter; this.anisotropy = anisotropy; this.format = format; this.internalFormat = null; this.type = type; this.offset = new Vector2(0, 0); this.repeat = new Vector2(1, 1); this.center = new Vector2(0, 0); this.rotation = 0; this.matrixAutoUpdate = true; this.matrix = new Matrix3(); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; this.colorSpace = colorSpace; this.userData = {}; this.version = 0; this.onUpdate = null; this.isRenderTargetTexture = false; this.pmremVersion = 0; } get image() { return this.source.data; } set image(value = null) { this.source.data = value; } updateMatrix() { this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y); } clone() { return new this.constructor().copy(this); } copy(source) { this.name = source.name; this.source = source.source; this.mipmaps = source.mipmaps.slice(0); this.mapping = source.mapping; this.channel = source.channel; this.wrapS = source.wrapS; this.wrapT = source.wrapT; this.magFilter = source.magFilter; this.minFilter = source.minFilter; this.anisotropy = source.anisotropy; this.format = source.format; this.internalFormat = source.internalFormat; this.type = source.type; this.offset.copy(source.offset); this.repeat.copy(source.repeat); this.center.copy(source.center); this.rotation = source.rotation; this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrix.copy(source.matrix); this.generateMipmaps = source.generateMipmaps; this.premultiplyAlpha = source.premultiplyAlpha; this.flipY = source.flipY; this.unpackAlignment = source.unpackAlignment; this.colorSpace = source.colorSpace; this.userData = JSON.parse(JSON.stringify(source.userData)); this.needsUpdate = true; return this; } toJSON(meta) { const isRootObject = meta === void 0 || typeof meta === "string"; if (!isRootObject && meta.textures[this.uuid] !== void 0) { return meta.textures[this.uuid]; } const output = { metadata: { version: 4.6, type: "Texture", generator: "Texture.toJSON" }, uuid: this.uuid, name: this.name, image: this.source.toJSON(meta).uuid, mapping: this.mapping, channel: this.channel, repeat: [this.repeat.x, this.repeat.y], offset: [this.offset.x, this.offset.y], center: [this.center.x, this.center.y], rotation: this.rotation, wrap: [this.wrapS, this.wrapT], format: this.format, internalFormat: this.internalFormat, type: this.type, colorSpace: this.colorSpace, minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy, flipY: this.flipY, generateMipmaps: this.generateMipmaps, premultiplyAlpha: this.premultiplyAlpha, unpackAlignment: this.unpackAlignment }; if (Object.keys(this.userData).length > 0) output.userData = this.userData; if (!isRootObject) { meta.textures[this.uuid] = output; } return output; } dispose() { this.dispatchEvent({ type: "dispose" }); } transformUv(uv) { if (this.mapping !== UVMapping) return uv; uv.applyMatrix3(this.matrix); if (uv.x < 0 || uv.x > 1) { switch (this.wrapS) { case RepeatWrapping: uv.x = uv.x - Math.floor(uv.x); break; case ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if (Math.abs(Math.floor(uv.x) % 2) === 1) { uv.x = Math.ceil(uv.x) - uv.x; } else { uv.x = uv.x - Math.floor(uv.x); } break; } } if (uv.y < 0 || uv.y > 1) { switch (this.wrapT) { case RepeatWrapping: uv.y = uv.y - Math.floor(uv.y); break; case ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if (Math.abs(Math.floor(uv.y) % 2) === 1) { uv.y = Math.ceil(uv.y) - uv.y; } else { uv.y = uv.y - Math.floor(uv.y); } break; } } if (this.flipY) { uv.y = 1 - uv.y; } return uv; } set needsUpdate(value) { if (value === true) { this.version++; this.source.needsUpdate = true; } } set needsPMREMUpdate(value) { if (value === true) { this.pmremVersion++; } } } Texture.DEFAULT_IMAGE = null; Texture.DEFAULT_MAPPING = UVMapping; Texture.DEFAULT_ANISOTROPY = 1; class Vector4 { static { __name(this, "Vector4"); } constructor(x = 0, y = 0, z = 0, w = 1) { Vector4.prototype.isVector4 = true; this.x = x; this.y = y; this.z = z; this.w = w; } get width() { return this.z; } set width(value) { this.z = value; } get height() { return this.w; } set height(value) { this.w = value; } set(x, y, z, w) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } setScalar(scalar) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; } setX(x) { this.x = x; return this; } setY(y) { this.y = y; return this; } setZ(z) { this.z = z; return this; } setW(w) { this.w = w; return this; } setComponent(index, value) { switch (index) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error("index is out of range: " + index); } return this; } getComponent(index) { switch (index) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error("index is out of range: " + index); } } clone() { return new this.constructor(this.x, this.y, this.z, this.w); } copy(v) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = v.w !== void 0 ? v.w : 1; return this; } add(v) { this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; } addScalar(s) { this.x += s; this.y += s; this.z += s; this.w += s; return this; } addVectors(a, b) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; } addScaledVector(v, s) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; } sub(v) { this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; } subScalar(s) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; } subVectors(a, b) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; } multiply(v) { this.x *= v.x; this.y *= v.y; this.z *= v.z; this.w *= v.w; return this; } multiplyScalar(scalar) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; return this; } applyMatrix4(m) { const x = this.x, y = this.y, z = this.z, w = this.w; const e = m.elements; this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w; this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w; this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w; this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w; return this; } divide(v) { this.x /= v.x; this.y /= v.y; this.z /= v.z; this.w /= v.w; return this; } divideScalar(scalar) { return this.multiplyScalar(1 / scalar); } setAxisAngleFromQuaternion(q) { this.w = 2 * Math.acos(q.w); const s = Math.sqrt(1 - q.w * q.w); if (s < 1e-4) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; } setAxisAngleFromRotationMatrix(m) { let angle, x, y, z; const epsilon = 0.01, epsilon2 = 0.1, te2 = m.elements, m11 = te2[0], m12 = te2[4], m13 = te2[8], m21 = te2[1], m22 = te2[5], m23 = te2[9], m31 = te2[2], m32 = te2[6], m33 = te2[10]; if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) { if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) { this.set(1, 0, 0, 0); return this; } angle = Math.PI; const xx = (m11 + 1) / 2; const yy = (m22 + 1) / 2; const zz = (m33 + 1) / 2; const xy = (m12 + m21) / 4; const xz = (m13 + m31) / 4; const yz = (m23 + m32) / 4; if (xx > yy && xx > zz) { if (xx < epsilon) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt(xx); y = xy / x; z = xz / x; } } else if (yy > zz) { if (yy < epsilon) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt(yy); x = xy / y; z = yz / y; } } else { if (zz < epsilon) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt(zz); x = xz / z; y = yz / z; } } this.set(x, y, z, angle); return this; } let s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); if (Math.abs(s) < 1e-3) s = 1; this.x = (m32 - m23) / s; this.y = (m13 - m31) / s; this.z = (m21 - m12) / s; this.w = Math.acos((m11 + m22 + m33 - 1) / 2); return this; } setFromMatrixPosition(m) { const e = m.elements; this.x = e[12]; this.y = e[13]; this.z = e[14]; this.w = e[15]; return this; } min(v) { this.x = Math.min(this.x, v.x); this.y = Math.min(this.y, v.y); this.z = Math.min(this.z, v.z); this.w = Math.min(this.w, v.w); return this; } max(v) { this.x = Math.max(this.x, v.x); this.y = Math.max(this.y, v.y); this.z = Math.max(this.z, v.z); this.w = Math.max(this.w, v.w); return this; } clamp(min, max2) { this.x = Math.max(min.x, Math.min(max2.x, this.x)); this.y = Math.max(min.y, Math.min(max2.y, this.y)); this.z = Math.max(min.z, Math.min(max2.z, this.z)); this.w = Math.max(min.w, Math.min(max2.w, this.w)); return this; } clampScalar(minVal, maxVal) { this.x = Math.max(minVal, Math.min(maxVal, this.x)); this.y = Math.max(minVal, Math.min(maxVal, this.y)); this.z = Math.max(minVal, Math.min(maxVal, this.z)); this.w = Math.max(minVal, Math.min(maxVal, this.w)); return this; } clampLength(min, max2) { const length = this.length(); return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max2, length))); } floor() { this.x = Math.floor(this.x); this.y = Math.floor(this.y); this.z = Math.floor(this.z); this.w = Math.floor(this.w); return this; } ceil() { this.x = Math.ceil(this.x); this.y = Math.ceil(this.y); this.z = Math.ceil(this.z); this.w = Math.ceil(this.w); return this; } round() { this.x = Math.round(this.x); this.y = Math.round(this.y); this.z = Math.round(this.z); this.w = Math.round(this.w); return this; } roundToZero() { this.x = Math.trunc(this.x); this.y = Math.trunc(this.y); this.z = Math.trunc(this.z); this.w = Math.trunc(this.w); return this; } negate() { this.x = -this.x; this.y = -this.y; this.z = -this.z; this.w = -this.w; return this; } dot(v) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; } lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; } length() { return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w); } manhattanLength() { return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w); } normalize() { return this.divideScalar(this.length() || 1); } setLength(length) { return this.normalize().multiplyScalar(length); } lerp(v, alpha) { this.x += (v.x - this.x) * alpha; this.y += (v.y - this.y) * alpha; this.z += (v.z - this.z) * alpha; this.w += (v.w - this.w) * alpha; return this; } lerpVectors(v1, v2, alpha) { this.x = v1.x + (v2.x - v1.x) * alpha; this.y = v1.y + (v2.y - v1.y) * alpha; this.z = v1.z + (v2.z - v1.z) * alpha; this.w = v1.w + (v2.w - v1.w) * alpha; return this; } equals(v) { return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w; } fromArray(array, offset = 0) { this.x = array[offset]; this.y = array[offset + 1]; this.z = array[offset + 2]; this.w = array[offset + 3]; return this; } toArray(array = [], offset = 0) { array[offset] = this.x; array[offset + 1] = this.y; array[offset + 2] = this.z; array[offset + 3] = this.w; return array; } fromBufferAttribute(attribute, index) { this.x = attribute.getX(index); this.y = attribute.getY(index); this.z = attribute.getZ(index); this.w = attribute.getW(index); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); this.w = Math.random(); return this; } *[Symbol.iterator]() { yield this.x; yield this.y; yield this.z; yield this.w; } } class RenderTarget extends EventDispatcher { static { __name(this, "RenderTarget"); } constructor(width = 1, height = 1, options = {}) { super(); this.isRenderTarget = true; this.width = width; this.height = height; this.depth = 1; this.scissor = new Vector4(0, 0, width, height); this.scissorTest = false; this.viewport = new Vector4(0, 0, width, height); const image = { width, height, depth: 1 }; options = Object.assign({ generateMipmaps: false, internalFormat: null, minFilter: LinearFilter, depthBuffer: true, stencilBuffer: false, resolveDepthBuffer: true, resolveStencilBuffer: true, depthTexture: null, samples: 0, count: 1 }, options); const texture = new Texture(image, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.colorSpace); texture.flipY = false; texture.generateMipmaps = options.generateMipmaps; texture.internalFormat = options.internalFormat; this.textures = []; const count = options.count; for (let i = 0; i < count; i++) { this.textures[i] = texture.clone(); this.textures[i].isRenderTargetTexture = true; } this.depthBuffer = options.depthBuffer; this.stencilBuffer = options.stencilBuffer; this.resolveDepthBuffer = options.resolveDepthBuffer; this.resolveStencilBuffer = options.resolveStencilBuffer; this.depthTexture = options.depthTexture; this.samples = options.samples; } get texture() { return this.textures[0]; } set texture(value) { this.textures[0] = value; } setSize(width, height, depth = 1) { if (this.width !== width || this.height !== height || this.depth !== depth) { this.width = width; this.height = height; this.depth = depth; for (let i = 0, il = this.textures.length; i < il; i++) { this.textures[i].image.width = width; this.textures[i].image.height = height; this.textures[i].image.depth = depth; } this.dispose(); } this.viewport.set(0, 0, width, height); this.scissor.set(0, 0, width, height); } clone() { return new this.constructor().copy(this); } copy(source) { this.width = source.width; this.height = source.height; this.depth = source.depth; this.scissor.copy(source.scissor); this.scissorTest = source.scissorTest; this.viewport.copy(source.viewport); this.textures.length = 0; for (let i = 0, il = source.textures.length; i < il; i++) { this.textures[i] = source.textures[i].clone(); this.textures[i].isRenderTargetTexture = true; } const image = Object.assign({}, source.texture.image); this.texture.source = new Source(image); this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; this.resolveDepthBuffer = source.resolveDepthBuffer; this.resolveStencilBuffer = source.resolveStencilBuffer; if (source.depthTexture !== null) this.depthTexture = source.depthTexture.clone(); this.samples = source.samples; return this; } dispose() { this.dispatchEvent({ type: "dispose" }); } } class WebGLRenderTarget extends RenderTarget { static { __name(this, "WebGLRenderTarget"); } constructor(width = 1, height = 1, options = {}) { super(width, height, options); this.isWebGLRenderTarget = true; } } class DataArrayTexture extends Texture { static { __name(this, "DataArrayTexture"); } constructor(data = null, width = 1, height = 1, depth = 1) { super(null); this.isDataArrayTexture = true; this.image = { data, width, height, depth }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; this.layerUpdates = /* @__PURE__ */ new Set(); } addLayerUpdate(layerIndex) { this.layerUpdates.add(layerIndex); } clearLayerUpdates() { this.layerUpdates.clear(); } } class WebGLArrayRenderTarget extends WebGLRenderTarget { static { __name(this, "WebGLArrayRenderTarget"); } constructor(width = 1, height = 1, depth = 1, options = {}) { super(width, height, options); this.isWebGLArrayRenderTarget = true; this.depth = depth; this.texture = new DataArrayTexture(null, width, height, depth); this.texture.isRenderTargetTexture = true; } } class Data3DTexture extends Texture { static { __name(this, "Data3DTexture"); } constructor(data = null, width = 1, height = 1, depth = 1) { super(null); this.isData3DTexture = true; this.image = { data, width, height, depth }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; } } class WebGL3DRenderTarget extends WebGLRenderTarget { static { __name(this, "WebGL3DRenderTarget"); } constructor(width = 1, height = 1, depth = 1, options = {}) { super(width, height, options); this.isWebGL3DRenderTarget = true; this.depth = depth; this.texture = new Data3DTexture(null, width, height, depth); this.texture.isRenderTargetTexture = true; } } class Quaternion { static { __name(this, "Quaternion"); } constructor(x = 0, y = 0, z = 0, w = 1) { this.isQuaternion = true; this._x = x; this._y = y; this._z = z; this._w = w; } static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) { let x0 = src0[srcOffset0 + 0], y0 = src0[srcOffset0 + 1], z0 = src0[srcOffset0 + 2], w0 = src0[srcOffset0 + 3]; const x1 = src1[srcOffset1 + 0], y1 = src1[srcOffset1 + 1], z1 = src1[srcOffset1 + 2], w1 = src1[srcOffset1 + 3]; if (t === 0) { dst[dstOffset + 0] = x0; dst[dstOffset + 1] = y0; dst[dstOffset + 2] = z0; dst[dstOffset + 3] = w0; return; } if (t === 1) { dst[dstOffset + 0] = x1; dst[dstOffset + 1] = y1; dst[dstOffset + 2] = z1; dst[dstOffset + 3] = w1; return; } if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) { let s = 1 - t; const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = cos >= 0 ? 1 : -1, sqrSin = 1 - cos * cos; if (sqrSin > Number.EPSILON) { const sin = Math.sqrt(sqrSin), len = Math.atan2(sin, cos * dir); s = Math.sin(s * len) / sin; t = Math.sin(t * len) / sin; } const tDir = t * dir; x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir; if (s === 1 - t) { const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0); x0 *= f; y0 *= f; z0 *= f; w0 *= f; } } dst[dstOffset] = x0; dst[dstOffset + 1] = y0; dst[dstOffset + 2] = z0; dst[dstOffset + 3] = w0; } static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) { const x0 = src0[srcOffset0]; const y0 = src0[srcOffset0 + 1]; const z0 = src0[srcOffset0 + 2]; const w0 = src0[srcOffset0 + 3]; const x1 = src1[srcOffset1]; const y1 = src1[srcOffset1 + 1]; const z1 = src1[srcOffset1 + 2]; const w1 = src1[srcOffset1 + 3]; dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; return dst; } get x() { return this._x; } set x(value) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y(value) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z(value) { this._z = value; this._onChangeCallback(); } get w() { return this._w; } set w(value) { this._w = value; this._onChangeCallback(); } set(x, y, z, w) { this._x = x; this._y = y; this._z = z; this._w = w; this._onChangeCallback(); return this; } clone() { return new this.constructor(this._x, this._y, this._z, this._w); } copy(quaternion) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this._onChangeCallback(); return this; } setFromEuler(euler, update = true) { const x = euler._x, y = euler._y, z = euler._z, order = euler._order; const cos = Math.cos; const sin = Math.sin; const c1 = cos(x / 2); const c2 = cos(y / 2); const c3 = cos(z / 2); const s1 = sin(x / 2); const s2 = sin(y / 2); const s3 = sin(z / 2); switch (order) { case "XYZ": this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case "YXZ": this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case "ZXY": this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case "ZYX": this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case "YZX": this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case "XZY": this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; default: console.warn("THREE.Quaternion: .setFromEuler() encountered an unknown order: " + order); } if (update === true) this._onChangeCallback(); return this; } setFromAxisAngle(axis, angle) { const halfAngle = angle / 2, s = Math.sin(halfAngle); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos(halfAngle); this._onChangeCallback(); return this; } setFromRotationMatrix(m) { const te2 = m.elements, m11 = te2[0], m12 = te2[4], m13 = te2[8], m21 = te2[1], m22 = te2[5], m23 = te2[9], m31 = te2[2], m32 = te2[6], m33 = te2[10], trace = m11 + m22 + m33; if (trace > 0) { const s = 0.5 / Math.sqrt(trace + 1); this._w = 0.25 / s; this._x = (m32 - m23) * s; this._y = (m13 - m31) * s; this._z = (m21 - m12) * s; } else if (m11 > m22 && m11 > m33) { const s = 2 * Math.sqrt(1 + m11 - m22 - m33); this._w = (m32 - m23) / s; this._x = 0.25 * s; this._y = (m12 + m21) / s; this._z = (m13 + m31) / s; } else if (m22 > m33) { const s = 2 * Math.sqrt(1 + m22 - m11 - m33); this._w = (m13 - m31) / s; this._x = (m12 + m21) / s; this._y = 0.25 * s; this._z = (m23 + m32) / s; } else { const s = 2 * Math.sqrt(1 + m33 - m11 - m22); this._w = (m21 - m12) / s; this._x = (m13 + m31) / s; this._y = (m23 + m32) / s; this._z = 0.25 * s; } this._onChangeCallback(); return this; } setFromUnitVectors(vFrom, vTo) { let r = vFrom.dot(vTo) + 1; if (r < Number.EPSILON) { r = 0; if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) { this._x = -vFrom.y; this._y = vFrom.x; this._z = 0; this._w = r; } else { this._x = 0; this._y = -vFrom.z; this._z = vFrom.y; this._w = r; } } else { this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; this._w = r; } return this.normalize(); } angleTo(q) { return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1))); } rotateTowards(q, step) { const angle = this.angleTo(q); if (angle === 0) return this; const t = Math.min(1, step / angle); this.slerp(q, t); return this; } identity() { return this.set(0, 0, 0, 1); } invert() { return this.conjugate(); } conjugate() { this._x *= -1; this._y *= -1; this._z *= -1; this._onChangeCallback(); return this; } dot(v) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; } lengthSq() { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; } length() { return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w); } normalize() { let l = this.length(); if (l === 0) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this._onChangeCallback(); return this; } multiply(q) { return this.multiplyQuaternions(this, q); } premultiply(q) { return this.multiplyQuaternions(q, this); } multiplyQuaternions(a, b) { const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this._onChangeCallback(); return this; } slerp(qb, t) { if (t === 0) return this; if (t === 1) return this.copy(qb); const x = this._x, y = this._y, z = this._z, w = this._w; let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if (cosHalfTheta < 0) { this._w = -qb._w; this._x = -qb._x; this._y = -qb._y; this._z = -qb._z; cosHalfTheta = -cosHalfTheta; } else { this.copy(qb); } if (cosHalfTheta >= 1) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } const sqrSinHalfTheta = 1 - cosHalfTheta * cosHalfTheta; if (sqrSinHalfTheta <= Number.EPSILON) { const s = 1 - t; this._w = s * w + t * this._w; this._x = s * x + t * this._x; this._y = s * y + t * this._y; this._z = s * z + t * this._z; this.normalize(); return this; } const sinHalfTheta = Math.sqrt(sqrSinHalfTheta); const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta); const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta, ratioB = Math.sin(t * halfTheta) / sinHalfTheta; this._w = w * ratioA + this._w * ratioB; this._x = x * ratioA + this._x * ratioB; this._y = y * ratioA + this._y * ratioB; this._z = z * ratioA + this._z * ratioB; this._onChangeCallback(); return this; } slerpQuaternions(qa, qb, t) { return this.copy(qa).slerp(qb, t); } random() { const theta1 = 2 * Math.PI * Math.random(); const theta2 = 2 * Math.PI * Math.random(); const x0 = Math.random(); const r1 = Math.sqrt(1 - x0); const r2 = Math.sqrt(x0); return this.set( r1 * Math.sin(theta1), r1 * Math.cos(theta1), r2 * Math.sin(theta2), r2 * Math.cos(theta2) ); } equals(quaternion) { return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w; } fromArray(array, offset = 0) { this._x = array[offset]; this._y = array[offset + 1]; this._z = array[offset + 2]; this._w = array[offset + 3]; this._onChangeCallback(); return this; } toArray(array = [], offset = 0) { array[offset] = this._x; array[offset + 1] = this._y; array[offset + 2] = this._z; array[offset + 3] = this._w; return array; } fromBufferAttribute(attribute, index) { this._x = attribute.getX(index); this._y = attribute.getY(index); this._z = attribute.getZ(index); this._w = attribute.getW(index); this._onChangeCallback(); return this; } toJSON() { return this.toArray(); } _onChange(callback) { this._onChangeCallback = callback; return this; } _onChangeCallback() { } *[Symbol.iterator]() { yield this._x; yield this._y; yield this._z; yield this._w; } } class Vector3 { static { __name(this, "Vector3"); } constructor(x = 0, y = 0, z = 0) { Vector3.prototype.isVector3 = true; this.x = x; this.y = y; this.z = z; } set(x, y, z) { if (z === void 0) z = this.z; this.x = x; this.y = y; this.z = z; return this; } setScalar(scalar) { this.x = scalar; this.y = scalar; this.z = scalar; return this; } setX(x) { this.x = x; return this; } setY(y) { this.y = y; return this; } setZ(z) { this.z = z; return this; } setComponent(index, value) { switch (index) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error("index is out of range: " + index); } return this; } getComponent(index) { switch (index) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error("index is out of range: " + index); } } clone() { return new this.constructor(this.x, this.y, this.z); } copy(v) { this.x = v.x; this.y = v.y; this.z = v.z; return this; } add(v) { this.x += v.x; this.y += v.y; this.z += v.z; return this; } addScalar(s) { this.x += s; this.y += s; this.z += s; return this; } addVectors(a, b) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; } addScaledVector(v, s) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; } sub(v) { this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; } subScalar(s) { this.x -= s; this.y -= s; this.z -= s; return this; } subVectors(a, b) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; } multiply(v) { this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; } multiplyScalar(scalar) { this.x *= scalar; this.y *= scalar; this.z *= scalar; return this; } multiplyVectors(a, b) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; } applyEuler(euler) { return this.applyQuaternion(_quaternion$4.setFromEuler(euler)); } applyAxisAngle(axis, angle) { return this.applyQuaternion(_quaternion$4.setFromAxisAngle(axis, angle)); } applyMatrix3(m) { const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[0] * x + e[3] * y + e[6] * z; this.y = e[1] * x + e[4] * y + e[7] * z; this.z = e[2] * x + e[5] * y + e[8] * z; return this; } applyNormalMatrix(m) { return this.applyMatrix3(m).normalize(); } applyMatrix4(m) { const x = this.x, y = this.y, z = this.z; const e = m.elements; const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]); this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w; this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w; this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w; return this; } applyQuaternion(q) { const vx = this.x, vy = this.y, vz = this.z; const qx = q.x, qy = q.y, qz = q.z, qw = q.w; const tx = 2 * (qy * vz - qz * vy); const ty = 2 * (qz * vx - qx * vz); const tz = 2 * (qx * vy - qy * vx); this.x = vx + qw * tx + qy * tz - qz * ty; this.y = vy + qw * ty + qz * tx - qx * tz; this.z = vz + qw * tz + qx * ty - qy * tx; return this; } project(camera) { return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix); } unproject(camera) { return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld); } transformDirection(m) { const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[0] * x + e[4] * y + e[8] * z; this.y = e[1] * x + e[5] * y + e[9] * z; this.z = e[2] * x + e[6] * y + e[10] * z; return this.normalize(); } divide(v) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; } divideScalar(scalar) { return this.multiplyScalar(1 / scalar); } min(v) { this.x = Math.min(this.x, v.x); this.y = Math.min(this.y, v.y); this.z = Math.min(this.z, v.z); return this; } max(v) { this.x = Math.max(this.x, v.x); this.y = Math.max(this.y, v.y); this.z = Math.max(this.z, v.z); return this; } clamp(min, max2) { this.x = Math.max(min.x, Math.min(max2.x, this.x)); this.y = Math.max(min.y, Math.min(max2.y, this.y)); this.z = Math.max(min.z, Math.min(max2.z, this.z)); return this; } clampScalar(minVal, maxVal) { this.x = Math.max(minVal, Math.min(maxVal, this.x)); this.y = Math.max(minVal, Math.min(maxVal, this.y)); this.z = Math.max(minVal, Math.min(maxVal, this.z)); return this; } clampLength(min, max2) { const length = this.length(); return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max2, length))); } floor() { this.x = Math.floor(this.x); this.y = Math.floor(this.y); this.z = Math.floor(this.z); return this; } ceil() { this.x = Math.ceil(this.x); this.y = Math.ceil(this.y); this.z = Math.ceil(this.z); return this; } round() { this.x = Math.round(this.x); this.y = Math.round(this.y); this.z = Math.round(this.z); return this; } roundToZero() { this.x = Math.trunc(this.x); this.y = Math.trunc(this.y); this.z = Math.trunc(this.z); return this; } negate() { this.x = -this.x; this.y = -this.y; this.z = -this.z; return this; } dot(v) { return this.x * v.x + this.y * v.y + this.z * v.z; } // TODO lengthSquared? lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z; } length() { return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z); } manhattanLength() { return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z); } normalize() { return this.divideScalar(this.length() || 1); } setLength(length) { return this.normalize().multiplyScalar(length); } lerp(v, alpha) { this.x += (v.x - this.x) * alpha; this.y += (v.y - this.y) * alpha; this.z += (v.z - this.z) * alpha; return this; } lerpVectors(v1, v2, alpha) { this.x = v1.x + (v2.x - v1.x) * alpha; this.y = v1.y + (v2.y - v1.y) * alpha; this.z = v1.z + (v2.z - v1.z) * alpha; return this; } cross(v) { return this.crossVectors(this, v); } crossVectors(a, b) { const ax = a.x, ay = a.y, az = a.z; const bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; } projectOnVector(v) { const denominator = v.lengthSq(); if (denominator === 0) return this.set(0, 0, 0); const scalar = v.dot(this) / denominator; return this.copy(v).multiplyScalar(scalar); } projectOnPlane(planeNormal) { _vector$c.copy(this).projectOnVector(planeNormal); return this.sub(_vector$c); } reflect(normal) { return this.sub(_vector$c.copy(normal).multiplyScalar(2 * this.dot(normal))); } angleTo(v) { const denominator = Math.sqrt(this.lengthSq() * v.lengthSq()); if (denominator === 0) return Math.PI / 2; const theta = this.dot(v) / denominator; return Math.acos(clamp(theta, -1, 1)); } distanceTo(v) { return Math.sqrt(this.distanceToSquared(v)); } distanceToSquared(v) { const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; } manhattanDistanceTo(v) { return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z); } setFromSpherical(s) { return this.setFromSphericalCoords(s.radius, s.phi, s.theta); } setFromSphericalCoords(radius, phi, theta) { const sinPhiRadius = Math.sin(phi) * radius; this.x = sinPhiRadius * Math.sin(theta); this.y = Math.cos(phi) * radius; this.z = sinPhiRadius * Math.cos(theta); return this; } setFromCylindrical(c) { return this.setFromCylindricalCoords(c.radius, c.theta, c.y); } setFromCylindricalCoords(radius, theta, y) { this.x = radius * Math.sin(theta); this.y = y; this.z = radius * Math.cos(theta); return this; } setFromMatrixPosition(m) { const e = m.elements; this.x = e[12]; this.y = e[13]; this.z = e[14]; return this; } setFromMatrixScale(m) { const sx = this.setFromMatrixColumn(m, 0).length(); const sy = this.setFromMatrixColumn(m, 1).length(); const sz = this.setFromMatrixColumn(m, 2).length(); this.x = sx; this.y = sy; this.z = sz; return this; } setFromMatrixColumn(m, index) { return this.fromArray(m.elements, index * 4); } setFromMatrix3Column(m, index) { return this.fromArray(m.elements, index * 3); } setFromEuler(e) { this.x = e._x; this.y = e._y; this.z = e._z; return this; } setFromColor(c) { this.x = c.r; this.y = c.g; this.z = c.b; return this; } equals(v) { return v.x === this.x && v.y === this.y && v.z === this.z; } fromArray(array, offset = 0) { this.x = array[offset]; this.y = array[offset + 1]; this.z = array[offset + 2]; return this; } toArray(array = [], offset = 0) { array[offset] = this.x; array[offset + 1] = this.y; array[offset + 2] = this.z; return array; } fromBufferAttribute(attribute, index) { this.x = attribute.getX(index); this.y = attribute.getY(index); this.z = attribute.getZ(index); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); return this; } randomDirection() { const theta = Math.random() * Math.PI * 2; const u = Math.random() * 2 - 1; const c = Math.sqrt(1 - u * u); this.x = c * Math.cos(theta); this.y = u; this.z = c * Math.sin(theta); return this; } *[Symbol.iterator]() { yield this.x; yield this.y; yield this.z; } } const _vector$c = /* @__PURE__ */ new Vector3(); const _quaternion$4 = /* @__PURE__ */ new Quaternion(); class Box3 { static { __name(this, "Box3"); } constructor(min = new Vector3(Infinity, Infinity, Infinity), max2 = new Vector3(-Infinity, -Infinity, -Infinity)) { this.isBox3 = true; this.min = min; this.max = max2; } set(min, max2) { this.min.copy(min); this.max.copy(max2); return this; } setFromArray(array) { this.makeEmpty(); for (let i = 0, il = array.length; i < il; i += 3) { this.expandByPoint(_vector$b.fromArray(array, i)); } return this; } setFromBufferAttribute(attribute) { this.makeEmpty(); for (let i = 0, il = attribute.count; i < il; i++) { this.expandByPoint(_vector$b.fromBufferAttribute(attribute, i)); } return this; } setFromPoints(points) { this.makeEmpty(); for (let i = 0, il = points.length; i < il; i++) { this.expandByPoint(points[i]); } return this; } setFromCenterAndSize(center, size) { const halfSize = _vector$b.copy(size).multiplyScalar(0.5); this.min.copy(center).sub(halfSize); this.max.copy(center).add(halfSize); return this; } setFromObject(object, precise = false) { this.makeEmpty(); return this.expandByObject(object, precise); } clone() { return new this.constructor().copy(this); } copy(box) { this.min.copy(box.min); this.max.copy(box.max); return this; } makeEmpty() { this.min.x = this.min.y = this.min.z = Infinity; this.max.x = this.max.y = this.max.z = -Infinity; return this; } isEmpty() { return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z; } getCenter(target) { return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5); } getSize(target) { return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min); } expandByPoint(point) { this.min.min(point); this.max.max(point); return this; } expandByVector(vector) { this.min.sub(vector); this.max.add(vector); return this; } expandByScalar(scalar) { this.min.addScalar(-scalar); this.max.addScalar(scalar); return this; } expandByObject(object, precise = false) { object.updateWorldMatrix(false, false); const geometry = object.geometry; if (geometry !== void 0) { const positionAttribute = geometry.getAttribute("position"); if (precise === true && positionAttribute !== void 0 && object.isInstancedMesh !== true) { for (let i = 0, l = positionAttribute.count; i < l; i++) { if (object.isMesh === true) { object.getVertexPosition(i, _vector$b); } else { _vector$b.fromBufferAttribute(positionAttribute, i); } _vector$b.applyMatrix4(object.matrixWorld); this.expandByPoint(_vector$b); } } else { if (object.boundingBox !== void 0) { if (object.boundingBox === null) { object.computeBoundingBox(); } _box$4.copy(object.boundingBox); } else { if (geometry.boundingBox === null) { geometry.computeBoundingBox(); } _box$4.copy(geometry.boundingBox); } _box$4.applyMatrix4(object.matrixWorld); this.union(_box$4); } } const children = object.children; for (let i = 0, l = children.length; i < l; i++) { this.expandByObject(children[i], precise); } return this; } containsPoint(point) { return point.x >= this.min.x && point.x <= this.max.x && point.y >= this.min.y && point.y <= this.max.y && point.z >= this.min.z && point.z <= this.max.z; } containsBox(box) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z; } getParameter(point, target) { return target.set( (point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z) ); } intersectsBox(box) { return box.max.x >= this.min.x && box.min.x <= this.max.x && box.max.y >= this.min.y && box.min.y <= this.max.y && box.max.z >= this.min.z && box.min.z <= this.max.z; } intersectsSphere(sphere) { this.clampPoint(sphere.center, _vector$b); return _vector$b.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius; } intersectsPlane(plane) { let min, max2; if (plane.normal.x > 0) { min = plane.normal.x * this.min.x; max2 = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max2 = plane.normal.x * this.min.x; } if (plane.normal.y > 0) { min += plane.normal.y * this.min.y; max2 += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max2 += plane.normal.y * this.min.y; } if (plane.normal.z > 0) { min += plane.normal.z * this.min.z; max2 += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max2 += plane.normal.z * this.min.z; } return min <= -plane.constant && max2 >= -plane.constant; } intersectsTriangle(triangle) { if (this.isEmpty()) { return false; } this.getCenter(_center); _extents.subVectors(this.max, _center); _v0$3.subVectors(triangle.a, _center); _v1$7.subVectors(triangle.b, _center); _v2$4.subVectors(triangle.c, _center); _f0.subVectors(_v1$7, _v0$3); _f1.subVectors(_v2$4, _v1$7); _f2.subVectors(_v0$3, _v2$4); let axes = [ 0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0 ]; if (!satForAxes(axes, _v0$3, _v1$7, _v2$4, _extents)) { return false; } axes = [1, 0, 0, 0, 1, 0, 0, 0, 1]; if (!satForAxes(axes, _v0$3, _v1$7, _v2$4, _extents)) { return false; } _triangleNormal.crossVectors(_f0, _f1); axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z]; return satForAxes(axes, _v0$3, _v1$7, _v2$4, _extents); } clampPoint(point, target) { return target.copy(point).clamp(this.min, this.max); } distanceToPoint(point) { return this.clampPoint(point, _vector$b).distanceTo(point); } getBoundingSphere(target) { if (this.isEmpty()) { target.makeEmpty(); } else { this.getCenter(target.center); target.radius = this.getSize(_vector$b).length() * 0.5; } return target; } intersect(box) { this.min.max(box.min); this.max.min(box.max); if (this.isEmpty()) this.makeEmpty(); return this; } union(box) { this.min.min(box.min); this.max.max(box.max); return this; } applyMatrix4(matrix) { if (this.isEmpty()) return this; _points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix); _points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix); _points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix); _points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix); _points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix); _points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix); _points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix); _points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix); this.setFromPoints(_points); return this; } translate(offset) { this.min.add(offset); this.max.add(offset); return this; } equals(box) { return box.min.equals(this.min) && box.max.equals(this.max); } } const _points = [ /* @__PURE__ */ new Vector3(), /* @__PURE__ */ new Vector3(), /* @__PURE__ */ new Vector3(), /* @__PURE__ */ new Vector3(), /* @__PURE__ */ new Vector3(), /* @__PURE__ */ new Vector3(), /* @__PURE__ */ new Vector3(), /* @__PURE__ */ new Vector3() ]; const _vector$b = /* @__PURE__ */ new Vector3(); const _box$4 = /* @__PURE__ */ new Box3(); const _v0$3 = /* @__PURE__ */ new Vector3(); const _v1$7 = /* @__PURE__ */ new Vector3(); const _v2$4 = /* @__PURE__ */ new Vector3(); const _f0 = /* @__PURE__ */ new Vector3(); const _f1 = /* @__PURE__ */ new Vector3(); const _f2 = /* @__PURE__ */ new Vector3(); const _center = /* @__PURE__ */ new Vector3(); const _extents = /* @__PURE__ */ new Vector3(); const _triangleNormal = /* @__PURE__ */ new Vector3(); const _testAxis = /* @__PURE__ */ new Vector3(); function satForAxes(axes, v0, v1, v2, extents) { for (let i = 0, j = axes.length - 3; i <= j; i += 3) { _testAxis.fromArray(axes, i); const r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z); const p0 = v0.dot(_testAxis); const p1 = v1.dot(_testAxis); const p2 = v2.dot(_testAxis); if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) { return false; } } return true; } __name(satForAxes, "satForAxes"); const _box$3 = /* @__PURE__ */ new Box3(); const _v1$6 = /* @__PURE__ */ new Vector3(); const _v2$3 = /* @__PURE__ */ new Vector3(); class Sphere { static { __name(this, "Sphere"); } constructor(center = new Vector3(), radius = -1) { this.isSphere = true; this.center = center; this.radius = radius; } set(center, radius) { this.center.copy(center); this.radius = radius; return this; } setFromPoints(points, optionalCenter) { const center = this.center; if (optionalCenter !== void 0) { center.copy(optionalCenter); } else { _box$3.setFromPoints(points).getCenter(center); } let maxRadiusSq = 0; for (let i = 0, il = points.length; i < il; i++) { maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i])); } this.radius = Math.sqrt(maxRadiusSq); return this; } copy(sphere) { this.center.copy(sphere.center); this.radius = sphere.radius; return this; } isEmpty() { return this.radius < 0; } makeEmpty() { this.center.set(0, 0, 0); this.radius = -1; return this; } containsPoint(point) { return point.distanceToSquared(this.center) <= this.radius * this.radius; } distanceToPoint(point) { return point.distanceTo(this.center) - this.radius; } intersectsSphere(sphere) { const radiusSum = this.radius + sphere.radius; return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum; } intersectsBox(box) { return box.intersectsSphere(this); } intersectsPlane(plane) { return Math.abs(plane.distanceToPoint(this.center)) <= this.radius; } clampPoint(point, target) { const deltaLengthSq = this.center.distanceToSquared(point); target.copy(point); if (deltaLengthSq > this.radius * this.radius) { target.sub(this.center).normalize(); target.multiplyScalar(this.radius).add(this.center); } return target; } getBoundingBox(target) { if (this.isEmpty()) { target.makeEmpty(); return target; } target.set(this.center, this.center); target.expandByScalar(this.radius); return target; } applyMatrix4(matrix) { this.center.applyMatrix4(matrix); this.radius = this.radius * matrix.getMaxScaleOnAxis(); return this; } translate(offset) { this.center.add(offset); return this; } expandByPoint(point) { if (this.isEmpty()) { this.center.copy(point); this.radius = 0; return this; } _v1$6.subVectors(point, this.center); const lengthSq = _v1$6.lengthSq(); if (lengthSq > this.radius * this.radius) { const length = Math.sqrt(lengthSq); const delta = (length - this.radius) * 0.5; this.center.addScaledVector(_v1$6, delta / length); this.radius += delta; } return this; } union(sphere) { if (sphere.isEmpty()) { return this; } if (this.isEmpty()) { this.copy(sphere); return this; } if (this.center.equals(sphere.center) === true) { this.radius = Math.max(this.radius, sphere.radius); } else { _v2$3.subVectors(sphere.center, this.center).setLength(sphere.radius); this.expandByPoint(_v1$6.copy(sphere.center).add(_v2$3)); this.expandByPoint(_v1$6.copy(sphere.center).sub(_v2$3)); } return this; } equals(sphere) { return sphere.center.equals(this.center) && sphere.radius === this.radius; } clone() { return new this.constructor().copy(this); } } const _vector$a = /* @__PURE__ */ new Vector3(); const _segCenter = /* @__PURE__ */ new Vector3(); const _segDir = /* @__PURE__ */ new Vector3(); const _diff = /* @__PURE__ */ new Vector3(); const _edge1 = /* @__PURE__ */ new Vector3(); const _edge2 = /* @__PURE__ */ new Vector3(); const _normal$1 = /* @__PURE__ */ new Vector3(); class Ray { static { __name(this, "Ray"); } constructor(origin = new Vector3(), direction = new Vector3(0, 0, -1)) { this.origin = origin; this.direction = direction; } set(origin, direction) { this.origin.copy(origin); this.direction.copy(direction); return this; } copy(ray) { this.origin.copy(ray.origin); this.direction.copy(ray.direction); return this; } at(t, target) { return target.copy(this.origin).addScaledVector(this.direction, t); } lookAt(v) { this.direction.copy(v).sub(this.origin).normalize(); return this; } recast(t) { this.origin.copy(this.at(t, _vector$a)); return this; } closestPointToPoint(point, target) { target.subVectors(point, this.origin); const directionDistance = target.dot(this.direction); if (directionDistance < 0) { return target.copy(this.origin); } return target.copy(this.origin).addScaledVector(this.direction, directionDistance); } distanceToPoint(point) { return Math.sqrt(this.distanceSqToPoint(point)); } distanceSqToPoint(point) { const directionDistance = _vector$a.subVectors(point, this.origin).dot(this.direction); if (directionDistance < 0) { return this.origin.distanceToSquared(point); } _vector$a.copy(this.origin).addScaledVector(this.direction, directionDistance); return _vector$a.distanceToSquared(point); } distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) { _segCenter.copy(v0).add(v1).multiplyScalar(0.5); _segDir.copy(v1).sub(v0).normalize(); _diff.copy(this.origin).sub(_segCenter); const segExtent = v0.distanceTo(v1) * 0.5; const a01 = -this.direction.dot(_segDir); const b0 = _diff.dot(this.direction); const b1 = -_diff.dot(_segDir); const c = _diff.lengthSq(); const det = Math.abs(1 - a01 * a01); let s0, s1, sqrDist, extDet; if (det > 0) { s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det; if (s0 >= 0) { if (s1 >= -extDet) { if (s1 <= extDet) { const invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c; } else { s1 = segExtent; s0 = Math.max(0, -(a01 * s1 + b0)); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } } else { s1 = -segExtent; s0 = Math.max(0, -(a01 * s1 + b0)); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } } else { if (s1 <= -extDet) { s0 = Math.max(0, -(-a01 * segExtent + b0)); s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } else if (s1 <= extDet) { s0 = 0; s1 = Math.min(Math.max(-segExtent, -b1), segExtent); sqrDist = s1 * (s1 + 2 * b1) + c; } else { s0 = Math.max(0, -(a01 * segExtent + b0)); s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } } } else { s1 = a01 > 0 ? -segExtent : segExtent; s0 = Math.max(0, -(a01 * s1 + b0)); sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c; } if (optionalPointOnRay) { optionalPointOnRay.copy(this.origin).addScaledVector(this.direction, s0); } if (optionalPointOnSegment) { optionalPointOnSegment.copy(_segCenter).addScaledVector(_segDir, s1); } return sqrDist; } intersectSphere(sphere, target) { _vector$a.subVectors(sphere.center, this.origin); const tca = _vector$a.dot(this.direction); const d2 = _vector$a.dot(_vector$a) - tca * tca; const radius2 = sphere.radius * sphere.radius; if (d2 > radius2) return null; const thc = Math.sqrt(radius2 - d2); const t0 = tca - thc; const t1 = tca + thc; if (t1 < 0) return null; if (t0 < 0) return this.at(t1, target); return this.at(t0, target); } intersectsSphere(sphere) { return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius; } distanceToPlane(plane) { const denominator = plane.normal.dot(this.direction); if (denominator === 0) { if (plane.distanceToPoint(this.origin) === 0) { return 0; } return null; } const t = -(this.origin.dot(plane.normal) + plane.constant) / denominator; return t >= 0 ? t : null; } intersectPlane(plane, target) { const t = this.distanceToPlane(plane); if (t === null) { return null; } return this.at(t, target); } intersectsPlane(plane) { const distToPoint = plane.distanceToPoint(this.origin); if (distToPoint === 0) { return true; } const denominator = plane.normal.dot(this.direction); if (denominator * distToPoint < 0) { return true; } return false; } intersectBox(box, target) { let tmin, tmax, tymin, tymax, tzmin, tzmax; const invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z; const origin = this.origin; if (invdirx >= 0) { tmin = (box.min.x - origin.x) * invdirx; tmax = (box.max.x - origin.x) * invdirx; } else { tmin = (box.max.x - origin.x) * invdirx; tmax = (box.min.x - origin.x) * invdirx; } if (invdiry >= 0) { tymin = (box.min.y - origin.y) * invdiry; tymax = (box.max.y - origin.y) * invdiry; } else { tymin = (box.max.y - origin.y) * invdiry; tymax = (box.min.y - origin.y) * invdiry; } if (tmin > tymax || tymin > tmax) return null; if (tymin > tmin || isNaN(tmin)) tmin = tymin; if (tymax < tmax || isNaN(tmax)) tmax = tymax; if (invdirz >= 0) { tzmin = (box.min.z - origin.z) * invdirz; tzmax = (box.max.z - origin.z) * invdirz; } else { tzmin = (box.max.z - origin.z) * invdirz; tzmax = (box.min.z - origin.z) * invdirz; } if (tmin > tzmax || tzmin > tmax) return null; if (tzmin > tmin || tmin !== tmin) tmin = tzmin; if (tzmax < tmax || tmax !== tmax) tmax = tzmax; if (tmax < 0) return null; return this.at(tmin >= 0 ? tmin : tmax, target); } intersectsBox(box) { return this.intersectBox(box, _vector$a) !== null; } intersectTriangle(a, b, c, backfaceCulling, target) { _edge1.subVectors(b, a); _edge2.subVectors(c, a); _normal$1.crossVectors(_edge1, _edge2); let DdN = this.direction.dot(_normal$1); let sign2; if (DdN > 0) { if (backfaceCulling) return null; sign2 = 1; } else if (DdN < 0) { sign2 = -1; DdN = -DdN; } else { return null; } _diff.subVectors(this.origin, a); const DdQxE2 = sign2 * this.direction.dot(_edge2.crossVectors(_diff, _edge2)); if (DdQxE2 < 0) { return null; } const DdE1xQ = sign2 * this.direction.dot(_edge1.cross(_diff)); if (DdE1xQ < 0) { return null; } if (DdQxE2 + DdE1xQ > DdN) { return null; } const QdN = -sign2 * _diff.dot(_normal$1); if (QdN < 0) { return null; } return this.at(QdN / DdN, target); } applyMatrix4(matrix4) { this.origin.applyMatrix4(matrix4); this.direction.transformDirection(matrix4); return this; } equals(ray) { return ray.origin.equals(this.origin) && ray.direction.equals(this.direction); } clone() { return new this.constructor().copy(this); } } class Matrix4 { static { __name(this, "Matrix4"); } constructor(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) { Matrix4.prototype.isMatrix4 = true; this.elements = [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ]; if (n11 !== void 0) { this.set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44); } } set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) { const te2 = this.elements; te2[0] = n11; te2[4] = n12; te2[8] = n13; te2[12] = n14; te2[1] = n21; te2[5] = n22; te2[9] = n23; te2[13] = n24; te2[2] = n31; te2[6] = n32; te2[10] = n33; te2[14] = n34; te2[3] = n41; te2[7] = n42; te2[11] = n43; te2[15] = n44; return this; } identity() { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; } clone() { return new Matrix4().fromArray(this.elements); } copy(m) { const te2 = this.elements; const me = m.elements; te2[0] = me[0]; te2[1] = me[1]; te2[2] = me[2]; te2[3] = me[3]; te2[4] = me[4]; te2[5] = me[5]; te2[6] = me[6]; te2[7] = me[7]; te2[8] = me[8]; te2[9] = me[9]; te2[10] = me[10]; te2[11] = me[11]; te2[12] = me[12]; te2[13] = me[13]; te2[14] = me[14]; te2[15] = me[15]; return this; } copyPosition(m) { const te2 = this.elements, me = m.elements; te2[12] = me[12]; te2[13] = me[13]; te2[14] = me[14]; return this; } setFromMatrix3(m) { const me = m.elements; this.set( me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1 ); return this; } extractBasis(xAxis, yAxis, zAxis) { xAxis.setFromMatrixColumn(this, 0); yAxis.setFromMatrixColumn(this, 1); zAxis.setFromMatrixColumn(this, 2); return this; } makeBasis(xAxis, yAxis, zAxis) { this.set( xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1 ); return this; } extractRotation(m) { const te2 = this.elements; const me = m.elements; const scaleX = 1 / _v1$5.setFromMatrixColumn(m, 0).length(); const scaleY = 1 / _v1$5.setFromMatrixColumn(m, 1).length(); const scaleZ = 1 / _v1$5.setFromMatrixColumn(m, 2).length(); te2[0] = me[0] * scaleX; te2[1] = me[1] * scaleX; te2[2] = me[2] * scaleX; te2[3] = 0; te2[4] = me[4] * scaleY; te2[5] = me[5] * scaleY; te2[6] = me[6] * scaleY; te2[7] = 0; te2[8] = me[8] * scaleZ; te2[9] = me[9] * scaleZ; te2[10] = me[10] * scaleZ; te2[11] = 0; te2[12] = 0; te2[13] = 0; te2[14] = 0; te2[15] = 1; return this; } makeRotationFromEuler(euler) { const te2 = this.elements; const x = euler.x, y = euler.y, z = euler.z; const a = Math.cos(x), b = Math.sin(x); const c = Math.cos(y), d = Math.sin(y); const e = Math.cos(z), f = Math.sin(z); if (euler.order === "XYZ") { const ae = a * e, af = a * f, be = b * e, bf = b * f; te2[0] = c * e; te2[4] = -c * f; te2[8] = d; te2[1] = af + be * d; te2[5] = ae - bf * d; te2[9] = -b * c; te2[2] = bf - ae * d; te2[6] = be + af * d; te2[10] = a * c; } else if (euler.order === "YXZ") { const ce = c * e, cf = c * f, de = d * e, df = d * f; te2[0] = ce + df * b; te2[4] = de * b - cf; te2[8] = a * d; te2[1] = a * f; te2[5] = a * e; te2[9] = -b; te2[2] = cf * b - de; te2[6] = df + ce * b; te2[10] = a * c; } else if (euler.order === "ZXY") { const ce = c * e, cf = c * f, de = d * e, df = d * f; te2[0] = ce - df * b; te2[4] = -a * f; te2[8] = de + cf * b; te2[1] = cf + de * b; te2[5] = a * e; te2[9] = df - ce * b; te2[2] = -a * d; te2[6] = b; te2[10] = a * c; } else if (euler.order === "ZYX") { const ae = a * e, af = a * f, be = b * e, bf = b * f; te2[0] = c * e; te2[4] = be * d - af; te2[8] = ae * d + bf; te2[1] = c * f; te2[5] = bf * d + ae; te2[9] = af * d - be; te2[2] = -d; te2[6] = b * c; te2[10] = a * c; } else if (euler.order === "YZX") { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te2[0] = c * e; te2[4] = bd - ac * f; te2[8] = bc * f + ad; te2[1] = f; te2[5] = a * e; te2[9] = -b * e; te2[2] = -d * e; te2[6] = ad * f + bc; te2[10] = ac - bd * f; } else if (euler.order === "XZY") { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te2[0] = c * e; te2[4] = -f; te2[8] = d * e; te2[1] = ac * f + bd; te2[5] = a * e; te2[9] = ad * f - bc; te2[2] = bc * f - ad; te2[6] = b * e; te2[10] = bd * f + ac; } te2[3] = 0; te2[7] = 0; te2[11] = 0; te2[12] = 0; te2[13] = 0; te2[14] = 0; te2[15] = 1; return this; } makeRotationFromQuaternion(q) { return this.compose(_zero, q, _one); } lookAt(eye, target, up) { const te2 = this.elements; _z.subVectors(eye, target); if (_z.lengthSq() === 0) { _z.z = 1; } _z.normalize(); _x.crossVectors(up, _z); if (_x.lengthSq() === 0) { if (Math.abs(up.z) === 1) { _z.x += 1e-4; } else { _z.z += 1e-4; } _z.normalize(); _x.crossVectors(up, _z); } _x.normalize(); _y.crossVectors(_z, _x); te2[0] = _x.x; te2[4] = _y.x; te2[8] = _z.x; te2[1] = _x.y; te2[5] = _y.y; te2[9] = _z.y; te2[2] = _x.z; te2[6] = _y.z; te2[10] = _z.z; return this; } multiply(m) { return this.multiplyMatrices(this, m); } premultiply(m) { return this.multiplyMatrices(m, this); } multiplyMatrices(a, b) { const ae = a.elements; const be = b.elements; const te2 = this.elements; const a11 = ae[0], a12 = ae[4], a13 = ae[8], a14 = ae[12]; const a21 = ae[1], a22 = ae[5], a23 = ae[9], a24 = ae[13]; const a31 = ae[2], a32 = ae[6], a33 = ae[10], a34 = ae[14]; const a41 = ae[3], a42 = ae[7], a43 = ae[11], a44 = ae[15]; const b11 = be[0], b12 = be[4], b13 = be[8], b14 = be[12]; const b21 = be[1], b22 = be[5], b23 = be[9], b24 = be[13]; const b31 = be[2], b32 = be[6], b33 = be[10], b34 = be[14]; const b41 = be[3], b42 = be[7], b43 = be[11], b44 = be[15]; te2[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te2[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te2[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te2[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te2[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te2[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te2[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te2[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te2[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te2[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te2[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te2[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te2[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te2[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te2[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te2[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; } multiplyScalar(s) { const te2 = this.elements; te2[0] *= s; te2[4] *= s; te2[8] *= s; te2[12] *= s; te2[1] *= s; te2[5] *= s; te2[9] *= s; te2[13] *= s; te2[2] *= s; te2[6] *= s; te2[10] *= s; te2[14] *= s; te2[3] *= s; te2[7] *= s; te2[11] *= s; te2[15] *= s; return this; } determinant() { const te2 = this.elements; const n11 = te2[0], n12 = te2[4], n13 = te2[8], n14 = te2[12]; const n21 = te2[1], n22 = te2[5], n23 = te2[9], n24 = te2[13]; const n31 = te2[2], n32 = te2[6], n33 = te2[10], n34 = te2[14]; const n41 = te2[3], n42 = te2[7], n43 = te2[11], n44 = te2[15]; return n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31); } transpose() { const te2 = this.elements; let tmp2; tmp2 = te2[1]; te2[1] = te2[4]; te2[4] = tmp2; tmp2 = te2[2]; te2[2] = te2[8]; te2[8] = tmp2; tmp2 = te2[6]; te2[6] = te2[9]; te2[9] = tmp2; tmp2 = te2[3]; te2[3] = te2[12]; te2[12] = tmp2; tmp2 = te2[7]; te2[7] = te2[13]; te2[13] = tmp2; tmp2 = te2[11]; te2[11] = te2[14]; te2[14] = tmp2; return this; } setPosition(x, y, z) { const te2 = this.elements; if (x.isVector3) { te2[12] = x.x; te2[13] = x.y; te2[14] = x.z; } else { te2[12] = x; te2[13] = y; te2[14] = z; } return this; } invert() { const te2 = this.elements, n11 = te2[0], n21 = te2[1], n31 = te2[2], n41 = te2[3], n12 = te2[4], n22 = te2[5], n32 = te2[6], n42 = te2[7], n13 = te2[8], n23 = te2[9], n33 = te2[10], n43 = te2[11], n14 = te2[12], n24 = te2[13], n34 = te2[14], n44 = te2[15], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); const detInv = 1 / det; te2[0] = t11 * detInv; te2[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv; te2[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv; te2[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv; te2[4] = t12 * detInv; te2[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv; te2[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv; te2[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv; te2[8] = t13 * detInv; te2[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv; te2[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv; te2[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv; te2[12] = t14 * detInv; te2[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv; te2[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv; te2[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv; return this; } scale(v) { const te2 = this.elements; const x = v.x, y = v.y, z = v.z; te2[0] *= x; te2[4] *= y; te2[8] *= z; te2[1] *= x; te2[5] *= y; te2[9] *= z; te2[2] *= x; te2[6] *= y; te2[10] *= z; te2[3] *= x; te2[7] *= y; te2[11] *= z; return this; } getMaxScaleOnAxis() { const te2 = this.elements; const scaleXSq = te2[0] * te2[0] + te2[1] * te2[1] + te2[2] * te2[2]; const scaleYSq = te2[4] * te2[4] + te2[5] * te2[5] + te2[6] * te2[6]; const scaleZSq = te2[8] * te2[8] + te2[9] * te2[9] + te2[10] * te2[10]; return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq)); } makeTranslation(x, y, z) { if (x.isVector3) { this.set( 1, 0, 0, x.x, 0, 1, 0, x.y, 0, 0, 1, x.z, 0, 0, 0, 1 ); } else { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); } return this; } makeRotationX(theta) { const c = Math.cos(theta), s = Math.sin(theta); this.set( 1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; } makeRotationY(theta) { const c = Math.cos(theta), s = Math.sin(theta); this.set( c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1 ); return this; } makeRotationZ(theta) { const c = Math.cos(theta), s = Math.sin(theta); this.set( c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; } makeRotationAxis(axis, angle) { const c = Math.cos(angle); const s = Math.sin(angle); const t = 1 - c; const x = axis.x, y = axis.y, z = axis.z; const tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; } makeScale(x, y, z) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; } makeShear(xy, xz, yx, yz, zx, zy) { this.set( 1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1 ); return this; } compose(position, quaternion, scale) { const te2 = this.elements; const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w; const x2 = x + x, y2 = y + y, z2 = z + z; const xx = x * x2, xy = x * y2, xz = x * z2; const yy = y * y2, yz = y * z2, zz = z * z2; const wx = w * x2, wy = w * y2, wz = w * z2; const sx = scale.x, sy = scale.y, sz = scale.z; te2[0] = (1 - (yy + zz)) * sx; te2[1] = (xy + wz) * sx; te2[2] = (xz - wy) * sx; te2[3] = 0; te2[4] = (xy - wz) * sy; te2[5] = (1 - (xx + zz)) * sy; te2[6] = (yz + wx) * sy; te2[7] = 0; te2[8] = (xz + wy) * sz; te2[9] = (yz - wx) * sz; te2[10] = (1 - (xx + yy)) * sz; te2[11] = 0; te2[12] = position.x; te2[13] = position.y; te2[14] = position.z; te2[15] = 1; return this; } decompose(position, quaternion, scale) { const te2 = this.elements; let sx = _v1$5.set(te2[0], te2[1], te2[2]).length(); const sy = _v1$5.set(te2[4], te2[5], te2[6]).length(); const sz = _v1$5.set(te2[8], te2[9], te2[10]).length(); const det = this.determinant(); if (det < 0) sx = -sx; position.x = te2[12]; position.y = te2[13]; position.z = te2[14]; _m1$4.copy(this); const invSX = 1 / sx; const invSY = 1 / sy; const invSZ = 1 / sz; _m1$4.elements[0] *= invSX; _m1$4.elements[1] *= invSX; _m1$4.elements[2] *= invSX; _m1$4.elements[4] *= invSY; _m1$4.elements[5] *= invSY; _m1$4.elements[6] *= invSY; _m1$4.elements[8] *= invSZ; _m1$4.elements[9] *= invSZ; _m1$4.elements[10] *= invSZ; quaternion.setFromRotationMatrix(_m1$4); scale.x = sx; scale.y = sy; scale.z = sz; return this; } makePerspective(left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem) { const te2 = this.elements; const x = 2 * near / (right - left); const y = 2 * near / (top - bottom); const a = (right + left) / (right - left); const b = (top + bottom) / (top - bottom); let c, d; if (coordinateSystem === WebGLCoordinateSystem) { c = -(far + near) / (far - near); d = -2 * far * near / (far - near); } else if (coordinateSystem === WebGPUCoordinateSystem) { c = -far / (far - near); d = -far * near / (far - near); } else { throw new Error("THREE.Matrix4.makePerspective(): Invalid coordinate system: " + coordinateSystem); } te2[0] = x; te2[4] = 0; te2[8] = a; te2[12] = 0; te2[1] = 0; te2[5] = y; te2[9] = b; te2[13] = 0; te2[2] = 0; te2[6] = 0; te2[10] = c; te2[14] = d; te2[3] = 0; te2[7] = 0; te2[11] = -1; te2[15] = 0; return this; } makeOrthographic(left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem) { const te2 = this.elements; const w = 1 / (right - left); const h = 1 / (top - bottom); const p = 1 / (far - near); const x = (right + left) * w; const y = (top + bottom) * h; let z, zInv; if (coordinateSystem === WebGLCoordinateSystem) { z = (far + near) * p; zInv = -2 * p; } else if (coordinateSystem === WebGPUCoordinateSystem) { z = near * p; zInv = -1 * p; } else { throw new Error("THREE.Matrix4.makeOrthographic(): Invalid coordinate system: " + coordinateSystem); } te2[0] = 2 * w; te2[4] = 0; te2[8] = 0; te2[12] = -x; te2[1] = 0; te2[5] = 2 * h; te2[9] = 0; te2[13] = -y; te2[2] = 0; te2[6] = 0; te2[10] = zInv; te2[14] = -z; te2[3] = 0; te2[7] = 0; te2[11] = 0; te2[15] = 1; return this; } equals(matrix) { const te2 = this.elements; const me = matrix.elements; for (let i = 0; i < 16; i++) { if (te2[i] !== me[i]) return false; } return true; } fromArray(array, offset = 0) { for (let i = 0; i < 16; i++) { this.elements[i] = array[i + offset]; } return this; } toArray(array = [], offset = 0) { const te2 = this.elements; array[offset] = te2[0]; array[offset + 1] = te2[1]; array[offset + 2] = te2[2]; array[offset + 3] = te2[3]; array[offset + 4] = te2[4]; array[offset + 5] = te2[5]; array[offset + 6] = te2[6]; array[offset + 7] = te2[7]; array[offset + 8] = te2[8]; array[offset + 9] = te2[9]; array[offset + 10] = te2[10]; array[offset + 11] = te2[11]; array[offset + 12] = te2[12]; array[offset + 13] = te2[13]; array[offset + 14] = te2[14]; array[offset + 15] = te2[15]; return array; } } const _v1$5 = /* @__PURE__ */ new Vector3(); const _m1$4 = /* @__PURE__ */ new Matrix4(); const _zero = /* @__PURE__ */ new Vector3(0, 0, 0); const _one = /* @__PURE__ */ new Vector3(1, 1, 1); const _x = /* @__PURE__ */ new Vector3(); const _y = /* @__PURE__ */ new Vector3(); const _z = /* @__PURE__ */ new Vector3(); const _matrix$2 = /* @__PURE__ */ new Matrix4(); const _quaternion$3 = /* @__PURE__ */ new Quaternion(); class Euler { static { __name(this, "Euler"); } constructor(x = 0, y = 0, z = 0, order = Euler.DEFAULT_ORDER) { this.isEuler = true; this._x = x; this._y = y; this._z = z; this._order = order; } get x() { return this._x; } set x(value) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y(value) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z(value) { this._z = value; this._onChangeCallback(); } get order() { return this._order; } set order(value) { this._order = value; this._onChangeCallback(); } set(x, y, z, order = this._order) { this._x = x; this._y = y; this._z = z; this._order = order; this._onChangeCallback(); return this; } clone() { return new this.constructor(this._x, this._y, this._z, this._order); } copy(euler) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this._onChangeCallback(); return this; } setFromRotationMatrix(m, order = this._order, update = true) { const te2 = m.elements; const m11 = te2[0], m12 = te2[4], m13 = te2[8]; const m21 = te2[1], m22 = te2[5], m23 = te2[9]; const m31 = te2[2], m32 = te2[6], m33 = te2[10]; switch (order) { case "XYZ": this._y = Math.asin(clamp(m13, -1, 1)); if (Math.abs(m13) < 0.9999999) { this._x = Math.atan2(-m23, m33); this._z = Math.atan2(-m12, m11); } else { this._x = Math.atan2(m32, m22); this._z = 0; } break; case "YXZ": this._x = Math.asin(-clamp(m23, -1, 1)); if (Math.abs(m23) < 0.9999999) { this._y = Math.atan2(m13, m33); this._z = Math.atan2(m21, m22); } else { this._y = Math.atan2(-m31, m11); this._z = 0; } break; case "ZXY": this._x = Math.asin(clamp(m32, -1, 1)); if (Math.abs(m32) < 0.9999999) { this._y = Math.atan2(-m31, m33); this._z = Math.atan2(-m12, m22); } else { this._y = 0; this._z = Math.atan2(m21, m11); } break; case "ZYX": this._y = Math.asin(-clamp(m31, -1, 1)); if (Math.abs(m31) < 0.9999999) { this._x = Math.atan2(m32, m33); this._z = Math.atan2(m21, m11); } else { this._x = 0; this._z = Math.atan2(-m12, m22); } break; case "YZX": this._z = Math.asin(clamp(m21, -1, 1)); if (Math.abs(m21) < 0.9999999) { this._x = Math.atan2(-m23, m22); this._y = Math.atan2(-m31, m11); } else { this._x = 0; this._y = Math.atan2(m13, m33); } break; case "XZY": this._z = Math.asin(-clamp(m12, -1, 1)); if (Math.abs(m12) < 0.9999999) { this._x = Math.atan2(m32, m22); this._y = Math.atan2(m13, m11); } else { this._x = Math.atan2(-m23, m33); this._y = 0; } break; default: console.warn("THREE.Euler: .setFromRotationMatrix() encountered an unknown order: " + order); } this._order = order; if (update === true) this._onChangeCallback(); return this; } setFromQuaternion(q, order, update) { _matrix$2.makeRotationFromQuaternion(q); return this.setFromRotationMatrix(_matrix$2, order, update); } setFromVector3(v, order = this._order) { return this.set(v.x, v.y, v.z, order); } reorder(newOrder) { _quaternion$3.setFromEuler(this); return this.setFromQuaternion(_quaternion$3, newOrder); } equals(euler) { return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order; } fromArray(array) { this._x = array[0]; this._y = array[1]; this._z = array[2]; if (array[3] !== void 0) this._order = array[3]; this._onChangeCallback(); return this; } toArray(array = [], offset = 0) { array[offset] = this._x; array[offset + 1] = this._y; array[offset + 2] = this._z; array[offset + 3] = this._order; return array; } _onChange(callback) { this._onChangeCallback = callback; return this; } _onChangeCallback() { } *[Symbol.iterator]() { yield this._x; yield this._y; yield this._z; yield this._order; } } Euler.DEFAULT_ORDER = "XYZ"; class Layers { static { __name(this, "Layers"); } constructor() { this.mask = 1 | 0; } set(channel) { this.mask = (1 << channel | 0) >>> 0; } enable(channel) { this.mask |= 1 << channel | 0; } enableAll() { this.mask = 4294967295 | 0; } toggle(channel) { this.mask ^= 1 << channel | 0; } disable(channel) { this.mask &= ~(1 << channel | 0); } disableAll() { this.mask = 0; } test(layers) { return (this.mask & layers.mask) !== 0; } isEnabled(channel) { return (this.mask & (1 << channel | 0)) !== 0; } } let _object3DId = 0; const _v1$4 = /* @__PURE__ */ new Vector3(); const _q1 = /* @__PURE__ */ new Quaternion(); const _m1$3 = /* @__PURE__ */ new Matrix4(); const _target = /* @__PURE__ */ new Vector3(); const _position$3 = /* @__PURE__ */ new Vector3(); const _scale$2 = /* @__PURE__ */ new Vector3(); const _quaternion$2 = /* @__PURE__ */ new Quaternion(); const _xAxis = /* @__PURE__ */ new Vector3(1, 0, 0); const _yAxis = /* @__PURE__ */ new Vector3(0, 1, 0); const _zAxis = /* @__PURE__ */ new Vector3(0, 0, 1); const _addedEvent = { type: "added" }; const _removedEvent = { type: "removed" }; const _childaddedEvent = { type: "childadded", child: null }; const _childremovedEvent = { type: "childremoved", child: null }; class Object3D extends EventDispatcher { static { __name(this, "Object3D"); } constructor() { super(); this.isObject3D = true; Object.defineProperty(this, "id", { value: _object3DId++ }); this.uuid = generateUUID(); this.name = ""; this.type = "Object3D"; this.parent = null; this.children = []; this.up = Object3D.DEFAULT_UP.clone(); const position = new Vector3(); const rotation = new Euler(); const quaternion = new Quaternion(); const scale = new Vector3(1, 1, 1); function onRotationChange() { quaternion.setFromEuler(rotation, false); } __name(onRotationChange, "onRotationChange"); function onQuaternionChange() { rotation.setFromQuaternion(quaternion, void 0, false); } __name(onQuaternionChange, "onQuaternionChange"); rotation._onChange(onRotationChange); quaternion._onChange(onQuaternionChange); Object.defineProperties(this, { position: { configurable: true, enumerable: true, value: position }, rotation: { configurable: true, enumerable: true, value: rotation }, quaternion: { configurable: true, enumerable: true, value: quaternion }, scale: { configurable: true, enumerable: true, value: scale }, modelViewMatrix: { value: new Matrix4() }, normalMatrix: { value: new Matrix3() } }); this.matrix = new Matrix4(); this.matrixWorld = new Matrix4(); this.matrixAutoUpdate = Object3D.DEFAULT_MATRIX_AUTO_UPDATE; this.matrixWorldAutoUpdate = Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE; this.matrixWorldNeedsUpdate = false; this.layers = new Layers(); this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this.renderOrder = 0; this.animations = []; this.userData = {}; } onBeforeShadow() { } onAfterShadow() { } onBeforeRender() { } onAfterRender() { } applyMatrix4(matrix) { if (this.matrixAutoUpdate) this.updateMatrix(); this.matrix.premultiply(matrix); this.matrix.decompose(this.position, this.quaternion, this.scale); } applyQuaternion(q) { this.quaternion.premultiply(q); return this; } setRotationFromAxisAngle(axis, angle) { this.quaternion.setFromAxisAngle(axis, angle); } setRotationFromEuler(euler) { this.quaternion.setFromEuler(euler, true); } setRotationFromMatrix(m) { this.quaternion.setFromRotationMatrix(m); } setRotationFromQuaternion(q) { this.quaternion.copy(q); } rotateOnAxis(axis, angle) { _q1.setFromAxisAngle(axis, angle); this.quaternion.multiply(_q1); return this; } rotateOnWorldAxis(axis, angle) { _q1.setFromAxisAngle(axis, angle); this.quaternion.premultiply(_q1); return this; } rotateX(angle) { return this.rotateOnAxis(_xAxis, angle); } rotateY(angle) { return this.rotateOnAxis(_yAxis, angle); } rotateZ(angle) { return this.rotateOnAxis(_zAxis, angle); } translateOnAxis(axis, distance) { _v1$4.copy(axis).applyQuaternion(this.quaternion); this.position.add(_v1$4.multiplyScalar(distance)); return this; } translateX(distance) { return this.translateOnAxis(_xAxis, distance); } translateY(distance) { return this.translateOnAxis(_yAxis, distance); } translateZ(distance) { return this.translateOnAxis(_zAxis, distance); } localToWorld(vector) { this.updateWorldMatrix(true, false); return vector.applyMatrix4(this.matrixWorld); } worldToLocal(vector) { this.updateWorldMatrix(true, false); return vector.applyMatrix4(_m1$3.copy(this.matrixWorld).invert()); } lookAt(x, y, z) { if (x.isVector3) { _target.copy(x); } else { _target.set(x, y, z); } const parent = this.parent; this.updateWorldMatrix(true, false); _position$3.setFromMatrixPosition(this.matrixWorld); if (this.isCamera || this.isLight) { _m1$3.lookAt(_position$3, _target, this.up); } else { _m1$3.lookAt(_target, _position$3, this.up); } this.quaternion.setFromRotationMatrix(_m1$3); if (parent) { _m1$3.extractRotation(parent.matrixWorld); _q1.setFromRotationMatrix(_m1$3); this.quaternion.premultiply(_q1.invert()); } } add(object) { if (arguments.length > 1) { for (let i = 0; i < arguments.length; i++) { this.add(arguments[i]); } return this; } if (object === this) { console.error("THREE.Object3D.add: object can't be added as a child of itself.", object); return this; } if (object && object.isObject3D) { object.removeFromParent(); object.parent = this; this.children.push(object); object.dispatchEvent(_addedEvent); _childaddedEvent.child = object; this.dispatchEvent(_childaddedEvent); _childaddedEvent.child = null; } else { console.error("THREE.Object3D.add: object not an instance of THREE.Object3D.", object); } return this; } remove(object) { if (arguments.length > 1) { for (let i = 0; i < arguments.length; i++) { this.remove(arguments[i]); } return this; } const index = this.children.indexOf(object); if (index !== -1) { object.parent = null; this.children.splice(index, 1); object.dispatchEvent(_removedEvent); _childremovedEvent.child = object; this.dispatchEvent(_childremovedEvent); _childremovedEvent.child = null; } return this; } removeFromParent() { const parent = this.parent; if (parent !== null) { parent.remove(this); } return this; } clear() { return this.remove(...this.children); } attach(object) { this.updateWorldMatrix(true, false); _m1$3.copy(this.matrixWorld).invert(); if (object.parent !== null) { object.parent.updateWorldMatrix(true, false); _m1$3.multiply(object.parent.matrixWorld); } object.applyMatrix4(_m1$3); object.removeFromParent(); object.parent = this; this.children.push(object); object.updateWorldMatrix(false, true); object.dispatchEvent(_addedEvent); _childaddedEvent.child = object; this.dispatchEvent(_childaddedEvent); _childaddedEvent.child = null; return this; } getObjectById(id2) { return this.getObjectByProperty("id", id2); } getObjectByName(name) { return this.getObjectByProperty("name", name); } getObjectByProperty(name, value) { if (this[name] === value) return this; for (let i = 0, l = this.children.length; i < l; i++) { const child = this.children[i]; const object = child.getObjectByProperty(name, value); if (object !== void 0) { return object; } } return void 0; } getObjectsByProperty(name, value, result = []) { if (this[name] === value) result.push(this); const children = this.children; for (let i = 0, l = children.length; i < l; i++) { children[i].getObjectsByProperty(name, value, result); } return result; } getWorldPosition(target) { this.updateWorldMatrix(true, false); return target.setFromMatrixPosition(this.matrixWorld); } getWorldQuaternion(target) { this.updateWorldMatrix(true, false); this.matrixWorld.decompose(_position$3, target, _scale$2); return target; } getWorldScale(target) { this.updateWorldMatrix(true, false); this.matrixWorld.decompose(_position$3, _quaternion$2, target); return target; } getWorldDirection(target) { this.updateWorldMatrix(true, false); const e = this.matrixWorld.elements; return target.set(e[8], e[9], e[10]).normalize(); } raycast() { } traverse(callback) { callback(this); const children = this.children; for (let i = 0, l = children.length; i < l; i++) { children[i].traverse(callback); } } traverseVisible(callback) { if (this.visible === false) return; callback(this); const children = this.children; for (let i = 0, l = children.length; i < l; i++) { children[i].traverseVisible(callback); } } traverseAncestors(callback) { const parent = this.parent; if (parent !== null) { callback(parent); parent.traverseAncestors(callback); } } updateMatrix() { this.matrix.compose(this.position, this.quaternion, this.scale); this.matrixWorldNeedsUpdate = true; } updateMatrixWorld(force) { if (this.matrixAutoUpdate) this.updateMatrix(); if (this.matrixWorldNeedsUpdate || force) { if (this.matrixWorldAutoUpdate === true) { if (this.parent === null) { this.matrixWorld.copy(this.matrix); } else { this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix); } } this.matrixWorldNeedsUpdate = false; force = true; } const children = this.children; for (let i = 0, l = children.length; i < l; i++) { const child = children[i]; child.updateMatrixWorld(force); } } updateWorldMatrix(updateParents, updateChildren) { const parent = this.parent; if (updateParents === true && parent !== null) { parent.updateWorldMatrix(true, false); } if (this.matrixAutoUpdate) this.updateMatrix(); if (this.matrixWorldAutoUpdate === true) { if (this.parent === null) { this.matrixWorld.copy(this.matrix); } else { this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix); } } if (updateChildren === true) { const children = this.children; for (let i = 0, l = children.length; i < l; i++) { const child = children[i]; child.updateWorldMatrix(false, true); } } } toJSON(meta) { const isRootObject = meta === void 0 || typeof meta === "string"; const output = {}; if (isRootObject) { meta = { geometries: {}, materials: {}, textures: {}, images: {}, shapes: {}, skeletons: {}, animations: {}, nodes: {} }; output.metadata = { version: 4.6, type: "Object", generator: "Object3D.toJSON" }; } const object = {}; object.uuid = this.uuid; object.type = this.type; if (this.name !== "") object.name = this.name; if (this.castShadow === true) object.castShadow = true; if (this.receiveShadow === true) object.receiveShadow = true; if (this.visible === false) object.visible = false; if (this.frustumCulled === false) object.frustumCulled = false; if (this.renderOrder !== 0) object.renderOrder = this.renderOrder; if (Object.keys(this.userData).length > 0) object.userData = this.userData; object.layers = this.layers.mask; object.matrix = this.matrix.toArray(); object.up = this.up.toArray(); if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false; if (this.isInstancedMesh) { object.type = "InstancedMesh"; object.count = this.count; object.instanceMatrix = this.instanceMatrix.toJSON(); if (this.instanceColor !== null) object.instanceColor = this.instanceColor.toJSON(); } if (this.isBatchedMesh) { object.type = "BatchedMesh"; object.perObjectFrustumCulled = this.perObjectFrustumCulled; object.sortObjects = this.sortObjects; object.drawRanges = this._drawRanges; object.reservedRanges = this._reservedRanges; object.visibility = this._visibility; object.active = this._active; object.bounds = this._bounds.map((bound) => ({ boxInitialized: bound.boxInitialized, boxMin: bound.box.min.toArray(), boxMax: bound.box.max.toArray(), sphereInitialized: bound.sphereInitialized, sphereRadius: bound.sphere.radius, sphereCenter: bound.sphere.center.toArray() })); object.maxInstanceCount = this._maxInstanceCount; object.maxVertexCount = this._maxVertexCount; object.maxIndexCount = this._maxIndexCount; object.geometryInitialized = this._geometryInitialized; object.geometryCount = this._geometryCount; object.matricesTexture = this._matricesTexture.toJSON(meta); if (this._colorsTexture !== null) object.colorsTexture = this._colorsTexture.toJSON(meta); if (this.boundingSphere !== null) { object.boundingSphere = { center: object.boundingSphere.center.toArray(), radius: object.boundingSphere.radius }; } if (this.boundingBox !== null) { object.boundingBox = { min: object.boundingBox.min.toArray(), max: object.boundingBox.max.toArray() }; } } function serialize(library, element) { if (library[element.uuid] === void 0) { library[element.uuid] = element.toJSON(meta); } return element.uuid; } __name(serialize, "serialize"); if (this.isScene) { if (this.background) { if (this.background.isColor) { object.background = this.background.toJSON(); } else if (this.background.isTexture) { object.background = this.background.toJSON(meta).uuid; } } if (this.environment && this.environment.isTexture && this.environment.isRenderTargetTexture !== true) { object.environment = this.environment.toJSON(meta).uuid; } } else if (this.isMesh || this.isLine || this.isPoints) { object.geometry = serialize(meta.geometries, this.geometry); const parameters = this.geometry.parameters; if (parameters !== void 0 && parameters.shapes !== void 0) { const shapes = parameters.shapes; if (Array.isArray(shapes)) { for (let i = 0, l = shapes.length; i < l; i++) { const shape = shapes[i]; serialize(meta.shapes, shape); } } else { serialize(meta.shapes, shapes); } } } if (this.isSkinnedMesh) { object.bindMode = this.bindMode; object.bindMatrix = this.bindMatrix.toArray(); if (this.skeleton !== void 0) { serialize(meta.skeletons, this.skeleton); object.skeleton = this.skeleton.uuid; } } if (this.material !== void 0) { if (Array.isArray(this.material)) { const uuids = []; for (let i = 0, l = this.material.length; i < l; i++) { uuids.push(serialize(meta.materials, this.material[i])); } object.material = uuids; } else { object.material = serialize(meta.materials, this.material); } } if (this.children.length > 0) { object.children = []; for (let i = 0; i < this.children.length; i++) { object.children.push(this.children[i].toJSON(meta).object); } } if (this.animations.length > 0) { object.animations = []; for (let i = 0; i < this.animations.length; i++) { const animation = this.animations[i]; object.animations.push(serialize(meta.animations, animation)); } } if (isRootObject) { const geometries = extractFromCache(meta.geometries); const materials = extractFromCache(meta.materials); const textures = extractFromCache(meta.textures); const images = extractFromCache(meta.images); const shapes = extractFromCache(meta.shapes); const skeletons = extractFromCache(meta.skeletons); const animations = extractFromCache(meta.animations); const nodes = extractFromCache(meta.nodes); if (geometries.length > 0) output.geometries = geometries; if (materials.length > 0) output.materials = materials; if (textures.length > 0) output.textures = textures; if (images.length > 0) output.images = images; if (shapes.length > 0) output.shapes = shapes; if (skeletons.length > 0) output.skeletons = skeletons; if (animations.length > 0) output.animations = animations; if (nodes.length > 0) output.nodes = nodes; } output.object = object; return output; function extractFromCache(cache) { const values = []; for (const key in cache) { const data = cache[key]; delete data.metadata; values.push(data); } return values; } __name(extractFromCache, "extractFromCache"); } clone(recursive) { return new this.constructor().copy(this, recursive); } copy(source, recursive = true) { this.name = source.name; this.up.copy(source.up); this.position.copy(source.position); this.rotation.order = source.rotation.order; this.quaternion.copy(source.quaternion); this.scale.copy(source.scale); this.matrix.copy(source.matrix); this.matrixWorld.copy(source.matrixWorld); this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrixWorldAutoUpdate = source.matrixWorldAutoUpdate; this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; this.layers.mask = source.layers.mask; this.visible = source.visible; this.castShadow = source.castShadow; this.receiveShadow = source.receiveShadow; this.frustumCulled = source.frustumCulled; this.renderOrder = source.renderOrder; this.animations = source.animations.slice(); this.userData = JSON.parse(JSON.stringify(source.userData)); if (recursive === true) { for (let i = 0; i < source.children.length; i++) { const child = source.children[i]; this.add(child.clone()); } } return this; } } Object3D.DEFAULT_UP = /* @__PURE__ */ new Vector3(0, 1, 0); Object3D.DEFAULT_MATRIX_AUTO_UPDATE = true; Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE = true; const _v0$2 = /* @__PURE__ */ new Vector3(); const _v1$3 = /* @__PURE__ */ new Vector3(); const _v2$2 = /* @__PURE__ */ new Vector3(); const _v3$2 = /* @__PURE__ */ new Vector3(); const _vab = /* @__PURE__ */ new Vector3(); const _vac = /* @__PURE__ */ new Vector3(); const _vbc = /* @__PURE__ */ new Vector3(); const _vap = /* @__PURE__ */ new Vector3(); const _vbp = /* @__PURE__ */ new Vector3(); const _vcp = /* @__PURE__ */ new Vector3(); const _v40 = /* @__PURE__ */ new Vector4(); const _v41 = /* @__PURE__ */ new Vector4(); const _v42 = /* @__PURE__ */ new Vector4(); class Triangle { static { __name(this, "Triangle"); } constructor(a = new Vector3(), b = new Vector3(), c = new Vector3()) { this.a = a; this.b = b; this.c = c; } static getNormal(a, b, c, target) { target.subVectors(c, b); _v0$2.subVectors(a, b); target.cross(_v0$2); const targetLengthSq = target.lengthSq(); if (targetLengthSq > 0) { return target.multiplyScalar(1 / Math.sqrt(targetLengthSq)); } return target.set(0, 0, 0); } // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html static getBarycoord(point, a, b, c, target) { _v0$2.subVectors(c, a); _v1$3.subVectors(b, a); _v2$2.subVectors(point, a); const dot00 = _v0$2.dot(_v0$2); const dot01 = _v0$2.dot(_v1$3); const dot02 = _v0$2.dot(_v2$2); const dot11 = _v1$3.dot(_v1$3); const dot12 = _v1$3.dot(_v2$2); const denom = dot00 * dot11 - dot01 * dot01; if (denom === 0) { target.set(0, 0, 0); return null; } const invDenom = 1 / denom; const u = (dot11 * dot02 - dot01 * dot12) * invDenom; const v = (dot00 * dot12 - dot01 * dot02) * invDenom; return target.set(1 - u - v, v, u); } static containsPoint(point, a, b, c) { if (this.getBarycoord(point, a, b, c, _v3$2) === null) { return false; } return _v3$2.x >= 0 && _v3$2.y >= 0 && _v3$2.x + _v3$2.y <= 1; } static getInterpolation(point, p1, p2, p3, v1, v2, v3, target) { if (this.getBarycoord(point, p1, p2, p3, _v3$2) === null) { target.x = 0; target.y = 0; if ("z" in target) target.z = 0; if ("w" in target) target.w = 0; return null; } target.setScalar(0); target.addScaledVector(v1, _v3$2.x); target.addScaledVector(v2, _v3$2.y); target.addScaledVector(v3, _v3$2.z); return target; } static getInterpolatedAttribute(attr, i1, i2, i3, barycoord, target) { _v40.setScalar(0); _v41.setScalar(0); _v42.setScalar(0); _v40.fromBufferAttribute(attr, i1); _v41.fromBufferAttribute(attr, i2); _v42.fromBufferAttribute(attr, i3); target.setScalar(0); target.addScaledVector(_v40, barycoord.x); target.addScaledVector(_v41, barycoord.y); target.addScaledVector(_v42, barycoord.z); return target; } static isFrontFacing(a, b, c, direction) { _v0$2.subVectors(c, b); _v1$3.subVectors(a, b); return _v0$2.cross(_v1$3).dot(direction) < 0 ? true : false; } set(a, b, c) { this.a.copy(a); this.b.copy(b); this.c.copy(c); return this; } setFromPointsAndIndices(points, i0, i1, i2) { this.a.copy(points[i0]); this.b.copy(points[i1]); this.c.copy(points[i2]); return this; } setFromAttributeAndIndices(attribute, i0, i1, i2) { this.a.fromBufferAttribute(attribute, i0); this.b.fromBufferAttribute(attribute, i1); this.c.fromBufferAttribute(attribute, i2); return this; } clone() { return new this.constructor().copy(this); } copy(triangle) { this.a.copy(triangle.a); this.b.copy(triangle.b); this.c.copy(triangle.c); return this; } getArea() { _v0$2.subVectors(this.c, this.b); _v1$3.subVectors(this.a, this.b); return _v0$2.cross(_v1$3).length() * 0.5; } getMidpoint(target) { return target.addVectors(this.a, this.b).add(this.c).multiplyScalar(1 / 3); } getNormal(target) { return Triangle.getNormal(this.a, this.b, this.c, target); } getPlane(target) { return target.setFromCoplanarPoints(this.a, this.b, this.c); } getBarycoord(point, target) { return Triangle.getBarycoord(point, this.a, this.b, this.c, target); } getInterpolation(point, v1, v2, v3, target) { return Triangle.getInterpolation(point, this.a, this.b, this.c, v1, v2, v3, target); } containsPoint(point) { return Triangle.containsPoint(point, this.a, this.b, this.c); } isFrontFacing(direction) { return Triangle.isFrontFacing(this.a, this.b, this.c, direction); } intersectsBox(box) { return box.intersectsTriangle(this); } closestPointToPoint(p, target) { const a = this.a, b = this.b, c = this.c; let v, w; _vab.subVectors(b, a); _vac.subVectors(c, a); _vap.subVectors(p, a); const d1 = _vab.dot(_vap); const d2 = _vac.dot(_vap); if (d1 <= 0 && d2 <= 0) { return target.copy(a); } _vbp.subVectors(p, b); const d3 = _vab.dot(_vbp); const d4 = _vac.dot(_vbp); if (d3 >= 0 && d4 <= d3) { return target.copy(b); } const vc = d1 * d4 - d3 * d2; if (vc <= 0 && d1 >= 0 && d3 <= 0) { v = d1 / (d1 - d3); return target.copy(a).addScaledVector(_vab, v); } _vcp.subVectors(p, c); const d5 = _vab.dot(_vcp); const d6 = _vac.dot(_vcp); if (d6 >= 0 && d5 <= d6) { return target.copy(c); } const vb = d5 * d2 - d1 * d6; if (vb <= 0 && d2 >= 0 && d6 <= 0) { w = d2 / (d2 - d6); return target.copy(a).addScaledVector(_vac, w); } const va = d3 * d6 - d5 * d4; if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) { _vbc.subVectors(c, b); w = (d4 - d3) / (d4 - d3 + (d5 - d6)); return target.copy(b).addScaledVector(_vbc, w); } const denom = 1 / (va + vb + vc); v = vb * denom; w = vc * denom; return target.copy(a).addScaledVector(_vab, v).addScaledVector(_vac, w); } equals(triangle) { return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c); } } const _colorKeywords = { "aliceblue": 15792383, "antiquewhite": 16444375, "aqua": 65535, "aquamarine": 8388564, "azure": 15794175, "beige": 16119260, "bisque": 16770244, "black": 0, "blanchedalmond": 16772045, "blue": 255, "blueviolet": 9055202, "brown": 10824234, "burlywood": 14596231, "cadetblue": 6266528, "chartreuse": 8388352, "chocolate": 13789470, "coral": 16744272, "cornflowerblue": 6591981, "cornsilk": 16775388, "crimson": 14423100, "cyan": 65535, "darkblue": 139, "darkcyan": 35723, "darkgoldenrod": 12092939, "darkgray": 11119017, "darkgreen": 25600, "darkgrey": 11119017, "darkkhaki": 12433259, "darkmagenta": 9109643, "darkolivegreen": 5597999, "darkorange": 16747520, "darkorchid": 10040012, "darkred": 9109504, "darksalmon": 15308410, "darkseagreen": 9419919, "darkslateblue": 4734347, "darkslategray": 3100495, "darkslategrey": 3100495, "darkturquoise": 52945, "darkviolet": 9699539, "deeppink": 16716947, "deepskyblue": 49151, "dimgray": 6908265, "dimgrey": 6908265, "dodgerblue": 2003199, "firebrick": 11674146, "floralwhite": 16775920, "forestgreen": 2263842, "fuchsia": 16711935, "gainsboro": 14474460, "ghostwhite": 16316671, "gold": 16766720, "goldenrod": 14329120, "gray": 8421504, "green": 32768, "greenyellow": 11403055, "grey": 8421504, "honeydew": 15794160, "hotpink": 16738740, "indianred": 13458524, "indigo": 4915330, "ivory": 16777200, "khaki": 15787660, "lavender": 15132410, "lavenderblush": 16773365, "lawngreen": 8190976, "lemonchiffon": 16775885, "lightblue": 11393254, "lightcoral": 15761536, "lightcyan": 14745599, "lightgoldenrodyellow": 16448210, "lightgray": 13882323, "lightgreen": 9498256, "lightgrey": 13882323, "lightpink": 16758465, "lightsalmon": 16752762, "lightseagreen": 2142890, "lightskyblue": 8900346, "lightslategray": 7833753, "lightslategrey": 7833753, "lightsteelblue": 11584734, "lightyellow": 16777184, "lime": 65280, "limegreen": 3329330, "linen": 16445670, "magenta": 16711935, "maroon": 8388608, "mediumaquamarine": 6737322, "mediumblue": 205, "mediumorchid": 12211667, "mediumpurple": 9662683, "mediumseagreen": 3978097, "mediumslateblue": 8087790, "mediumspringgreen": 64154, "mediumturquoise": 4772300, "mediumvioletred": 13047173, "midnightblue": 1644912, "mintcream": 16121850, "mistyrose": 16770273, "moccasin": 16770229, "navajowhite": 16768685, "navy": 128, "oldlace": 16643558, "olive": 8421376, "olivedrab": 7048739, "orange": 16753920, "orangered": 16729344, "orchid": 14315734, "palegoldenrod": 15657130, "palegreen": 10025880, "paleturquoise": 11529966, "palevioletred": 14381203, "papayawhip": 16773077, "peachpuff": 16767673, "peru": 13468991, "pink": 16761035, "plum": 14524637, "powderblue": 11591910, "purple": 8388736, "rebeccapurple": 6697881, "red": 16711680, "rosybrown": 12357519, "royalblue": 4286945, "saddlebrown": 9127187, "salmon": 16416882, "sandybrown": 16032864, "seagreen": 3050327, "seashell": 16774638, "sienna": 10506797, "silver": 12632256, "skyblue": 8900331, "slateblue": 6970061, "slategray": 7372944, "slategrey": 7372944, "snow": 16775930, "springgreen": 65407, "steelblue": 4620980, "tan": 13808780, "teal": 32896, "thistle": 14204888, "tomato": 16737095, "turquoise": 4251856, "violet": 15631086, "wheat": 16113331, "white": 16777215, "whitesmoke": 16119285, "yellow": 16776960, "yellowgreen": 10145074 }; const _hslA = { h: 0, s: 0, l: 0 }; const _hslB = { h: 0, s: 0, l: 0 }; function hue2rgb(p, q, t) { if (t < 0) t += 1; if (t > 1) t -= 1; if (t < 1 / 6) return p + (q - p) * 6 * t; if (t < 1 / 2) return q; if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t); return p; } __name(hue2rgb, "hue2rgb"); class Color { static { __name(this, "Color"); } constructor(r, g, b) { this.isColor = true; this.r = 1; this.g = 1; this.b = 1; return this.set(r, g, b); } set(r, g, b) { if (g === void 0 && b === void 0) { const value = r; if (value && value.isColor) { this.copy(value); } else if (typeof value === "number") { this.setHex(value); } else if (typeof value === "string") { this.setStyle(value); } } else { this.setRGB(r, g, b); } return this; } setScalar(scalar) { this.r = scalar; this.g = scalar; this.b = scalar; return this; } setHex(hex, colorSpace = SRGBColorSpace) { hex = Math.floor(hex); this.r = (hex >> 16 & 255) / 255; this.g = (hex >> 8 & 255) / 255; this.b = (hex & 255) / 255; ColorManagement.toWorkingColorSpace(this, colorSpace); return this; } setRGB(r, g, b, colorSpace = ColorManagement.workingColorSpace) { this.r = r; this.g = g; this.b = b; ColorManagement.toWorkingColorSpace(this, colorSpace); return this; } setHSL(h, s, l, colorSpace = ColorManagement.workingColorSpace) { h = euclideanModulo(h, 1); s = clamp(s, 0, 1); l = clamp(l, 0, 1); if (s === 0) { this.r = this.g = this.b = l; } else { const p = l <= 0.5 ? l * (1 + s) : l + s - l * s; const q = 2 * l - p; this.r = hue2rgb(q, p, h + 1 / 3); this.g = hue2rgb(q, p, h); this.b = hue2rgb(q, p, h - 1 / 3); } ColorManagement.toWorkingColorSpace(this, colorSpace); return this; } setStyle(style, colorSpace = SRGBColorSpace) { function handleAlpha(string) { if (string === void 0) return; if (parseFloat(string) < 1) { console.warn("THREE.Color: Alpha component of " + style + " will be ignored."); } } __name(handleAlpha, "handleAlpha"); let m; if (m = /^(\w+)\(([^\)]*)\)/.exec(style)) { let color; const name = m[1]; const components = m[2]; switch (name) { case "rgb": case "rgba": if (color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) { handleAlpha(color[4]); return this.setRGB( Math.min(255, parseInt(color[1], 10)) / 255, Math.min(255, parseInt(color[2], 10)) / 255, Math.min(255, parseInt(color[3], 10)) / 255, colorSpace ); } if (color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) { handleAlpha(color[4]); return this.setRGB( Math.min(100, parseInt(color[1], 10)) / 100, Math.min(100, parseInt(color[2], 10)) / 100, Math.min(100, parseInt(color[3], 10)) / 100, colorSpace ); } break; case "hsl": case "hsla": if (color = /^\s*(\d*\.?\d+)\s*,\s*(\d*\.?\d+)\%\s*,\s*(\d*\.?\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) { handleAlpha(color[4]); return this.setHSL( parseFloat(color[1]) / 360, parseFloat(color[2]) / 100, parseFloat(color[3]) / 100, colorSpace ); } break; default: console.warn("THREE.Color: Unknown color model " + style); } } else if (m = /^\#([A-Fa-f\d]+)$/.exec(style)) { const hex = m[1]; const size = hex.length; if (size === 3) { return this.setRGB( parseInt(hex.charAt(0), 16) / 15, parseInt(hex.charAt(1), 16) / 15, parseInt(hex.charAt(2), 16) / 15, colorSpace ); } else if (size === 6) { return this.setHex(parseInt(hex, 16), colorSpace); } else { console.warn("THREE.Color: Invalid hex color " + style); } } else if (style && style.length > 0) { return this.setColorName(style, colorSpace); } return this; } setColorName(style, colorSpace = SRGBColorSpace) { const hex = _colorKeywords[style.toLowerCase()]; if (hex !== void 0) { this.setHex(hex, colorSpace); } else { console.warn("THREE.Color: Unknown color " + style); } return this; } clone() { return new this.constructor(this.r, this.g, this.b); } copy(color) { this.r = color.r; this.g = color.g; this.b = color.b; return this; } copySRGBToLinear(color) { this.r = SRGBToLinear(color.r); this.g = SRGBToLinear(color.g); this.b = SRGBToLinear(color.b); return this; } copyLinearToSRGB(color) { this.r = LinearToSRGB(color.r); this.g = LinearToSRGB(color.g); this.b = LinearToSRGB(color.b); return this; } convertSRGBToLinear() { this.copySRGBToLinear(this); return this; } convertLinearToSRGB() { this.copyLinearToSRGB(this); return this; } getHex(colorSpace = SRGBColorSpace) { ColorManagement.fromWorkingColorSpace(_color$1.copy(this), colorSpace); return Math.round(clamp(_color$1.r * 255, 0, 255)) * 65536 + Math.round(clamp(_color$1.g * 255, 0, 255)) * 256 + Math.round(clamp(_color$1.b * 255, 0, 255)); } getHexString(colorSpace = SRGBColorSpace) { return ("000000" + this.getHex(colorSpace).toString(16)).slice(-6); } getHSL(target, colorSpace = ColorManagement.workingColorSpace) { ColorManagement.fromWorkingColorSpace(_color$1.copy(this), colorSpace); const r = _color$1.r, g = _color$1.g, b = _color$1.b; const max2 = Math.max(r, g, b); const min = Math.min(r, g, b); let hue, saturation; const lightness = (min + max2) / 2; if (min === max2) { hue = 0; saturation = 0; } else { const delta = max2 - min; saturation = lightness <= 0.5 ? delta / (max2 + min) : delta / (2 - max2 - min); switch (max2) { case r: hue = (g - b) / delta + (g < b ? 6 : 0); break; case g: hue = (b - r) / delta + 2; break; case b: hue = (r - g) / delta + 4; break; } hue /= 6; } target.h = hue; target.s = saturation; target.l = lightness; return target; } getRGB(target, colorSpace = ColorManagement.workingColorSpace) { ColorManagement.fromWorkingColorSpace(_color$1.copy(this), colorSpace); target.r = _color$1.r; target.g = _color$1.g; target.b = _color$1.b; return target; } getStyle(colorSpace = SRGBColorSpace) { ColorManagement.fromWorkingColorSpace(_color$1.copy(this), colorSpace); const r = _color$1.r, g = _color$1.g, b = _color$1.b; if (colorSpace !== SRGBColorSpace) { return `color(${colorSpace} ${r.toFixed(3)} ${g.toFixed(3)} ${b.toFixed(3)})`; } return `rgb(${Math.round(r * 255)},${Math.round(g * 255)},${Math.round(b * 255)})`; } offsetHSL(h, s, l) { this.getHSL(_hslA); return this.setHSL(_hslA.h + h, _hslA.s + s, _hslA.l + l); } add(color) { this.r += color.r; this.g += color.g; this.b += color.b; return this; } addColors(color1, color2) { this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b; return this; } addScalar(s) { this.r += s; this.g += s; this.b += s; return this; } sub(color) { this.r = Math.max(0, this.r - color.r); this.g = Math.max(0, this.g - color.g); this.b = Math.max(0, this.b - color.b); return this; } multiply(color) { this.r *= color.r; this.g *= color.g; this.b *= color.b; return this; } multiplyScalar(s) { this.r *= s; this.g *= s; this.b *= s; return this; } lerp(color, alpha) { this.r += (color.r - this.r) * alpha; this.g += (color.g - this.g) * alpha; this.b += (color.b - this.b) * alpha; return this; } lerpColors(color1, color2, alpha) { this.r = color1.r + (color2.r - color1.r) * alpha; this.g = color1.g + (color2.g - color1.g) * alpha; this.b = color1.b + (color2.b - color1.b) * alpha; return this; } lerpHSL(color, alpha) { this.getHSL(_hslA); color.getHSL(_hslB); const h = lerp(_hslA.h, _hslB.h, alpha); const s = lerp(_hslA.s, _hslB.s, alpha); const l = lerp(_hslA.l, _hslB.l, alpha); this.setHSL(h, s, l); return this; } setFromVector3(v) { this.r = v.x; this.g = v.y; this.b = v.z; return this; } applyMatrix3(m) { const r = this.r, g = this.g, b = this.b; const e = m.elements; this.r = e[0] * r + e[3] * g + e[6] * b; this.g = e[1] * r + e[4] * g + e[7] * b; this.b = e[2] * r + e[5] * g + e[8] * b; return this; } equals(c) { return c.r === this.r && c.g === this.g && c.b === this.b; } fromArray(array, offset = 0) { this.r = array[offset]; this.g = array[offset + 1]; this.b = array[offset + 2]; return this; } toArray(array = [], offset = 0) { array[offset] = this.r; array[offset + 1] = this.g; array[offset + 2] = this.b; return array; } fromBufferAttribute(attribute, index) { this.r = attribute.getX(index); this.g = attribute.getY(index); this.b = attribute.getZ(index); return this; } toJSON() { return this.getHex(); } *[Symbol.iterator]() { yield this.r; yield this.g; yield this.b; } } const _color$1 = /* @__PURE__ */ new Color(); Color.NAMES = _colorKeywords; let _materialId = 0; class Material extends EventDispatcher { static { __name(this, "Material"); } static get type() { return "Material"; } get type() { return this.constructor.type; } set type(_value) { } constructor() { super(); this.isMaterial = true; Object.defineProperty(this, "id", { value: _materialId++ }); this.uuid = generateUUID(); this.name = ""; this.blending = NormalBlending; this.side = FrontSide; this.vertexColors = false; this.opacity = 1; this.transparent = false; this.alphaHash = false; this.blendSrc = SrcAlphaFactor; this.blendDst = OneMinusSrcAlphaFactor; this.blendEquation = AddEquation; this.blendSrcAlpha = null; this.blendDstAlpha = null; this.blendEquationAlpha = null; this.blendColor = new Color(0, 0, 0); this.blendAlpha = 0; this.depthFunc = LessEqualDepth; this.depthTest = true; this.depthWrite = true; this.stencilWriteMask = 255; this.stencilFunc = AlwaysStencilFunc; this.stencilRef = 0; this.stencilFuncMask = 255; this.stencilFail = KeepStencilOp; this.stencilZFail = KeepStencilOp; this.stencilZPass = KeepStencilOp; this.stencilWrite = false; this.clippingPlanes = null; this.clipIntersection = false; this.clipShadows = false; this.shadowSide = null; this.colorWrite = true; this.precision = null; this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0; this.dithering = false; this.alphaToCoverage = false; this.premultipliedAlpha = false; this.forceSinglePass = false; this.visible = true; this.toneMapped = true; this.userData = {}; this.version = 0; this._alphaTest = 0; } get alphaTest() { return this._alphaTest; } set alphaTest(value) { if (this._alphaTest > 0 !== value > 0) { this.version++; } this._alphaTest = value; } // onBeforeRender and onBeforeCompile only supported in WebGLRenderer onBeforeRender() { } onBeforeCompile() { } customProgramCacheKey() { return this.onBeforeCompile.toString(); } setValues(values) { if (values === void 0) return; for (const key in values) { const newValue = values[key]; if (newValue === void 0) { console.warn(`THREE.Material: parameter '${key}' has value of undefined.`); continue; } const currentValue = this[key]; if (currentValue === void 0) { console.warn(`THREE.Material: '${key}' is not a property of THREE.${this.type}.`); continue; } if (currentValue && currentValue.isColor) { currentValue.set(newValue); } else if (currentValue && currentValue.isVector3 && (newValue && newValue.isVector3)) { currentValue.copy(newValue); } else { this[key] = newValue; } } } toJSON(meta) { const isRootObject = meta === void 0 || typeof meta === "string"; if (isRootObject) { meta = { textures: {}, images: {} }; } const data = { metadata: { version: 4.6, type: "Material", generator: "Material.toJSON" } }; data.uuid = this.uuid; data.type = this.type; if (this.name !== "") data.name = this.name; if (this.color && this.color.isColor) data.color = this.color.getHex(); if (this.roughness !== void 0) data.roughness = this.roughness; if (this.metalness !== void 0) data.metalness = this.metalness; if (this.sheen !== void 0) data.sheen = this.sheen; if (this.sheenColor && this.sheenColor.isColor) data.sheenColor = this.sheenColor.getHex(); if (this.sheenRoughness !== void 0) data.sheenRoughness = this.sheenRoughness; if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex(); if (this.emissiveIntensity !== void 0 && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity; if (this.specular && this.specular.isColor) data.specular = this.specular.getHex(); if (this.specularIntensity !== void 0) data.specularIntensity = this.specularIntensity; if (this.specularColor && this.specularColor.isColor) data.specularColor = this.specularColor.getHex(); if (this.shininess !== void 0) data.shininess = this.shininess; if (this.clearcoat !== void 0) data.clearcoat = this.clearcoat; if (this.clearcoatRoughness !== void 0) data.clearcoatRoughness = this.clearcoatRoughness; if (this.clearcoatMap && this.clearcoatMap.isTexture) { data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid; } if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) { data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid; } if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) { data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid; data.clearcoatNormalScale = this.clearcoatNormalScale.toArray(); } if (this.dispersion !== void 0) data.dispersion = this.dispersion; if (this.iridescence !== void 0) data.iridescence = this.iridescence; if (this.iridescenceIOR !== void 0) data.iridescenceIOR = this.iridescenceIOR; if (this.iridescenceThicknessRange !== void 0) data.iridescenceThicknessRange = this.iridescenceThicknessRange; if (this.iridescenceMap && this.iridescenceMap.isTexture) { data.iridescenceMap = this.iridescenceMap.toJSON(meta).uuid; } if (this.iridescenceThicknessMap && this.iridescenceThicknessMap.isTexture) { data.iridescenceThicknessMap = this.iridescenceThicknessMap.toJSON(meta).uuid; } if (this.anisotropy !== void 0) data.anisotropy = this.anisotropy; if (this.anisotropyRotation !== void 0) data.anisotropyRotation = this.anisotropyRotation; if (this.anisotropyMap && this.anisotropyMap.isTexture) { data.anisotropyMap = this.anisotropyMap.toJSON(meta).uuid; } if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid; if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid; if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid; if (this.lightMap && this.lightMap.isTexture) { data.lightMap = this.lightMap.toJSON(meta).uuid; data.lightMapIntensity = this.lightMapIntensity; } if (this.aoMap && this.aoMap.isTexture) { data.aoMap = this.aoMap.toJSON(meta).uuid; data.aoMapIntensity = this.aoMapIntensity; } if (this.bumpMap && this.bumpMap.isTexture) { data.bumpMap = this.bumpMap.toJSON(meta).uuid; data.bumpScale = this.bumpScale; } if (this.normalMap && this.normalMap.isTexture) { data.normalMap = this.normalMap.toJSON(meta).uuid; data.normalMapType = this.normalMapType; data.normalScale = this.normalScale.toArray(); } if (this.displacementMap && this.displacementMap.isTexture) { data.displacementMap = this.displacementMap.toJSON(meta).uuid; data.displacementScale = this.displacementScale; data.displacementBias = this.displacementBias; } if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid; if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid; if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid; if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid; if (this.specularIntensityMap && this.specularIntensityMap.isTexture) data.specularIntensityMap = this.specularIntensityMap.toJSON(meta).uuid; if (this.specularColorMap && this.specularColorMap.isTexture) data.specularColorMap = this.specularColorMap.toJSON(meta).uuid; if (this.envMap && this.envMap.isTexture) { data.envMap = this.envMap.toJSON(meta).uuid; if (this.combine !== void 0) data.combine = this.combine; } if (this.envMapRotation !== void 0) data.envMapRotation = this.envMapRotation.toArray(); if (this.envMapIntensity !== void 0) data.envMapIntensity = this.envMapIntensity; if (this.reflectivity !== void 0) data.reflectivity = this.reflectivity; if (this.refractionRatio !== void 0) data.refractionRatio = this.refractionRatio; if (this.gradientMap && this.gradientMap.isTexture) { data.gradientMap = this.gradientMap.toJSON(meta).uuid; } if (this.transmission !== void 0) data.transmission = this.transmission; if (this.transmissionMap && this.transmissionMap.isTexture) data.transmissionMap = this.transmissionMap.toJSON(meta).uuid; if (this.thickness !== void 0) data.thickness = this.thickness; if (this.thicknessMap && this.thicknessMap.isTexture) data.thicknessMap = this.thicknessMap.toJSON(meta).uuid; if (this.attenuationDistance !== void 0 && this.attenuationDistance !== Infinity) data.attenuationDistance = this.attenuationDistance; if (this.attenuationColor !== void 0) data.attenuationColor = this.attenuationColor.getHex(); if (this.size !== void 0) data.size = this.size; if (this.shadowSide !== null) data.shadowSide = this.shadowSide; if (this.sizeAttenuation !== void 0) data.sizeAttenuation = this.sizeAttenuation; if (this.blending !== NormalBlending) data.blending = this.blending; if (this.side !== FrontSide) data.side = this.side; if (this.vertexColors === true) data.vertexColors = true; if (this.opacity < 1) data.opacity = this.opacity; if (this.transparent === true) data.transparent = true; if (this.blendSrc !== SrcAlphaFactor) data.blendSrc = this.blendSrc; if (this.blendDst !== OneMinusSrcAlphaFactor) data.blendDst = this.blendDst; if (this.blendEquation !== AddEquation) data.blendEquation = this.blendEquation; if (this.blendSrcAlpha !== null) data.blendSrcAlpha = this.blendSrcAlpha; if (this.blendDstAlpha !== null) data.blendDstAlpha = this.blendDstAlpha; if (this.blendEquationAlpha !== null) data.blendEquationAlpha = this.blendEquationAlpha; if (this.blendColor && this.blendColor.isColor) data.blendColor = this.blendColor.getHex(); if (this.blendAlpha !== 0) data.blendAlpha = this.blendAlpha; if (this.depthFunc !== LessEqualDepth) data.depthFunc = this.depthFunc; if (this.depthTest === false) data.depthTest = this.depthTest; if (this.depthWrite === false) data.depthWrite = this.depthWrite; if (this.colorWrite === false) data.colorWrite = this.colorWrite; if (this.stencilWriteMask !== 255) data.stencilWriteMask = this.stencilWriteMask; if (this.stencilFunc !== AlwaysStencilFunc) data.stencilFunc = this.stencilFunc; if (this.stencilRef !== 0) data.stencilRef = this.stencilRef; if (this.stencilFuncMask !== 255) data.stencilFuncMask = this.stencilFuncMask; if (this.stencilFail !== KeepStencilOp) data.stencilFail = this.stencilFail; if (this.stencilZFail !== KeepStencilOp) data.stencilZFail = this.stencilZFail; if (this.stencilZPass !== KeepStencilOp) data.stencilZPass = this.stencilZPass; if (this.stencilWrite === true) data.stencilWrite = this.stencilWrite; if (this.rotation !== void 0 && this.rotation !== 0) data.rotation = this.rotation; if (this.polygonOffset === true) data.polygonOffset = true; if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor; if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits; if (this.linewidth !== void 0 && this.linewidth !== 1) data.linewidth = this.linewidth; if (this.dashSize !== void 0) data.dashSize = this.dashSize; if (this.gapSize !== void 0) data.gapSize = this.gapSize; if (this.scale !== void 0) data.scale = this.scale; if (this.dithering === true) data.dithering = true; if (this.alphaTest > 0) data.alphaTest = this.alphaTest; if (this.alphaHash === true) data.alphaHash = true; if (this.alphaToCoverage === true) data.alphaToCoverage = true; if (this.premultipliedAlpha === true) data.premultipliedAlpha = true; if (this.forceSinglePass === true) data.forceSinglePass = true; if (this.wireframe === true) data.wireframe = true; if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth; if (this.wireframeLinecap !== "round") data.wireframeLinecap = this.wireframeLinecap; if (this.wireframeLinejoin !== "round") data.wireframeLinejoin = this.wireframeLinejoin; if (this.flatShading === true) data.flatShading = true; if (this.visible === false) data.visible = false; if (this.toneMapped === false) data.toneMapped = false; if (this.fog === false) data.fog = false; if (Object.keys(this.userData).length > 0) data.userData = this.userData; function extractFromCache(cache) { const values = []; for (const key in cache) { const data2 = cache[key]; delete data2.metadata; values.push(data2); } return values; } __name(extractFromCache, "extractFromCache"); if (isRootObject) { const textures = extractFromCache(meta.textures); const images = extractFromCache(meta.images); if (textures.length > 0) data.textures = textures; if (images.length > 0) data.images = images; } return data; } clone() { return new this.constructor().copy(this); } copy(source) { this.name = source.name; this.blending = source.blending; this.side = source.side; this.vertexColors = source.vertexColors; this.opacity = source.opacity; this.transparent = source.transparent; this.blendSrc = source.blendSrc; this.blendDst = source.blendDst; this.blendEquation = source.blendEquation; this.blendSrcAlpha = source.blendSrcAlpha; this.blendDstAlpha = source.blendDstAlpha; this.blendEquationAlpha = source.blendEquationAlpha; this.blendColor.copy(source.blendColor); this.blendAlpha = source.blendAlpha; this.depthFunc = source.depthFunc; this.depthTest = source.depthTest; this.depthWrite = source.depthWrite; this.stencilWriteMask = source.stencilWriteMask; this.stencilFunc = source.stencilFunc; this.stencilRef = source.stencilRef; this.stencilFuncMask = source.stencilFuncMask; this.stencilFail = source.stencilFail; this.stencilZFail = source.stencilZFail; this.stencilZPass = source.stencilZPass; this.stencilWrite = source.stencilWrite; const srcPlanes = source.clippingPlanes; let dstPlanes = null; if (srcPlanes !== null) { const n = srcPlanes.length; dstPlanes = new Array(n); for (let i = 0; i !== n; ++i) { dstPlanes[i] = srcPlanes[i].clone(); } } this.clippingPlanes = dstPlanes; this.clipIntersection = source.clipIntersection; this.clipShadows = source.clipShadows; this.shadowSide = source.shadowSide; this.colorWrite = source.colorWrite; this.precision = source.precision; this.polygonOffset = source.polygonOffset; this.polygonOffsetFactor = source.polygonOffsetFactor; this.polygonOffsetUnits = source.polygonOffsetUnits; this.dithering = source.dithering; this.alphaTest = source.alphaTest; this.alphaHash = source.alphaHash; this.alphaToCoverage = source.alphaToCoverage; this.premultipliedAlpha = source.premultipliedAlpha; this.forceSinglePass = source.forceSinglePass; this.visible = source.visible; this.toneMapped = source.toneMapped; this.userData = JSON.parse(JSON.stringify(source.userData)); return this; } dispose() { this.dispatchEvent({ type: "dispose" }); } set needsUpdate(value) { if (value === true) this.version++; } onBuild() { console.warn("Material: onBuild() has been removed."); } } class MeshBasicMaterial extends Material { static { __name(this, "MeshBasicMaterial"); } static get type() { return "MeshBasicMaterial"; } constructor(parameters) { super(); this.isMeshBasicMaterial = true; this.color = new Color(16777215); this.map = null; this.lightMap = null; this.lightMapIntensity = 1; this.aoMap = null; this.aoMapIntensity = 1; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.envMapRotation = new Euler(); this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = "round"; this.wireframeLinejoin = "round"; this.fog = true; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapRotation.copy(source.envMapRotation); this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.fog = source.fog; return this; } } const _tables = /* @__PURE__ */ _generateTables(); function _generateTables() { const buffer = new ArrayBuffer(4); const floatView = new Float32Array(buffer); const uint32View = new Uint32Array(buffer); const baseTable = new Uint32Array(512); const shiftTable = new Uint32Array(512); for (let i = 0; i < 256; ++i) { const e = i - 127; if (e < -27) { baseTable[i] = 0; baseTable[i | 256] = 32768; shiftTable[i] = 24; shiftTable[i | 256] = 24; } else if (e < -14) { baseTable[i] = 1024 >> -e - 14; baseTable[i | 256] = 1024 >> -e - 14 | 32768; shiftTable[i] = -e - 1; shiftTable[i | 256] = -e - 1; } else if (e <= 15) { baseTable[i] = e + 15 << 10; baseTable[i | 256] = e + 15 << 10 | 32768; shiftTable[i] = 13; shiftTable[i | 256] = 13; } else if (e < 128) { baseTable[i] = 31744; baseTable[i | 256] = 64512; shiftTable[i] = 24; shiftTable[i | 256] = 24; } else { baseTable[i] = 31744; baseTable[i | 256] = 64512; shiftTable[i] = 13; shiftTable[i | 256] = 13; } } const mantissaTable = new Uint32Array(2048); const exponentTable = new Uint32Array(64); const offsetTable = new Uint32Array(64); for (let i = 1; i < 1024; ++i) { let m = i << 13; let e = 0; while ((m & 8388608) === 0) { m <<= 1; e -= 8388608; } m &= ~8388608; e += 947912704; mantissaTable[i] = m | e; } for (let i = 1024; i < 2048; ++i) { mantissaTable[i] = 939524096 + (i - 1024 << 13); } for (let i = 1; i < 31; ++i) { exponentTable[i] = i << 23; } exponentTable[31] = 1199570944; exponentTable[32] = 2147483648; for (let i = 33; i < 63; ++i) { exponentTable[i] = 2147483648 + (i - 32 << 23); } exponentTable[63] = 3347054592; for (let i = 1; i < 64; ++i) { if (i !== 32) { offsetTable[i] = 1024; } } return { floatView, uint32View, baseTable, shiftTable, mantissaTable, exponentTable, offsetTable }; } __name(_generateTables, "_generateTables"); function toHalfFloat(val) { if (Math.abs(val) > 65504) console.warn("THREE.DataUtils.toHalfFloat(): Value out of range."); val = clamp(val, -65504, 65504); _tables.floatView[0] = val; const f = _tables.uint32View[0]; const e = f >> 23 & 511; return _tables.baseTable[e] + ((f & 8388607) >> _tables.shiftTable[e]); } __name(toHalfFloat, "toHalfFloat"); function fromHalfFloat(val) { const m = val >> 10; _tables.uint32View[0] = _tables.mantissaTable[_tables.offsetTable[m] + (val & 1023)] + _tables.exponentTable[m]; return _tables.floatView[0]; } __name(fromHalfFloat, "fromHalfFloat"); const DataUtils = { toHalfFloat, fromHalfFloat }; const _vector$9 = /* @__PURE__ */ new Vector3(); const _vector2$1 = /* @__PURE__ */ new Vector2(); class BufferAttribute { static { __name(this, "BufferAttribute"); } constructor(array, itemSize, normalized = false) { if (Array.isArray(array)) { throw new TypeError("THREE.BufferAttribute: array should be a Typed Array."); } this.isBufferAttribute = true; this.name = ""; this.array = array; this.itemSize = itemSize; this.count = array !== void 0 ? array.length / itemSize : 0; this.normalized = normalized; this.usage = StaticDrawUsage; this.updateRanges = []; this.gpuType = FloatType; this.version = 0; } onUploadCallback() { } set needsUpdate(value) { if (value === true) this.version++; } setUsage(value) { this.usage = value; return this; } addUpdateRange(start, count) { this.updateRanges.push({ start, count }); } clearUpdateRanges() { this.updateRanges.length = 0; } copy(source) { this.name = source.name; this.array = new source.array.constructor(source.array); this.itemSize = source.itemSize; this.count = source.count; this.normalized = source.normalized; this.usage = source.usage; this.gpuType = source.gpuType; return this; } copyAt(index1, attribute, index2) { index1 *= this.itemSize; index2 *= attribute.itemSize; for (let i = 0, l = this.itemSize; i < l; i++) { this.array[index1 + i] = attribute.array[index2 + i]; } return this; } copyArray(array) { this.array.set(array); return this; } applyMatrix3(m) { if (this.itemSize === 2) { for (let i = 0, l = this.count; i < l; i++) { _vector2$1.fromBufferAttribute(this, i); _vector2$1.applyMatrix3(m); this.setXY(i, _vector2$1.x, _vector2$1.y); } } else if (this.itemSize === 3) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.fromBufferAttribute(this, i); _vector$9.applyMatrix3(m); this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); } } return this; } applyMatrix4(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.fromBufferAttribute(this, i); _vector$9.applyMatrix4(m); this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); } return this; } applyNormalMatrix(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.fromBufferAttribute(this, i); _vector$9.applyNormalMatrix(m); this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); } return this; } transformDirection(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$9.fromBufferAttribute(this, i); _vector$9.transformDirection(m); this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z); } return this; } set(value, offset = 0) { this.array.set(value, offset); return this; } getComponent(index, component) { let value = this.array[index * this.itemSize + component]; if (this.normalized) value = denormalize(value, this.array); return value; } setComponent(index, component, value) { if (this.normalized) value = normalize(value, this.array); this.array[index * this.itemSize + component] = value; return this; } getX(index) { let x = this.array[index * this.itemSize]; if (this.normalized) x = denormalize(x, this.array); return x; } setX(index, x) { if (this.normalized) x = normalize(x, this.array); this.array[index * this.itemSize] = x; return this; } getY(index) { let y = this.array[index * this.itemSize + 1]; if (this.normalized) y = denormalize(y, this.array); return y; } setY(index, y) { if (this.normalized) y = normalize(y, this.array); this.array[index * this.itemSize + 1] = y; return this; } getZ(index) { let z = this.array[index * this.itemSize + 2]; if (this.normalized) z = denormalize(z, this.array); return z; } setZ(index, z) { if (this.normalized) z = normalize(z, this.array); this.array[index * this.itemSize + 2] = z; return this; } getW(index) { let w = this.array[index * this.itemSize + 3]; if (this.normalized) w = denormalize(w, this.array); return w; } setW(index, w) { if (this.normalized) w = normalize(w, this.array); this.array[index * this.itemSize + 3] = w; return this; } setXY(index, x, y) { index *= this.itemSize; if (this.normalized) { x = normalize(x, this.array); y = normalize(y, this.array); } this.array[index + 0] = x; this.array[index + 1] = y; return this; } setXYZ(index, x, y, z) { index *= this.itemSize; if (this.normalized) { x = normalize(x, this.array); y = normalize(y, this.array); z = normalize(z, this.array); } this.array[index + 0] = x; this.array[index + 1] = y; this.array[index + 2] = z; return this; } setXYZW(index, x, y, z, w) { index *= this.itemSize; if (this.normalized) { x = normalize(x, this.array); y = normalize(y, this.array); z = normalize(z, this.array); w = normalize(w, this.array); } this.array[index + 0] = x; this.array[index + 1] = y; this.array[index + 2] = z; this.array[index + 3] = w; return this; } onUpload(callback) { this.onUploadCallback = callback; return this; } clone() { return new this.constructor(this.array, this.itemSize).copy(this); } toJSON() { const data = { itemSize: this.itemSize, type: this.array.constructor.name, array: Array.from(this.array), normalized: this.normalized }; if (this.name !== "") data.name = this.name; if (this.usage !== StaticDrawUsage) data.usage = this.usage; return data; } } class Int8BufferAttribute extends BufferAttribute { static { __name(this, "Int8BufferAttribute"); } constructor(array, itemSize, normalized) { super(new Int8Array(array), itemSize, normalized); } } class Uint8BufferAttribute extends BufferAttribute { static { __name(this, "Uint8BufferAttribute"); } constructor(array, itemSize, normalized) { super(new Uint8Array(array), itemSize, normalized); } } class Uint8ClampedBufferAttribute extends BufferAttribute { static { __name(this, "Uint8ClampedBufferAttribute"); } constructor(array, itemSize, normalized) { super(new Uint8ClampedArray(array), itemSize, normalized); } } class Int16BufferAttribute extends BufferAttribute { static { __name(this, "Int16BufferAttribute"); } constructor(array, itemSize, normalized) { super(new Int16Array(array), itemSize, normalized); } } class Uint16BufferAttribute extends BufferAttribute { static { __name(this, "Uint16BufferAttribute"); } constructor(array, itemSize, normalized) { super(new Uint16Array(array), itemSize, normalized); } } class Int32BufferAttribute extends BufferAttribute { static { __name(this, "Int32BufferAttribute"); } constructor(array, itemSize, normalized) { super(new Int32Array(array), itemSize, normalized); } } class Uint32BufferAttribute extends BufferAttribute { static { __name(this, "Uint32BufferAttribute"); } constructor(array, itemSize, normalized) { super(new Uint32Array(array), itemSize, normalized); } } class Float16BufferAttribute extends BufferAttribute { static { __name(this, "Float16BufferAttribute"); } constructor(array, itemSize, normalized) { super(new Uint16Array(array), itemSize, normalized); this.isFloat16BufferAttribute = true; } getX(index) { let x = fromHalfFloat(this.array[index * this.itemSize]); if (this.normalized) x = denormalize(x, this.array); return x; } setX(index, x) { if (this.normalized) x = normalize(x, this.array); this.array[index * this.itemSize] = toHalfFloat(x); return this; } getY(index) { let y = fromHalfFloat(this.array[index * this.itemSize + 1]); if (this.normalized) y = denormalize(y, this.array); return y; } setY(index, y) { if (this.normalized) y = normalize(y, this.array); this.array[index * this.itemSize + 1] = toHalfFloat(y); return this; } getZ(index) { let z = fromHalfFloat(this.array[index * this.itemSize + 2]); if (this.normalized) z = denormalize(z, this.array); return z; } setZ(index, z) { if (this.normalized) z = normalize(z, this.array); this.array[index * this.itemSize + 2] = toHalfFloat(z); return this; } getW(index) { let w = fromHalfFloat(this.array[index * this.itemSize + 3]); if (this.normalized) w = denormalize(w, this.array); return w; } setW(index, w) { if (this.normalized) w = normalize(w, this.array); this.array[index * this.itemSize + 3] = toHalfFloat(w); return this; } setXY(index, x, y) { index *= this.itemSize; if (this.normalized) { x = normalize(x, this.array); y = normalize(y, this.array); } this.array[index + 0] = toHalfFloat(x); this.array[index + 1] = toHalfFloat(y); return this; } setXYZ(index, x, y, z) { index *= this.itemSize; if (this.normalized) { x = normalize(x, this.array); y = normalize(y, this.array); z = normalize(z, this.array); } this.array[index + 0] = toHalfFloat(x); this.array[index + 1] = toHalfFloat(y); this.array[index + 2] = toHalfFloat(z); return this; } setXYZW(index, x, y, z, w) { index *= this.itemSize; if (this.normalized) { x = normalize(x, this.array); y = normalize(y, this.array); z = normalize(z, this.array); w = normalize(w, this.array); } this.array[index + 0] = toHalfFloat(x); this.array[index + 1] = toHalfFloat(y); this.array[index + 2] = toHalfFloat(z); this.array[index + 3] = toHalfFloat(w); return this; } } class Float32BufferAttribute extends BufferAttribute { static { __name(this, "Float32BufferAttribute"); } constructor(array, itemSize, normalized) { super(new Float32Array(array), itemSize, normalized); } } let _id$2 = 0; const _m1$2 = /* @__PURE__ */ new Matrix4(); const _obj = /* @__PURE__ */ new Object3D(); const _offset = /* @__PURE__ */ new Vector3(); const _box$2 = /* @__PURE__ */ new Box3(); const _boxMorphTargets = /* @__PURE__ */ new Box3(); const _vector$8 = /* @__PURE__ */ new Vector3(); class BufferGeometry extends EventDispatcher { static { __name(this, "BufferGeometry"); } constructor() { super(); this.isBufferGeometry = true; Object.defineProperty(this, "id", { value: _id$2++ }); this.uuid = generateUUID(); this.name = ""; this.type = "BufferGeometry"; this.index = null; this.indirect = null; this.attributes = {}; this.morphAttributes = {}; this.morphTargetsRelative = false; this.groups = []; this.boundingBox = null; this.boundingSphere = null; this.drawRange = { start: 0, count: Infinity }; this.userData = {}; } getIndex() { return this.index; } setIndex(index) { if (Array.isArray(index)) { this.index = new (arrayNeedsUint32(index) ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1); } else { this.index = index; } return this; } setIndirect(indirect) { this.indirect = indirect; return this; } getIndirect() { return this.indirect; } getAttribute(name) { return this.attributes[name]; } setAttribute(name, attribute) { this.attributes[name] = attribute; return this; } deleteAttribute(name) { delete this.attributes[name]; return this; } hasAttribute(name) { return this.attributes[name] !== void 0; } addGroup(start, count, materialIndex = 0) { this.groups.push({ start, count, materialIndex }); } clearGroups() { this.groups = []; } setDrawRange(start, count) { this.drawRange.start = start; this.drawRange.count = count; } applyMatrix4(matrix) { const position = this.attributes.position; if (position !== void 0) { position.applyMatrix4(matrix); position.needsUpdate = true; } const normal = this.attributes.normal; if (normal !== void 0) { const normalMatrix = new Matrix3().getNormalMatrix(matrix); normal.applyNormalMatrix(normalMatrix); normal.needsUpdate = true; } const tangent = this.attributes.tangent; if (tangent !== void 0) { tangent.transformDirection(matrix); tangent.needsUpdate = true; } if (this.boundingBox !== null) { this.computeBoundingBox(); } if (this.boundingSphere !== null) { this.computeBoundingSphere(); } return this; } applyQuaternion(q) { _m1$2.makeRotationFromQuaternion(q); this.applyMatrix4(_m1$2); return this; } rotateX(angle) { _m1$2.makeRotationX(angle); this.applyMatrix4(_m1$2); return this; } rotateY(angle) { _m1$2.makeRotationY(angle); this.applyMatrix4(_m1$2); return this; } rotateZ(angle) { _m1$2.makeRotationZ(angle); this.applyMatrix4(_m1$2); return this; } translate(x, y, z) { _m1$2.makeTranslation(x, y, z); this.applyMatrix4(_m1$2); return this; } scale(x, y, z) { _m1$2.makeScale(x, y, z); this.applyMatrix4(_m1$2); return this; } lookAt(vector) { _obj.lookAt(vector); _obj.updateMatrix(); this.applyMatrix4(_obj.matrix); return this; } center() { this.computeBoundingBox(); this.boundingBox.getCenter(_offset).negate(); this.translate(_offset.x, _offset.y, _offset.z); return this; } setFromPoints(points) { const positionAttribute = this.getAttribute("position"); if (positionAttribute === void 0) { const position = []; for (let i = 0, l = points.length; i < l; i++) { const point = points[i]; position.push(point.x, point.y, point.z || 0); } this.setAttribute("position", new Float32BufferAttribute(position, 3)); } else { for (let i = 0, l = positionAttribute.count; i < l; i++) { const point = points[i]; positionAttribute.setXYZ(i, point.x, point.y, point.z || 0); } if (points.length > positionAttribute.count) { console.warn("THREE.BufferGeometry: Buffer size too small for points data. Use .dispose() and create a new geometry."); } positionAttribute.needsUpdate = true; } return this; } computeBoundingBox() { if (this.boundingBox === null) { this.boundingBox = new Box3(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if (position && position.isGLBufferAttribute) { console.error("THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box.", this); this.boundingBox.set( new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(Infinity, Infinity, Infinity) ); return; } if (position !== void 0) { this.boundingBox.setFromBufferAttribute(position); if (morphAttributesPosition) { for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { const morphAttribute = morphAttributesPosition[i]; _box$2.setFromBufferAttribute(morphAttribute); if (this.morphTargetsRelative) { _vector$8.addVectors(this.boundingBox.min, _box$2.min); this.boundingBox.expandByPoint(_vector$8); _vector$8.addVectors(this.boundingBox.max, _box$2.max); this.boundingBox.expandByPoint(_vector$8); } else { this.boundingBox.expandByPoint(_box$2.min); this.boundingBox.expandByPoint(_box$2.max); } } } } else { this.boundingBox.makeEmpty(); } if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) { console.error('THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this); } } computeBoundingSphere() { if (this.boundingSphere === null) { this.boundingSphere = new Sphere(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if (position && position.isGLBufferAttribute) { console.error("THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere.", this); this.boundingSphere.set(new Vector3(), Infinity); return; } if (position) { const center = this.boundingSphere.center; _box$2.setFromBufferAttribute(position); if (morphAttributesPosition) { for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { const morphAttribute = morphAttributesPosition[i]; _boxMorphTargets.setFromBufferAttribute(morphAttribute); if (this.morphTargetsRelative) { _vector$8.addVectors(_box$2.min, _boxMorphTargets.min); _box$2.expandByPoint(_vector$8); _vector$8.addVectors(_box$2.max, _boxMorphTargets.max); _box$2.expandByPoint(_vector$8); } else { _box$2.expandByPoint(_boxMorphTargets.min); _box$2.expandByPoint(_boxMorphTargets.max); } } } _box$2.getCenter(center); let maxRadiusSq = 0; for (let i = 0, il = position.count; i < il; i++) { _vector$8.fromBufferAttribute(position, i); maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8)); } if (morphAttributesPosition) { for (let i = 0, il = morphAttributesPosition.length; i < il; i++) { const morphAttribute = morphAttributesPosition[i]; const morphTargetsRelative = this.morphTargetsRelative; for (let j = 0, jl = morphAttribute.count; j < jl; j++) { _vector$8.fromBufferAttribute(morphAttribute, j); if (morphTargetsRelative) { _offset.fromBufferAttribute(position, j); _vector$8.add(_offset); } maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8)); } } } this.boundingSphere.radius = Math.sqrt(maxRadiusSq); if (isNaN(this.boundingSphere.radius)) { console.error('THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this); } } } computeTangents() { const index = this.index; const attributes = this.attributes; if (index === null || attributes.position === void 0 || attributes.normal === void 0 || attributes.uv === void 0) { console.error("THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)"); return; } const positionAttribute = attributes.position; const normalAttribute = attributes.normal; const uvAttribute = attributes.uv; if (this.hasAttribute("tangent") === false) { this.setAttribute("tangent", new BufferAttribute(new Float32Array(4 * positionAttribute.count), 4)); } const tangentAttribute = this.getAttribute("tangent"); const tan1 = [], tan2 = []; for (let i = 0; i < positionAttribute.count; i++) { tan1[i] = new Vector3(); tan2[i] = new Vector3(); } const vA = new Vector3(), vB = new Vector3(), vC = new Vector3(), uvA = new Vector2(), uvB = new Vector2(), uvC = new Vector2(), sdir = new Vector3(), tdir = new Vector3(); function handleTriangle(a, b, c) { vA.fromBufferAttribute(positionAttribute, a); vB.fromBufferAttribute(positionAttribute, b); vC.fromBufferAttribute(positionAttribute, c); uvA.fromBufferAttribute(uvAttribute, a); uvB.fromBufferAttribute(uvAttribute, b); uvC.fromBufferAttribute(uvAttribute, c); vB.sub(vA); vC.sub(vA); uvB.sub(uvA); uvC.sub(uvA); const r = 1 / (uvB.x * uvC.y - uvC.x * uvB.y); if (!isFinite(r)) return; sdir.copy(vB).multiplyScalar(uvC.y).addScaledVector(vC, -uvB.y).multiplyScalar(r); tdir.copy(vC).multiplyScalar(uvB.x).addScaledVector(vB, -uvC.x).multiplyScalar(r); tan1[a].add(sdir); tan1[b].add(sdir); tan1[c].add(sdir); tan2[a].add(tdir); tan2[b].add(tdir); tan2[c].add(tdir); } __name(handleTriangle, "handleTriangle"); let groups = this.groups; if (groups.length === 0) { groups = [{ start: 0, count: index.count }]; } for (let i = 0, il = groups.length; i < il; ++i) { const group = groups[i]; const start = group.start; const count = group.count; for (let j = start, jl = start + count; j < jl; j += 3) { handleTriangle( index.getX(j + 0), index.getX(j + 1), index.getX(j + 2) ); } } const tmp2 = new Vector3(), tmp22 = new Vector3(); const n = new Vector3(), n2 = new Vector3(); function handleVertex(v) { n.fromBufferAttribute(normalAttribute, v); n2.copy(n); const t = tan1[v]; tmp2.copy(t); tmp2.sub(n.multiplyScalar(n.dot(t))).normalize(); tmp22.crossVectors(n2, t); const test = tmp22.dot(tan2[v]); const w = test < 0 ? -1 : 1; tangentAttribute.setXYZW(v, tmp2.x, tmp2.y, tmp2.z, w); } __name(handleVertex, "handleVertex"); for (let i = 0, il = groups.length; i < il; ++i) { const group = groups[i]; const start = group.start; const count = group.count; for (let j = start, jl = start + count; j < jl; j += 3) { handleVertex(index.getX(j + 0)); handleVertex(index.getX(j + 1)); handleVertex(index.getX(j + 2)); } } } computeVertexNormals() { const index = this.index; const positionAttribute = this.getAttribute("position"); if (positionAttribute !== void 0) { let normalAttribute = this.getAttribute("normal"); if (normalAttribute === void 0) { normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3); this.setAttribute("normal", normalAttribute); } else { for (let i = 0, il = normalAttribute.count; i < il; i++) { normalAttribute.setXYZ(i, 0, 0, 0); } } const pA = new Vector3(), pB = new Vector3(), pC = new Vector3(); const nA = new Vector3(), nB = new Vector3(), nC = new Vector3(); const cb = new Vector3(), ab = new Vector3(); if (index) { for (let i = 0, il = index.count; i < il; i += 3) { const vA = index.getX(i + 0); const vB = index.getX(i + 1); const vC = index.getX(i + 2); pA.fromBufferAttribute(positionAttribute, vA); pB.fromBufferAttribute(positionAttribute, vB); pC.fromBufferAttribute(positionAttribute, vC); cb.subVectors(pC, pB); ab.subVectors(pA, pB); cb.cross(ab); nA.fromBufferAttribute(normalAttribute, vA); nB.fromBufferAttribute(normalAttribute, vB); nC.fromBufferAttribute(normalAttribute, vC); nA.add(cb); nB.add(cb); nC.add(cb); normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z); normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z); normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z); } } else { for (let i = 0, il = positionAttribute.count; i < il; i += 3) { pA.fromBufferAttribute(positionAttribute, i + 0); pB.fromBufferAttribute(positionAttribute, i + 1); pC.fromBufferAttribute(positionAttribute, i + 2); cb.subVectors(pC, pB); ab.subVectors(pA, pB); cb.cross(ab); normalAttribute.setXYZ(i + 0, cb.x, cb.y, cb.z); normalAttribute.setXYZ(i + 1, cb.x, cb.y, cb.z); normalAttribute.setXYZ(i + 2, cb.x, cb.y, cb.z); } } this.normalizeNormals(); normalAttribute.needsUpdate = true; } } normalizeNormals() { const normals = this.attributes.normal; for (let i = 0, il = normals.count; i < il; i++) { _vector$8.fromBufferAttribute(normals, i); _vector$8.normalize(); normals.setXYZ(i, _vector$8.x, _vector$8.y, _vector$8.z); } } toNonIndexed() { function convertBufferAttribute(attribute, indices2) { const array = attribute.array; const itemSize = attribute.itemSize; const normalized = attribute.normalized; const array2 = new array.constructor(indices2.length * itemSize); let index = 0, index2 = 0; for (let i = 0, l = indices2.length; i < l; i++) { if (attribute.isInterleavedBufferAttribute) { index = indices2[i] * attribute.data.stride + attribute.offset; } else { index = indices2[i] * itemSize; } for (let j = 0; j < itemSize; j++) { array2[index2++] = array[index++]; } } return new BufferAttribute(array2, itemSize, normalized); } __name(convertBufferAttribute, "convertBufferAttribute"); if (this.index === null) { console.warn("THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed."); return this; } const geometry2 = new BufferGeometry(); const indices = this.index.array; const attributes = this.attributes; for (const name in attributes) { const attribute = attributes[name]; const newAttribute = convertBufferAttribute(attribute, indices); geometry2.setAttribute(name, newAttribute); } const morphAttributes = this.morphAttributes; for (const name in morphAttributes) { const morphArray = []; const morphAttribute = morphAttributes[name]; for (let i = 0, il = morphAttribute.length; i < il; i++) { const attribute = morphAttribute[i]; const newAttribute = convertBufferAttribute(attribute, indices); morphArray.push(newAttribute); } geometry2.morphAttributes[name] = morphArray; } geometry2.morphTargetsRelative = this.morphTargetsRelative; const groups = this.groups; for (let i = 0, l = groups.length; i < l; i++) { const group = groups[i]; geometry2.addGroup(group.start, group.count, group.materialIndex); } return geometry2; } toJSON() { const data = { metadata: { version: 4.6, type: "BufferGeometry", generator: "BufferGeometry.toJSON" } }; data.uuid = this.uuid; data.type = this.type; if (this.name !== "") data.name = this.name; if (Object.keys(this.userData).length > 0) data.userData = this.userData; if (this.parameters !== void 0) { const parameters = this.parameters; for (const key in parameters) { if (parameters[key] !== void 0) data[key] = parameters[key]; } return data; } data.data = { attributes: {} }; const index = this.index; if (index !== null) { data.data.index = { type: index.array.constructor.name, array: Array.prototype.slice.call(index.array) }; } const attributes = this.attributes; for (const key in attributes) { const attribute = attributes[key]; data.data.attributes[key] = attribute.toJSON(data.data); } const morphAttributes = {}; let hasMorphAttributes = false; for (const key in this.morphAttributes) { const attributeArray = this.morphAttributes[key]; const array = []; for (let i = 0, il = attributeArray.length; i < il; i++) { const attribute = attributeArray[i]; array.push(attribute.toJSON(data.data)); } if (array.length > 0) { morphAttributes[key] = array; hasMorphAttributes = true; } } if (hasMorphAttributes) { data.data.morphAttributes = morphAttributes; data.data.morphTargetsRelative = this.morphTargetsRelative; } const groups = this.groups; if (groups.length > 0) { data.data.groups = JSON.parse(JSON.stringify(groups)); } const boundingSphere = this.boundingSphere; if (boundingSphere !== null) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius }; } return data; } clone() { return new this.constructor().copy(this); } copy(source) { this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null; const data = {}; this.name = source.name; const index = source.index; if (index !== null) { this.setIndex(index.clone(data)); } const attributes = source.attributes; for (const name in attributes) { const attribute = attributes[name]; this.setAttribute(name, attribute.clone(data)); } const morphAttributes = source.morphAttributes; for (const name in morphAttributes) { const array = []; const morphAttribute = morphAttributes[name]; for (let i = 0, l = morphAttribute.length; i < l; i++) { array.push(morphAttribute[i].clone(data)); } this.morphAttributes[name] = array; } this.morphTargetsRelative = source.morphTargetsRelative; const groups = source.groups; for (let i = 0, l = groups.length; i < l; i++) { const group = groups[i]; this.addGroup(group.start, group.count, group.materialIndex); } const boundingBox = source.boundingBox; if (boundingBox !== null) { this.boundingBox = boundingBox.clone(); } const boundingSphere = source.boundingSphere; if (boundingSphere !== null) { this.boundingSphere = boundingSphere.clone(); } this.drawRange.start = source.drawRange.start; this.drawRange.count = source.drawRange.count; this.userData = source.userData; return this; } dispose() { this.dispatchEvent({ type: "dispose" }); } } const _inverseMatrix$3 = /* @__PURE__ */ new Matrix4(); const _ray$3 = /* @__PURE__ */ new Ray(); const _sphere$6 = /* @__PURE__ */ new Sphere(); const _sphereHitAt = /* @__PURE__ */ new Vector3(); const _vA$1 = /* @__PURE__ */ new Vector3(); const _vB$1 = /* @__PURE__ */ new Vector3(); const _vC$1 = /* @__PURE__ */ new Vector3(); const _tempA = /* @__PURE__ */ new Vector3(); const _morphA = /* @__PURE__ */ new Vector3(); const _intersectionPoint = /* @__PURE__ */ new Vector3(); const _intersectionPointWorld = /* @__PURE__ */ new Vector3(); class Mesh extends Object3D { static { __name(this, "Mesh"); } constructor(geometry = new BufferGeometry(), material = new MeshBasicMaterial()) { super(); this.isMesh = true; this.type = "Mesh"; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy(source, recursive) { super.copy(source, recursive); if (source.morphTargetInfluences !== void 0) { this.morphTargetInfluences = source.morphTargetInfluences.slice(); } if (source.morphTargetDictionary !== void 0) { this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary); } this.material = Array.isArray(source.material) ? source.material.slice() : source.material; this.geometry = source.geometry; return this; } updateMorphTargets() { const geometry = this.geometry; const morphAttributes = geometry.morphAttributes; const keys = Object.keys(morphAttributes); if (keys.length > 0) { const morphAttribute = morphAttributes[keys[0]]; if (morphAttribute !== void 0) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for (let m = 0, ml = morphAttribute.length; m < ml; m++) { const name = morphAttribute[m].name || String(m); this.morphTargetInfluences.push(0); this.morphTargetDictionary[name] = m; } } } } getVertexPosition(index, target) { const geometry = this.geometry; const position = geometry.attributes.position; const morphPosition = geometry.morphAttributes.position; const morphTargetsRelative = geometry.morphTargetsRelative; target.fromBufferAttribute(position, index); const morphInfluences = this.morphTargetInfluences; if (morphPosition && morphInfluences) { _morphA.set(0, 0, 0); for (let i = 0, il = morphPosition.length; i < il; i++) { const influence = morphInfluences[i]; const morphAttribute = morphPosition[i]; if (influence === 0) continue; _tempA.fromBufferAttribute(morphAttribute, index); if (morphTargetsRelative) { _morphA.addScaledVector(_tempA, influence); } else { _morphA.addScaledVector(_tempA.sub(target), influence); } } target.add(_morphA); } return target; } raycast(raycaster, intersects2) { const geometry = this.geometry; const material = this.material; const matrixWorld = this.matrixWorld; if (material === void 0) return; if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); _sphere$6.copy(geometry.boundingSphere); _sphere$6.applyMatrix4(matrixWorld); _ray$3.copy(raycaster.ray).recast(raycaster.near); if (_sphere$6.containsPoint(_ray$3.origin) === false) { if (_ray$3.intersectSphere(_sphere$6, _sphereHitAt) === null) return; if (_ray$3.origin.distanceToSquared(_sphereHitAt) > (raycaster.far - raycaster.near) ** 2) return; } _inverseMatrix$3.copy(matrixWorld).invert(); _ray$3.copy(raycaster.ray).applyMatrix4(_inverseMatrix$3); if (geometry.boundingBox !== null) { if (_ray$3.intersectsBox(geometry.boundingBox) === false) return; } this._computeIntersections(raycaster, intersects2, _ray$3); } _computeIntersections(raycaster, intersects2, rayLocalSpace) { let intersection; const geometry = this.geometry; const material = this.material; const index = geometry.index; const position = geometry.attributes.position; const uv = geometry.attributes.uv; const uv1 = geometry.attributes.uv1; const normal = geometry.attributes.normal; const groups = geometry.groups; const drawRange = geometry.drawRange; if (index !== null) { if (Array.isArray(material)) { for (let i = 0, il = groups.length; i < il; i++) { const group = groups[i]; const groupMaterial = material[group.materialIndex]; const start = Math.max(group.start, drawRange.start); const end = Math.min(index.count, Math.min(group.start + group.count, drawRange.start + drawRange.count)); for (let j = start, jl = end; j < jl; j += 3) { const a = index.getX(j); const b = index.getX(j + 1); const c = index.getX(j + 2); intersection = checkGeometryIntersection(this, groupMaterial, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c); if (intersection) { intersection.faceIndex = Math.floor(j / 3); intersection.face.materialIndex = group.materialIndex; intersects2.push(intersection); } } } } else { const start = Math.max(0, drawRange.start); const end = Math.min(index.count, drawRange.start + drawRange.count); for (let i = start, il = end; i < il; i += 3) { const a = index.getX(i); const b = index.getX(i + 1); const c = index.getX(i + 2); intersection = checkGeometryIntersection(this, material, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c); if (intersection) { intersection.faceIndex = Math.floor(i / 3); intersects2.push(intersection); } } } } else if (position !== void 0) { if (Array.isArray(material)) { for (let i = 0, il = groups.length; i < il; i++) { const group = groups[i]; const groupMaterial = material[group.materialIndex]; const start = Math.max(group.start, drawRange.start); const end = Math.min(position.count, Math.min(group.start + group.count, drawRange.start + drawRange.count)); for (let j = start, jl = end; j < jl; j += 3) { const a = j; const b = j + 1; const c = j + 2; intersection = checkGeometryIntersection(this, groupMaterial, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c); if (intersection) { intersection.faceIndex = Math.floor(j / 3); intersection.face.materialIndex = group.materialIndex; intersects2.push(intersection); } } } } else { const start = Math.max(0, drawRange.start); const end = Math.min(position.count, drawRange.start + drawRange.count); for (let i = start, il = end; i < il; i += 3) { const a = i; const b = i + 1; const c = i + 2; intersection = checkGeometryIntersection(this, material, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c); if (intersection) { intersection.faceIndex = Math.floor(i / 3); intersects2.push(intersection); } } } } } } function checkIntersection$1(object, material, raycaster, ray, pA, pB, pC, point) { let intersect2; if (material.side === BackSide) { intersect2 = ray.intersectTriangle(pC, pB, pA, true, point); } else { intersect2 = ray.intersectTriangle(pA, pB, pC, material.side === FrontSide, point); } if (intersect2 === null) return null; _intersectionPointWorld.copy(point); _intersectionPointWorld.applyMatrix4(object.matrixWorld); const distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld); if (distance < raycaster.near || distance > raycaster.far) return null; return { distance, point: _intersectionPointWorld.clone(), object }; } __name(checkIntersection$1, "checkIntersection$1"); function checkGeometryIntersection(object, material, raycaster, ray, uv, uv1, normal, a, b, c) { object.getVertexPosition(a, _vA$1); object.getVertexPosition(b, _vB$1); object.getVertexPosition(c, _vC$1); const intersection = checkIntersection$1(object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint); if (intersection) { const barycoord = new Vector3(); Triangle.getBarycoord(_intersectionPoint, _vA$1, _vB$1, _vC$1, barycoord); if (uv) { intersection.uv = Triangle.getInterpolatedAttribute(uv, a, b, c, barycoord, new Vector2()); } if (uv1) { intersection.uv1 = Triangle.getInterpolatedAttribute(uv1, a, b, c, barycoord, new Vector2()); } if (normal) { intersection.normal = Triangle.getInterpolatedAttribute(normal, a, b, c, barycoord, new Vector3()); if (intersection.normal.dot(ray.direction) > 0) { intersection.normal.multiplyScalar(-1); } } const face = { a, b, c, normal: new Vector3(), materialIndex: 0 }; Triangle.getNormal(_vA$1, _vB$1, _vC$1, face.normal); intersection.face = face; intersection.barycoord = barycoord; } return intersection; } __name(checkGeometryIntersection, "checkGeometryIntersection"); class BoxGeometry extends BufferGeometry { static { __name(this, "BoxGeometry"); } constructor(width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1) { super(); this.type = "BoxGeometry"; this.parameters = { width, height, depth, widthSegments, heightSegments, depthSegments }; const scope = this; widthSegments = Math.floor(widthSegments); heightSegments = Math.floor(heightSegments); depthSegments = Math.floor(depthSegments); const indices = []; const vertices = []; const normals = []; const uvs = []; let numberOfVertices = 0; let groupStart = 0; buildPlane("z", "y", "x", -1, -1, depth, height, width, depthSegments, heightSegments, 0); buildPlane("z", "y", "x", 1, -1, depth, height, -width, depthSegments, heightSegments, 1); buildPlane("x", "z", "y", 1, 1, width, depth, height, widthSegments, depthSegments, 2); buildPlane("x", "z", "y", 1, -1, width, depth, -height, widthSegments, depthSegments, 3); buildPlane("x", "y", "z", 1, -1, width, height, depth, widthSegments, heightSegments, 4); buildPlane("x", "y", "z", -1, -1, width, height, -depth, widthSegments, heightSegments, 5); this.setIndex(indices); this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); this.setAttribute("normal", new Float32BufferAttribute(normals, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvs, 2)); function buildPlane(u, v, w, udir, vdir, width2, height2, depth2, gridX, gridY, materialIndex) { const segmentWidth = width2 / gridX; const segmentHeight = height2 / gridY; const widthHalf = width2 / 2; const heightHalf = height2 / 2; const depthHalf = depth2 / 2; const gridX1 = gridX + 1; const gridY1 = gridY + 1; let vertexCounter = 0; let groupCount = 0; const vector = new Vector3(); for (let iy = 0; iy < gridY1; iy++) { const y = iy * segmentHeight - heightHalf; for (let ix = 0; ix < gridX1; ix++) { const x = ix * segmentWidth - widthHalf; vector[u] = x * udir; vector[v] = y * vdir; vector[w] = depthHalf; vertices.push(vector.x, vector.y, vector.z); vector[u] = 0; vector[v] = 0; vector[w] = depth2 > 0 ? 1 : -1; normals.push(vector.x, vector.y, vector.z); uvs.push(ix / gridX); uvs.push(1 - iy / gridY); vertexCounter += 1; } } for (let iy = 0; iy < gridY; iy++) { for (let ix = 0; ix < gridX; ix++) { const a = numberOfVertices + ix + gridX1 * iy; const b = numberOfVertices + ix + gridX1 * (iy + 1); const c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1); const d = numberOfVertices + (ix + 1) + gridX1 * iy; indices.push(a, b, d); indices.push(b, c, d); groupCount += 6; } } scope.addGroup(groupStart, groupCount, materialIndex); groupStart += groupCount; numberOfVertices += vertexCounter; } __name(buildPlane, "buildPlane"); } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } static fromJSON(data) { return new BoxGeometry(data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments); } } function cloneUniforms(src) { const dst = {}; for (const u in src) { dst[u] = {}; for (const p in src[u]) { const property = src[u][p]; if (property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion)) { if (property.isRenderTargetTexture) { console.warn("UniformsUtils: Textures of render targets cannot be cloned via cloneUniforms() or mergeUniforms()."); dst[u][p] = null; } else { dst[u][p] = property.clone(); } } else if (Array.isArray(property)) { dst[u][p] = property.slice(); } else { dst[u][p] = property; } } } return dst; } __name(cloneUniforms, "cloneUniforms"); function mergeUniforms(uniforms) { const merged = {}; for (let u = 0; u < uniforms.length; u++) { const tmp2 = cloneUniforms(uniforms[u]); for (const p in tmp2) { merged[p] = tmp2[p]; } } return merged; } __name(mergeUniforms, "mergeUniforms"); function cloneUniformsGroups(src) { const dst = []; for (let u = 0; u < src.length; u++) { dst.push(src[u].clone()); } return dst; } __name(cloneUniformsGroups, "cloneUniformsGroups"); function getUnlitUniformColorSpace(renderer) { const currentRenderTarget = renderer.getRenderTarget(); if (currentRenderTarget === null) { return renderer.outputColorSpace; } if (currentRenderTarget.isXRRenderTarget === true) { return currentRenderTarget.texture.colorSpace; } return ColorManagement.workingColorSpace; } __name(getUnlitUniformColorSpace, "getUnlitUniformColorSpace"); const UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms }; var default_vertex = "void main() {\n gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}"; var default_fragment = "void main() {\n gl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}"; class ShaderMaterial extends Material { static { __name(this, "ShaderMaterial"); } static get type() { return "ShaderMaterial"; } constructor(parameters) { super(); this.isShaderMaterial = true; this.defines = {}; this.uniforms = {}; this.uniformsGroups = []; this.vertexShader = default_vertex; this.fragmentShader = default_fragment; this.linewidth = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; this.lights = false; this.clipping = false; this.forceSinglePass = true; this.extensions = { clipCullDistance: false, // set to use vertex shader clipping multiDraw: false // set to use vertex shader multi_draw / enable gl_DrawID }; this.defaultAttributeValues = { "color": [1, 1, 1], "uv": [0, 0], "uv1": [0, 0] }; this.index0AttributeName = void 0; this.uniformsNeedUpdate = false; this.glslVersion = null; if (parameters !== void 0) { this.setValues(parameters); } } copy(source) { super.copy(source); this.fragmentShader = source.fragmentShader; this.vertexShader = source.vertexShader; this.uniforms = cloneUniforms(source.uniforms); this.uniformsGroups = cloneUniformsGroups(source.uniformsGroups); this.defines = Object.assign({}, source.defines); this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.fog = source.fog; this.lights = source.lights; this.clipping = source.clipping; this.extensions = Object.assign({}, source.extensions); this.glslVersion = source.glslVersion; return this; } toJSON(meta) { const data = super.toJSON(meta); data.glslVersion = this.glslVersion; data.uniforms = {}; for (const name in this.uniforms) { const uniform = this.uniforms[name]; const value = uniform.value; if (value && value.isTexture) { data.uniforms[name] = { type: "t", value: value.toJSON(meta).uuid }; } else if (value && value.isColor) { data.uniforms[name] = { type: "c", value: value.getHex() }; } else if (value && value.isVector2) { data.uniforms[name] = { type: "v2", value: value.toArray() }; } else if (value && value.isVector3) { data.uniforms[name] = { type: "v3", value: value.toArray() }; } else if (value && value.isVector4) { data.uniforms[name] = { type: "v4", value: value.toArray() }; } else if (value && value.isMatrix3) { data.uniforms[name] = { type: "m3", value: value.toArray() }; } else if (value && value.isMatrix4) { data.uniforms[name] = { type: "m4", value: value.toArray() }; } else { data.uniforms[name] = { value }; } } if (Object.keys(this.defines).length > 0) data.defines = this.defines; data.vertexShader = this.vertexShader; data.fragmentShader = this.fragmentShader; data.lights = this.lights; data.clipping = this.clipping; const extensions = {}; for (const key in this.extensions) { if (this.extensions[key] === true) extensions[key] = true; } if (Object.keys(extensions).length > 0) data.extensions = extensions; return data; } } class Camera extends Object3D { static { __name(this, "Camera"); } constructor() { super(); this.isCamera = true; this.type = "Camera"; this.matrixWorldInverse = new Matrix4(); this.projectionMatrix = new Matrix4(); this.projectionMatrixInverse = new Matrix4(); this.coordinateSystem = WebGLCoordinateSystem; } copy(source, recursive) { super.copy(source, recursive); this.matrixWorldInverse.copy(source.matrixWorldInverse); this.projectionMatrix.copy(source.projectionMatrix); this.projectionMatrixInverse.copy(source.projectionMatrixInverse); this.coordinateSystem = source.coordinateSystem; return this; } getWorldDirection(target) { return super.getWorldDirection(target).negate(); } updateMatrixWorld(force) { super.updateMatrixWorld(force); this.matrixWorldInverse.copy(this.matrixWorld).invert(); } updateWorldMatrix(updateParents, updateChildren) { super.updateWorldMatrix(updateParents, updateChildren); this.matrixWorldInverse.copy(this.matrixWorld).invert(); } clone() { return new this.constructor().copy(this); } } const _v3$1 = /* @__PURE__ */ new Vector3(); const _minTarget = /* @__PURE__ */ new Vector2(); const _maxTarget = /* @__PURE__ */ new Vector2(); class PerspectiveCamera extends Camera { static { __name(this, "PerspectiveCamera"); } constructor(fov2 = 50, aspect2 = 1, near = 0.1, far = 2e3) { super(); this.isPerspectiveCamera = true; this.type = "PerspectiveCamera"; this.fov = fov2; this.zoom = 1; this.near = near; this.far = far; this.focus = 10; this.aspect = aspect2; this.view = null; this.filmGauge = 35; this.filmOffset = 0; this.updateProjectionMatrix(); } copy(source, recursive) { super.copy(source, recursive); this.fov = source.fov; this.zoom = source.zoom; this.near = source.near; this.far = source.far; this.focus = source.focus; this.aspect = source.aspect; this.view = source.view === null ? null : Object.assign({}, source.view); this.filmGauge = source.filmGauge; this.filmOffset = source.filmOffset; return this; } /** * Sets the FOV by focal length in respect to the current .filmGauge. * * The default film gauge is 35, so that the focal length can be specified for * a 35mm (full frame) camera. * * Values for focal length and film gauge must have the same unit. */ setFocalLength(focalLength) { const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; this.fov = RAD2DEG * 2 * Math.atan(vExtentSlope); this.updateProjectionMatrix(); } /** * Calculates the focal length from the current .fov and .filmGauge. */ getFocalLength() { const vExtentSlope = Math.tan(DEG2RAD * 0.5 * this.fov); return 0.5 * this.getFilmHeight() / vExtentSlope; } getEffectiveFOV() { return RAD2DEG * 2 * Math.atan( Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom ); } getFilmWidth() { return this.filmGauge * Math.min(this.aspect, 1); } getFilmHeight() { return this.filmGauge / Math.max(this.aspect, 1); } /** * Computes the 2D bounds of the camera's viewable rectangle at a given distance along the viewing direction. * Sets minTarget and maxTarget to the coordinates of the lower-left and upper-right corners of the view rectangle. */ getViewBounds(distance, minTarget, maxTarget) { _v3$1.set(-1, -1, 0.5).applyMatrix4(this.projectionMatrixInverse); minTarget.set(_v3$1.x, _v3$1.y).multiplyScalar(-distance / _v3$1.z); _v3$1.set(1, 1, 0.5).applyMatrix4(this.projectionMatrixInverse); maxTarget.set(_v3$1.x, _v3$1.y).multiplyScalar(-distance / _v3$1.z); } /** * Computes the width and height of the camera's viewable rectangle at a given distance along the viewing direction. * Copies the result into the target Vector2, where x is width and y is height. */ getViewSize(distance, target) { this.getViewBounds(distance, _minTarget, _maxTarget); return target.subVectors(_maxTarget, _minTarget); } /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * const w = 1920; * const h = 1080; * const fullWidth = w * 3; * const fullHeight = h * 2; * * --A-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ setViewOffset(fullWidth, fullHeight, x, y, width, height) { this.aspect = fullWidth / fullHeight; if (this.view === null) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); } clearViewOffset() { if (this.view !== null) { this.view.enabled = false; } this.updateProjectionMatrix(); } updateProjectionMatrix() { const near = this.near; let top = near * Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom; let height = 2 * top; let width = this.aspect * height; let left = -0.5 * width; const view = this.view; if (this.view !== null && this.view.enabled) { const fullWidth = view.fullWidth, fullHeight = view.fullHeight; left += view.offsetX * width / fullWidth; top -= view.offsetY * height / fullHeight; width *= view.width / fullWidth; height *= view.height / fullHeight; } const skew = this.filmOffset; if (skew !== 0) left += near * skew / this.getFilmWidth(); this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far, this.coordinateSystem); this.projectionMatrixInverse.copy(this.projectionMatrix).invert(); } toJSON(meta) { const data = super.toJSON(meta); data.object.fov = this.fov; data.object.zoom = this.zoom; data.object.near = this.near; data.object.far = this.far; data.object.focus = this.focus; data.object.aspect = this.aspect; if (this.view !== null) data.object.view = Object.assign({}, this.view); data.object.filmGauge = this.filmGauge; data.object.filmOffset = this.filmOffset; return data; } } const fov = -90; const aspect = 1; class CubeCamera extends Object3D { static { __name(this, "CubeCamera"); } constructor(near, far, renderTarget) { super(); this.type = "CubeCamera"; this.renderTarget = renderTarget; this.coordinateSystem = null; this.activeMipmapLevel = 0; const cameraPX = new PerspectiveCamera(fov, aspect, near, far); cameraPX.layers = this.layers; this.add(cameraPX); const cameraNX = new PerspectiveCamera(fov, aspect, near, far); cameraNX.layers = this.layers; this.add(cameraNX); const cameraPY = new PerspectiveCamera(fov, aspect, near, far); cameraPY.layers = this.layers; this.add(cameraPY); const cameraNY = new PerspectiveCamera(fov, aspect, near, far); cameraNY.layers = this.layers; this.add(cameraNY); const cameraPZ = new PerspectiveCamera(fov, aspect, near, far); cameraPZ.layers = this.layers; this.add(cameraPZ); const cameraNZ = new PerspectiveCamera(fov, aspect, near, far); cameraNZ.layers = this.layers; this.add(cameraNZ); } updateCoordinateSystem() { const coordinateSystem = this.coordinateSystem; const cameras = this.children.concat(); const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = cameras; for (const camera of cameras) this.remove(camera); if (coordinateSystem === WebGLCoordinateSystem) { cameraPX.up.set(0, 1, 0); cameraPX.lookAt(1, 0, 0); cameraNX.up.set(0, 1, 0); cameraNX.lookAt(-1, 0, 0); cameraPY.up.set(0, 0, -1); cameraPY.lookAt(0, 1, 0); cameraNY.up.set(0, 0, 1); cameraNY.lookAt(0, -1, 0); cameraPZ.up.set(0, 1, 0); cameraPZ.lookAt(0, 0, 1); cameraNZ.up.set(0, 1, 0); cameraNZ.lookAt(0, 0, -1); } else if (coordinateSystem === WebGPUCoordinateSystem) { cameraPX.up.set(0, -1, 0); cameraPX.lookAt(-1, 0, 0); cameraNX.up.set(0, -1, 0); cameraNX.lookAt(1, 0, 0); cameraPY.up.set(0, 0, 1); cameraPY.lookAt(0, 1, 0); cameraNY.up.set(0, 0, -1); cameraNY.lookAt(0, -1, 0); cameraPZ.up.set(0, -1, 0); cameraPZ.lookAt(0, 0, 1); cameraNZ.up.set(0, -1, 0); cameraNZ.lookAt(0, 0, -1); } else { throw new Error("THREE.CubeCamera.updateCoordinateSystem(): Invalid coordinate system: " + coordinateSystem); } for (const camera of cameras) { this.add(camera); camera.updateMatrixWorld(); } } update(renderer, scene) { if (this.parent === null) this.updateMatrixWorld(); const { renderTarget, activeMipmapLevel } = this; if (this.coordinateSystem !== renderer.coordinateSystem) { this.coordinateSystem = renderer.coordinateSystem; this.updateCoordinateSystem(); } const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = this.children; const currentRenderTarget = renderer.getRenderTarget(); const currentActiveCubeFace = renderer.getActiveCubeFace(); const currentActiveMipmapLevel = renderer.getActiveMipmapLevel(); const currentXrEnabled = renderer.xr.enabled; renderer.xr.enabled = false; const generateMipmaps = renderTarget.texture.generateMipmaps; renderTarget.texture.generateMipmaps = false; renderer.setRenderTarget(renderTarget, 0, activeMipmapLevel); renderer.render(scene, cameraPX); renderer.setRenderTarget(renderTarget, 1, activeMipmapLevel); renderer.render(scene, cameraNX); renderer.setRenderTarget(renderTarget, 2, activeMipmapLevel); renderer.render(scene, cameraPY); renderer.setRenderTarget(renderTarget, 3, activeMipmapLevel); renderer.render(scene, cameraNY); renderer.setRenderTarget(renderTarget, 4, activeMipmapLevel); renderer.render(scene, cameraPZ); renderTarget.texture.generateMipmaps = generateMipmaps; renderer.setRenderTarget(renderTarget, 5, activeMipmapLevel); renderer.render(scene, cameraNZ); renderer.setRenderTarget(currentRenderTarget, currentActiveCubeFace, currentActiveMipmapLevel); renderer.xr.enabled = currentXrEnabled; renderTarget.texture.needsPMREMUpdate = true; } } class CubeTexture extends Texture { static { __name(this, "CubeTexture"); } constructor(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace) { images = images !== void 0 ? images : []; mapping = mapping !== void 0 ? mapping : CubeReflectionMapping; super(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace); this.isCubeTexture = true; this.flipY = false; } get images() { return this.image; } set images(value) { this.image = value; } } class WebGLCubeRenderTarget extends WebGLRenderTarget { static { __name(this, "WebGLCubeRenderTarget"); } constructor(size = 1, options = {}) { super(size, size, options); this.isWebGLCubeRenderTarget = true; const image = { width: size, height: size, depth: 1 }; const images = [image, image, image, image, image, image]; this.texture = new CubeTexture(images, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.colorSpace); this.texture.isRenderTargetTexture = true; this.texture.generateMipmaps = options.generateMipmaps !== void 0 ? options.generateMipmaps : false; this.texture.minFilter = options.minFilter !== void 0 ? options.minFilter : LinearFilter; } fromEquirectangularTexture(renderer, texture) { this.texture.type = texture.type; this.texture.colorSpace = texture.colorSpace; this.texture.generateMipmaps = texture.generateMipmaps; this.texture.minFilter = texture.minFilter; this.texture.magFilter = texture.magFilter; const shader = { uniforms: { tEquirect: { value: null } }, vertexShader: ( /* glsl */ ` varying vec3 vWorldDirection; vec3 transformDirection( in vec3 dir, in mat4 matrix ) { return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); } void main() { vWorldDirection = transformDirection( position, modelMatrix ); #include #include } ` ), fragmentShader: ( /* glsl */ ` uniform sampler2D tEquirect; varying vec3 vWorldDirection; #include void main() { vec3 direction = normalize( vWorldDirection ); vec2 sampleUV = equirectUv( direction ); gl_FragColor = texture2D( tEquirect, sampleUV ); } ` ) }; const geometry = new BoxGeometry(5, 5, 5); const material = new ShaderMaterial({ name: "CubemapFromEquirect", uniforms: cloneUniforms(shader.uniforms), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader, side: BackSide, blending: NoBlending }); material.uniforms.tEquirect.value = texture; const mesh = new Mesh(geometry, material); const currentMinFilter = texture.minFilter; if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter; const camera = new CubeCamera(1, 10, this); camera.update(renderer, mesh); texture.minFilter = currentMinFilter; mesh.geometry.dispose(); mesh.material.dispose(); return this; } clear(renderer, color, depth, stencil) { const currentRenderTarget = renderer.getRenderTarget(); for (let i = 0; i < 6; i++) { renderer.setRenderTarget(this, i); renderer.clear(color, depth, stencil); } renderer.setRenderTarget(currentRenderTarget); } } const _vector1 = /* @__PURE__ */ new Vector3(); const _vector2 = /* @__PURE__ */ new Vector3(); const _normalMatrix = /* @__PURE__ */ new Matrix3(); class Plane { static { __name(this, "Plane"); } constructor(normal = new Vector3(1, 0, 0), constant = 0) { this.isPlane = true; this.normal = normal; this.constant = constant; } set(normal, constant) { this.normal.copy(normal); this.constant = constant; return this; } setComponents(x, y, z, w) { this.normal.set(x, y, z); this.constant = w; return this; } setFromNormalAndCoplanarPoint(normal, point) { this.normal.copy(normal); this.constant = -point.dot(this.normal); return this; } setFromCoplanarPoints(a, b, c) { const normal = _vector1.subVectors(c, b).cross(_vector2.subVectors(a, b)).normalize(); this.setFromNormalAndCoplanarPoint(normal, a); return this; } copy(plane) { this.normal.copy(plane.normal); this.constant = plane.constant; return this; } normalize() { const inverseNormalLength = 1 / this.normal.length(); this.normal.multiplyScalar(inverseNormalLength); this.constant *= inverseNormalLength; return this; } negate() { this.constant *= -1; this.normal.negate(); return this; } distanceToPoint(point) { return this.normal.dot(point) + this.constant; } distanceToSphere(sphere) { return this.distanceToPoint(sphere.center) - sphere.radius; } projectPoint(point, target) { return target.copy(point).addScaledVector(this.normal, -this.distanceToPoint(point)); } intersectLine(line, target) { const direction = line.delta(_vector1); const denominator = this.normal.dot(direction); if (denominator === 0) { if (this.distanceToPoint(line.start) === 0) { return target.copy(line.start); } return null; } const t = -(line.start.dot(this.normal) + this.constant) / denominator; if (t < 0 || t > 1) { return null; } return target.copy(line.start).addScaledVector(direction, t); } intersectsLine(line) { const startSign = this.distanceToPoint(line.start); const endSign = this.distanceToPoint(line.end); return startSign < 0 && endSign > 0 || endSign < 0 && startSign > 0; } intersectsBox(box) { return box.intersectsPlane(this); } intersectsSphere(sphere) { return sphere.intersectsPlane(this); } coplanarPoint(target) { return target.copy(this.normal).multiplyScalar(-this.constant); } applyMatrix4(matrix, optionalNormalMatrix) { const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix); const referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix); const normal = this.normal.applyMatrix3(normalMatrix).normalize(); this.constant = -referencePoint.dot(normal); return this; } translate(offset) { this.constant -= offset.dot(this.normal); return this; } equals(plane) { return plane.normal.equals(this.normal) && plane.constant === this.constant; } clone() { return new this.constructor().copy(this); } } const _sphere$5 = /* @__PURE__ */ new Sphere(); const _vector$7 = /* @__PURE__ */ new Vector3(); class Frustum { static { __name(this, "Frustum"); } constructor(p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane()) { this.planes = [p0, p1, p2, p3, p4, p5]; } set(p0, p1, p2, p3, p4, p5) { const planes = this.planes; planes[0].copy(p0); planes[1].copy(p1); planes[2].copy(p2); planes[3].copy(p3); planes[4].copy(p4); planes[5].copy(p5); return this; } copy(frustum) { const planes = this.planes; for (let i = 0; i < 6; i++) { planes[i].copy(frustum.planes[i]); } return this; } setFromProjectionMatrix(m, coordinateSystem = WebGLCoordinateSystem) { const planes = this.planes; const me = m.elements; const me0 = me[0], me1 = me[1], me2 = me[2], me3 = me[3]; const me4 = me[4], me5 = me[5], me6 = me[6], me7 = me[7]; const me8 = me[8], me9 = me[9], me10 = me[10], me11 = me[11]; const me12 = me[12], me13 = me[13], me14 = me[14], me15 = me[15]; planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize(); planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize(); planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize(); planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize(); planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize(); if (coordinateSystem === WebGLCoordinateSystem) { planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize(); } else if (coordinateSystem === WebGPUCoordinateSystem) { planes[5].setComponents(me2, me6, me10, me14).normalize(); } else { throw new Error("THREE.Frustum.setFromProjectionMatrix(): Invalid coordinate system: " + coordinateSystem); } return this; } intersectsObject(object) { if (object.boundingSphere !== void 0) { if (object.boundingSphere === null) object.computeBoundingSphere(); _sphere$5.copy(object.boundingSphere).applyMatrix4(object.matrixWorld); } else { const geometry = object.geometry; if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); _sphere$5.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld); } return this.intersectsSphere(_sphere$5); } intersectsSprite(sprite) { _sphere$5.center.set(0, 0, 0); _sphere$5.radius = 0.7071067811865476; _sphere$5.applyMatrix4(sprite.matrixWorld); return this.intersectsSphere(_sphere$5); } intersectsSphere(sphere) { const planes = this.planes; const center = sphere.center; const negRadius = -sphere.radius; for (let i = 0; i < 6; i++) { const distance = planes[i].distanceToPoint(center); if (distance < negRadius) { return false; } } return true; } intersectsBox(box) { const planes = this.planes; for (let i = 0; i < 6; i++) { const plane = planes[i]; _vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x; _vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y; _vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z; if (plane.distanceToPoint(_vector$7) < 0) { return false; } } return true; } containsPoint(point) { const planes = this.planes; for (let i = 0; i < 6; i++) { if (planes[i].distanceToPoint(point) < 0) { return false; } } return true; } clone() { return new this.constructor().copy(this); } } function WebGLAnimation() { let context = null; let isAnimating = false; let animationLoop = null; let requestId = null; function onAnimationFrame(time, frame) { animationLoop(time, frame); requestId = context.requestAnimationFrame(onAnimationFrame); } __name(onAnimationFrame, "onAnimationFrame"); return { start: /* @__PURE__ */ __name(function() { if (isAnimating === true) return; if (animationLoop === null) return; requestId = context.requestAnimationFrame(onAnimationFrame); isAnimating = true; }, "start"), stop: /* @__PURE__ */ __name(function() { context.cancelAnimationFrame(requestId); isAnimating = false; }, "stop"), setAnimationLoop: /* @__PURE__ */ __name(function(callback) { animationLoop = callback; }, "setAnimationLoop"), setContext: /* @__PURE__ */ __name(function(value) { context = value; }, "setContext") }; } __name(WebGLAnimation, "WebGLAnimation"); function WebGLAttributes(gl) { const buffers = /* @__PURE__ */ new WeakMap(); function createBuffer(attribute, bufferType) { const array = attribute.array; const usage = attribute.usage; const size = array.byteLength; const buffer = gl.createBuffer(); gl.bindBuffer(bufferType, buffer); gl.bufferData(bufferType, array, usage); attribute.onUploadCallback(); let type; if (array instanceof Float32Array) { type = gl.FLOAT; } else if (array instanceof Uint16Array) { if (attribute.isFloat16BufferAttribute) { type = gl.HALF_FLOAT; } else { type = gl.UNSIGNED_SHORT; } } else if (array instanceof Int16Array) { type = gl.SHORT; } else if (array instanceof Uint32Array) { type = gl.UNSIGNED_INT; } else if (array instanceof Int32Array) { type = gl.INT; } else if (array instanceof Int8Array) { type = gl.BYTE; } else if (array instanceof Uint8Array) { type = gl.UNSIGNED_BYTE; } else if (array instanceof Uint8ClampedArray) { type = gl.UNSIGNED_BYTE; } else { throw new Error("THREE.WebGLAttributes: Unsupported buffer data format: " + array); } return { buffer, type, bytesPerElement: array.BYTES_PER_ELEMENT, version: attribute.version, size }; } __name(createBuffer, "createBuffer"); function updateBuffer(buffer, attribute, bufferType) { const array = attribute.array; const updateRanges = attribute.updateRanges; gl.bindBuffer(bufferType, buffer); if (updateRanges.length === 0) { gl.bufferSubData(bufferType, 0, array); } else { updateRanges.sort((a, b) => a.start - b.start); let mergeIndex = 0; for (let i = 1; i < updateRanges.length; i++) { const previousRange = updateRanges[mergeIndex]; const range = updateRanges[i]; if (range.start <= previousRange.start + previousRange.count + 1) { previousRange.count = Math.max( previousRange.count, range.start + range.count - previousRange.start ); } else { ++mergeIndex; updateRanges[mergeIndex] = range; } } updateRanges.length = mergeIndex + 1; for (let i = 0, l = updateRanges.length; i < l; i++) { const range = updateRanges[i]; gl.bufferSubData( bufferType, range.start * array.BYTES_PER_ELEMENT, array, range.start, range.count ); } attribute.clearUpdateRanges(); } attribute.onUploadCallback(); } __name(updateBuffer, "updateBuffer"); function get(attribute) { if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; return buffers.get(attribute); } __name(get, "get"); function remove(attribute) { if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; const data = buffers.get(attribute); if (data) { gl.deleteBuffer(data.buffer); buffers.delete(attribute); } } __name(remove, "remove"); function update(attribute, bufferType) { if (attribute.isInterleavedBufferAttribute) attribute = attribute.data; if (attribute.isGLBufferAttribute) { const cached = buffers.get(attribute); if (!cached || cached.version < attribute.version) { buffers.set(attribute, { buffer: attribute.buffer, type: attribute.type, bytesPerElement: attribute.elementSize, version: attribute.version }); } return; } const data = buffers.get(attribute); if (data === void 0) { buffers.set(attribute, createBuffer(attribute, bufferType)); } else if (data.version < attribute.version) { if (data.size !== attribute.array.byteLength) { throw new Error("THREE.WebGLAttributes: The size of the buffer attribute's array buffer does not match the original size. Resizing buffer attributes is not supported."); } updateBuffer(data.buffer, attribute, bufferType); data.version = attribute.version; } } __name(update, "update"); return { get, remove, update }; } __name(WebGLAttributes, "WebGLAttributes"); class PlaneGeometry extends BufferGeometry { static { __name(this, "PlaneGeometry"); } constructor(width = 1, height = 1, widthSegments = 1, heightSegments = 1) { super(); this.type = "PlaneGeometry"; this.parameters = { width, height, widthSegments, heightSegments }; const width_half = width / 2; const height_half = height / 2; const gridX = Math.floor(widthSegments); const gridY = Math.floor(heightSegments); const gridX1 = gridX + 1; const gridY1 = gridY + 1; const segment_width = width / gridX; const segment_height = height / gridY; const indices = []; const vertices = []; const normals = []; const uvs = []; for (let iy = 0; iy < gridY1; iy++) { const y = iy * segment_height - height_half; for (let ix = 0; ix < gridX1; ix++) { const x = ix * segment_width - width_half; vertices.push(x, -y, 0); normals.push(0, 0, 1); uvs.push(ix / gridX); uvs.push(1 - iy / gridY); } } for (let iy = 0; iy < gridY; iy++) { for (let ix = 0; ix < gridX; ix++) { const a = ix + gridX1 * iy; const b = ix + gridX1 * (iy + 1); const c = ix + 1 + gridX1 * (iy + 1); const d = ix + 1 + gridX1 * iy; indices.push(a, b, d); indices.push(b, c, d); } } this.setIndex(indices); this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); this.setAttribute("normal", new Float32BufferAttribute(normals, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvs, 2)); } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } static fromJSON(data) { return new PlaneGeometry(data.width, data.height, data.widthSegments, data.heightSegments); } } var alphahash_fragment = "#ifdef USE_ALPHAHASH\n if ( diffuseColor.a < getAlphaHashThreshold( vPosition ) ) discard;\n#endif"; var alphahash_pars_fragment = "#ifdef USE_ALPHAHASH\n const float ALPHA_HASH_SCALE = 0.05;\n float hash2D( vec2 value ) {\n return fract( 1.0e4 * sin( 17.0 * value.x + 0.1 * value.y ) * ( 0.1 + abs( sin( 13.0 * value.y + value.x ) ) ) );\n }\n float hash3D( vec3 value ) {\n return hash2D( vec2( hash2D( value.xy ), value.z ) );\n }\n float getAlphaHashThreshold( vec3 position ) {\n float maxDeriv = max(\n length( dFdx( position.xyz ) ),\n length( dFdy( position.xyz ) )\n );\n float pixScale = 1.0 / ( ALPHA_HASH_SCALE * maxDeriv );\n vec2 pixScales = vec2(\n exp2( floor( log2( pixScale ) ) ),\n exp2( ceil( log2( pixScale ) ) )\n );\n vec2 alpha = vec2(\n hash3D( floor( pixScales.x * position.xyz ) ),\n hash3D( floor( pixScales.y * position.xyz ) )\n );\n float lerpFactor = fract( log2( pixScale ) );\n float x = ( 1.0 - lerpFactor ) * alpha.x + lerpFactor * alpha.y;\n float a = min( lerpFactor, 1.0 - lerpFactor );\n vec3 cases = vec3(\n x * x / ( 2.0 * a * ( 1.0 - a ) ),\n ( x - 0.5 * a ) / ( 1.0 - a ),\n 1.0 - ( ( 1.0 - x ) * ( 1.0 - x ) / ( 2.0 * a * ( 1.0 - a ) ) )\n );\n float threshold = ( x < ( 1.0 - a ) )\n ? ( ( x < a ) ? cases.x : cases.y )\n : cases.z;\n return clamp( threshold , 1.0e-6, 1.0 );\n }\n#endif"; var alphamap_fragment = "#ifdef USE_ALPHAMAP\n diffuseColor.a *= texture2D( alphaMap, vAlphaMapUv ).g;\n#endif"; var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n uniform sampler2D alphaMap;\n#endif"; var alphatest_fragment = "#ifdef USE_ALPHATEST\n #ifdef ALPHA_TO_COVERAGE\n diffuseColor.a = smoothstep( alphaTest, alphaTest + fwidth( diffuseColor.a ), diffuseColor.a );\n if ( diffuseColor.a == 0.0 ) discard;\n #else\n if ( diffuseColor.a < alphaTest ) discard;\n #endif\n#endif"; var alphatest_pars_fragment = "#ifdef USE_ALPHATEST\n uniform float alphaTest;\n#endif"; var aomap_fragment = "#ifdef USE_AOMAP\n float ambientOcclusion = ( texture2D( aoMap, vAoMapUv ).r - 1.0 ) * aoMapIntensity + 1.0;\n reflectedLight.indirectDiffuse *= ambientOcclusion;\n #if defined( USE_CLEARCOAT ) \n clearcoatSpecularIndirect *= ambientOcclusion;\n #endif\n #if defined( USE_SHEEN ) \n sheenSpecularIndirect *= ambientOcclusion;\n #endif\n #if defined( USE_ENVMAP ) && defined( STANDARD )\n float dotNV = saturate( dot( geometryNormal, geometryViewDir ) );\n reflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n #endif\n#endif"; var aomap_pars_fragment = "#ifdef USE_AOMAP\n uniform sampler2D aoMap;\n uniform float aoMapIntensity;\n#endif"; var batching_pars_vertex = "#ifdef USE_BATCHING\n #if ! defined( GL_ANGLE_multi_draw )\n #define gl_DrawID _gl_DrawID\n uniform int _gl_DrawID;\n #endif\n uniform highp sampler2D batchingTexture;\n uniform highp usampler2D batchingIdTexture;\n mat4 getBatchingMatrix( const in float i ) {\n int size = textureSize( batchingTexture, 0 ).x;\n int j = int( i ) * 4;\n int x = j % size;\n int y = j / size;\n vec4 v1 = texelFetch( batchingTexture, ivec2( x, y ), 0 );\n vec4 v2 = texelFetch( batchingTexture, ivec2( x + 1, y ), 0 );\n vec4 v3 = texelFetch( batchingTexture, ivec2( x + 2, y ), 0 );\n vec4 v4 = texelFetch( batchingTexture, ivec2( x + 3, y ), 0 );\n return mat4( v1, v2, v3, v4 );\n }\n float getIndirectIndex( const in int i ) {\n int size = textureSize( batchingIdTexture, 0 ).x;\n int x = i % size;\n int y = i / size;\n return float( texelFetch( batchingIdTexture, ivec2( x, y ), 0 ).r );\n }\n#endif\n#ifdef USE_BATCHING_COLOR\n uniform sampler2D batchingColorTexture;\n vec3 getBatchingColor( const in float i ) {\n int size = textureSize( batchingColorTexture, 0 ).x;\n int j = int( i );\n int x = j % size;\n int y = j / size;\n return texelFetch( batchingColorTexture, ivec2( x, y ), 0 ).rgb;\n }\n#endif"; var batching_vertex = "#ifdef USE_BATCHING\n mat4 batchingMatrix = getBatchingMatrix( getIndirectIndex( gl_DrawID ) );\n#endif"; var begin_vertex = "vec3 transformed = vec3( position );\n#ifdef USE_ALPHAHASH\n vPosition = vec3( position );\n#endif"; var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n vec3 objectTangent = vec3( tangent.xyz );\n#endif"; var bsdfs = "float G_BlinnPhong_Implicit( ) {\n return 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n vec3 halfDir = normalize( lightDir + viewDir );\n float dotNH = saturate( dot( normal, halfDir ) );\n float dotVH = saturate( dot( viewDir, halfDir ) );\n vec3 F = F_Schlick( specularColor, 1.0, dotVH );\n float G = G_BlinnPhong_Implicit( );\n float D = D_BlinnPhong( shininess, dotNH );\n return F * ( G * D );\n} // validated"; var iridescence_fragment = "#ifdef USE_IRIDESCENCE\n const mat3 XYZ_TO_REC709 = mat3(\n 3.2404542, -0.9692660, 0.0556434,\n -1.5371385, 1.8760108, -0.2040259,\n -0.4985314, 0.0415560, 1.0572252\n );\n vec3 Fresnel0ToIor( vec3 fresnel0 ) {\n vec3 sqrtF0 = sqrt( fresnel0 );\n return ( vec3( 1.0 ) + sqrtF0 ) / ( vec3( 1.0 ) - sqrtF0 );\n }\n vec3 IorToFresnel0( vec3 transmittedIor, float incidentIor ) {\n return pow2( ( transmittedIor - vec3( incidentIor ) ) / ( transmittedIor + vec3( incidentIor ) ) );\n }\n float IorToFresnel0( float transmittedIor, float incidentIor ) {\n return pow2( ( transmittedIor - incidentIor ) / ( transmittedIor + incidentIor ));\n }\n vec3 evalSensitivity( float OPD, vec3 shift ) {\n float phase = 2.0 * PI * OPD * 1.0e-9;\n vec3 val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 );\n vec3 pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 );\n vec3 var = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 );\n vec3 xyz = val * sqrt( 2.0 * PI * var ) * cos( pos * phase + shift ) * exp( - pow2( phase ) * var );\n xyz.x += 9.7470e-14 * sqrt( 2.0 * PI * 4.5282e+09 ) * cos( 2.2399e+06 * phase + shift[ 0 ] ) * exp( - 4.5282e+09 * pow2( phase ) );\n xyz /= 1.0685e-7;\n vec3 rgb = XYZ_TO_REC709 * xyz;\n return rgb;\n }\n vec3 evalIridescence( float outsideIOR, float eta2, float cosTheta1, float thinFilmThickness, vec3 baseF0 ) {\n vec3 I;\n float iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) );\n float sinTheta2Sq = pow2( outsideIOR / iridescenceIOR ) * ( 1.0 - pow2( cosTheta1 ) );\n float cosTheta2Sq = 1.0 - sinTheta2Sq;\n if ( cosTheta2Sq < 0.0 ) {\n return vec3( 1.0 );\n }\n float cosTheta2 = sqrt( cosTheta2Sq );\n float R0 = IorToFresnel0( iridescenceIOR, outsideIOR );\n float R12 = F_Schlick( R0, 1.0, cosTheta1 );\n float T121 = 1.0 - R12;\n float phi12 = 0.0;\n if ( iridescenceIOR < outsideIOR ) phi12 = PI;\n float phi21 = PI - phi12;\n vec3 baseIOR = Fresnel0ToIor( clamp( baseF0, 0.0, 0.9999 ) ); vec3 R1 = IorToFresnel0( baseIOR, iridescenceIOR );\n vec3 R23 = F_Schlick( R1, 1.0, cosTheta2 );\n vec3 phi23 = vec3( 0.0 );\n if ( baseIOR[ 0 ] < iridescenceIOR ) phi23[ 0 ] = PI;\n if ( baseIOR[ 1 ] < iridescenceIOR ) phi23[ 1 ] = PI;\n if ( baseIOR[ 2 ] < iridescenceIOR ) phi23[ 2 ] = PI;\n float OPD = 2.0 * iridescenceIOR * thinFilmThickness * cosTheta2;\n vec3 phi = vec3( phi21 ) + phi23;\n vec3 R123 = clamp( R12 * R23, 1e-5, 0.9999 );\n vec3 r123 = sqrt( R123 );\n vec3 Rs = pow2( T121 ) * R23 / ( vec3( 1.0 ) - R123 );\n vec3 C0 = R12 + Rs;\n I = C0;\n vec3 Cm = Rs - T121;\n for ( int m = 1; m <= 2; ++ m ) {\n Cm *= r123;\n vec3 Sm = 2.0 * evalSensitivity( float( m ) * OPD, float( m ) * phi );\n I += Cm * Sm;\n }\n return max( I, vec3( 0.0 ) );\n }\n#endif"; var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n uniform sampler2D bumpMap;\n uniform float bumpScale;\n vec2 dHdxy_fwd() {\n vec2 dSTdx = dFdx( vBumpMapUv );\n vec2 dSTdy = dFdy( vBumpMapUv );\n float Hll = bumpScale * texture2D( bumpMap, vBumpMapUv ).x;\n float dBx = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdx ).x - Hll;\n float dBy = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdy ).x - Hll;\n return vec2( dBx, dBy );\n }\n vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n vec3 vSigmaX = normalize( dFdx( surf_pos.xyz ) );\n vec3 vSigmaY = normalize( dFdy( surf_pos.xyz ) );\n vec3 vN = surf_norm;\n vec3 R1 = cross( vSigmaY, vN );\n vec3 R2 = cross( vN, vSigmaX );\n float fDet = dot( vSigmaX, R1 ) * faceDirection;\n vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n return normalize( abs( fDet ) * surf_norm - vGrad );\n }\n#endif"; var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n vec4 plane;\n #ifdef ALPHA_TO_COVERAGE\n float distanceToPlane, distanceGradient;\n float clipOpacity = 1.0;\n #pragma unroll_loop_start\n for ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n plane = clippingPlanes[ i ];\n distanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;\n distanceGradient = fwidth( distanceToPlane ) / 2.0;\n clipOpacity *= smoothstep( - distanceGradient, distanceGradient, distanceToPlane );\n if ( clipOpacity == 0.0 ) discard;\n }\n #pragma unroll_loop_end\n #if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n float unionClipOpacity = 1.0;\n #pragma unroll_loop_start\n for ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n plane = clippingPlanes[ i ];\n distanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;\n distanceGradient = fwidth( distanceToPlane ) / 2.0;\n unionClipOpacity *= 1.0 - smoothstep( - distanceGradient, distanceGradient, distanceToPlane );\n }\n #pragma unroll_loop_end\n clipOpacity *= 1.0 - unionClipOpacity;\n #endif\n diffuseColor.a *= clipOpacity;\n if ( diffuseColor.a == 0.0 ) discard;\n #else\n #pragma unroll_loop_start\n for ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n plane = clippingPlanes[ i ];\n if ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n }\n #pragma unroll_loop_end\n #if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n bool clipped = true;\n #pragma unroll_loop_start\n for ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n plane = clippingPlanes[ i ];\n clipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n }\n #pragma unroll_loop_end\n if ( clipped ) discard;\n #endif\n #endif\n#endif"; var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n varying vec3 vClipPosition;\n uniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif"; var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n varying vec3 vClipPosition;\n#endif"; var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n vClipPosition = - mvPosition.xyz;\n#endif"; var color_fragment = "#if defined( USE_COLOR_ALPHA )\n diffuseColor *= vColor;\n#elif defined( USE_COLOR )\n diffuseColor.rgb *= vColor;\n#endif"; var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n varying vec4 vColor;\n#elif defined( USE_COLOR )\n varying vec3 vColor;\n#endif"; var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n varying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) || defined( USE_BATCHING_COLOR )\n varying vec3 vColor;\n#endif"; var color_vertex = "#if defined( USE_COLOR_ALPHA )\n vColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) || defined( USE_BATCHING_COLOR )\n vColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n vColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n vColor.xyz *= instanceColor.xyz;\n#endif\n#ifdef USE_BATCHING_COLOR\n vec3 batchingColor = getBatchingColor( getIndirectIndex( gl_DrawID ) );\n vColor.xyz *= batchingColor.xyz;\n#endif"; var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nvec3 pow2( const in vec3 x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 v ) { return dot( v, vec3( 0.3333333 ) ); }\nhighp float rand( const in vec2 uv ) {\n const highp float a = 12.9898, b = 78.233, c = 43758.5453;\n highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n return fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n float precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n float precisionSafeLength( vec3 v ) {\n float maxComponent = max3( abs( v ) );\n return length( v / maxComponent ) * maxComponent;\n }\n#endif\nstruct IncidentLight {\n vec3 color;\n vec3 direction;\n bool visible;\n};\nstruct ReflectedLight {\n vec3 directDiffuse;\n vec3 directSpecular;\n vec3 indirectDiffuse;\n vec3 indirectSpecular;\n};\n#ifdef USE_ALPHAHASH\n varying vec3 vPosition;\n#endif\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n mat3 tmp;\n tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n return tmp;\n}\nbool isPerspectiveMatrix( mat4 m ) {\n return m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n float u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n float v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n return vec2( u, v );\n}\nvec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n return RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat F_Schlick( const in float f0, const in float f90, const in float dotVH ) {\n float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n} // validated"; var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n #define cubeUV_minMipLevel 4.0\n #define cubeUV_minTileSize 16.0\n float getFace( vec3 direction ) {\n vec3 absDirection = abs( direction );\n float face = - 1.0;\n if ( absDirection.x > absDirection.z ) {\n if ( absDirection.x > absDirection.y )\n face = direction.x > 0.0 ? 0.0 : 3.0;\n else\n face = direction.y > 0.0 ? 1.0 : 4.0;\n } else {\n if ( absDirection.z > absDirection.y )\n face = direction.z > 0.0 ? 2.0 : 5.0;\n else\n face = direction.y > 0.0 ? 1.0 : 4.0;\n }\n return face;\n }\n vec2 getUV( vec3 direction, float face ) {\n vec2 uv;\n if ( face == 0.0 ) {\n uv = vec2( direction.z, direction.y ) / abs( direction.x );\n } else if ( face == 1.0 ) {\n uv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n } else if ( face == 2.0 ) {\n uv = vec2( - direction.x, direction.y ) / abs( direction.z );\n } else if ( face == 3.0 ) {\n uv = vec2( - direction.z, direction.y ) / abs( direction.x );\n } else if ( face == 4.0 ) {\n uv = vec2( - direction.x, direction.z ) / abs( direction.y );\n } else {\n uv = vec2( direction.x, direction.y ) / abs( direction.z );\n }\n return 0.5 * ( uv + 1.0 );\n }\n vec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n float face = getFace( direction );\n float filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n mipInt = max( mipInt, cubeUV_minMipLevel );\n float faceSize = exp2( mipInt );\n highp vec2 uv = getUV( direction, face ) * ( faceSize - 2.0 ) + 1.0;\n if ( face > 2.0 ) {\n uv.y += faceSize;\n face -= 3.0;\n }\n uv.x += face * faceSize;\n uv.x += filterInt * 3.0 * cubeUV_minTileSize;\n uv.y += 4.0 * ( exp2( CUBEUV_MAX_MIP ) - faceSize );\n uv.x *= CUBEUV_TEXEL_WIDTH;\n uv.y *= CUBEUV_TEXEL_HEIGHT;\n #ifdef texture2DGradEXT\n return texture2DGradEXT( envMap, uv, vec2( 0.0 ), vec2( 0.0 ) ).rgb;\n #else\n return texture2D( envMap, uv ).rgb;\n #endif\n }\n #define cubeUV_r0 1.0\n #define cubeUV_m0 - 2.0\n #define cubeUV_r1 0.8\n #define cubeUV_m1 - 1.0\n #define cubeUV_r4 0.4\n #define cubeUV_m4 2.0\n #define cubeUV_r5 0.305\n #define cubeUV_m5 3.0\n #define cubeUV_r6 0.21\n #define cubeUV_m6 4.0\n float roughnessToMip( float roughness ) {\n float mip = 0.0;\n if ( roughness >= cubeUV_r1 ) {\n mip = ( cubeUV_r0 - roughness ) * ( cubeUV_m1 - cubeUV_m0 ) / ( cubeUV_r0 - cubeUV_r1 ) + cubeUV_m0;\n } else if ( roughness >= cubeUV_r4 ) {\n mip = ( cubeUV_r1 - roughness ) * ( cubeUV_m4 - cubeUV_m1 ) / ( cubeUV_r1 - cubeUV_r4 ) + cubeUV_m1;\n } else if ( roughness >= cubeUV_r5 ) {\n mip = ( cubeUV_r4 - roughness ) * ( cubeUV_m5 - cubeUV_m4 ) / ( cubeUV_r4 - cubeUV_r5 ) + cubeUV_m4;\n } else if ( roughness >= cubeUV_r6 ) {\n mip = ( cubeUV_r5 - roughness ) * ( cubeUV_m6 - cubeUV_m5 ) / ( cubeUV_r5 - cubeUV_r6 ) + cubeUV_m5;\n } else {\n mip = - 2.0 * log2( 1.16 * roughness ); }\n return mip;\n }\n vec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n float mip = clamp( roughnessToMip( roughness ), cubeUV_m0, CUBEUV_MAX_MIP );\n float mipF = fract( mip );\n float mipInt = floor( mip );\n vec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n if ( mipF == 0.0 ) {\n return vec4( color0, 1.0 );\n } else {\n vec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n return vec4( mix( color0, color1, mipF ), 1.0 );\n }\n }\n#endif"; var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_TANGENT\n vec3 transformedTangent = objectTangent;\n#endif\n#ifdef USE_BATCHING\n mat3 bm = mat3( batchingMatrix );\n transformedNormal /= vec3( dot( bm[ 0 ], bm[ 0 ] ), dot( bm[ 1 ], bm[ 1 ] ), dot( bm[ 2 ], bm[ 2 ] ) );\n transformedNormal = bm * transformedNormal;\n #ifdef USE_TANGENT\n transformedTangent = bm * transformedTangent;\n #endif\n#endif\n#ifdef USE_INSTANCING\n mat3 im = mat3( instanceMatrix );\n transformedNormal /= vec3( dot( im[ 0 ], im[ 0 ] ), dot( im[ 1 ], im[ 1 ] ), dot( im[ 2 ], im[ 2 ] ) );\n transformedNormal = im * transformedNormal;\n #ifdef USE_TANGENT\n transformedTangent = im * transformedTangent;\n #endif\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n transformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n transformedTangent = ( modelViewMatrix * vec4( transformedTangent, 0.0 ) ).xyz;\n #ifdef FLIP_SIDED\n transformedTangent = - transformedTangent;\n #endif\n#endif"; var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n uniform sampler2D displacementMap;\n uniform float displacementScale;\n uniform float displacementBias;\n#endif"; var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n transformed += normalize( objectNormal ) * ( texture2D( displacementMap, vDisplacementMapUv ).x * displacementScale + displacementBias );\n#endif"; var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n vec4 emissiveColor = texture2D( emissiveMap, vEmissiveMapUv );\n #ifdef DECODE_VIDEO_TEXTURE_EMISSIVE\n emissiveColor = sRGBTransferEOTF( emissiveColor );\n #endif\n totalEmissiveRadiance *= emissiveColor.rgb;\n#endif"; var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n uniform sampler2D emissiveMap;\n#endif"; var colorspace_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );"; var colorspace_pars_fragment = "vec4 LinearTransferOETF( in vec4 value ) {\n return value;\n}\nvec4 sRGBTransferEOTF( in vec4 value ) {\n return vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 sRGBTransferOETF( in vec4 value ) {\n return vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}"; var envmap_fragment = "#ifdef USE_ENVMAP\n #ifdef ENV_WORLDPOS\n vec3 cameraToFrag;\n if ( isOrthographic ) {\n cameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n } else {\n cameraToFrag = normalize( vWorldPosition - cameraPosition );\n }\n vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n #ifdef ENVMAP_MODE_REFLECTION\n vec3 reflectVec = reflect( cameraToFrag, worldNormal );\n #else\n vec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n #endif\n #else\n vec3 reflectVec = vReflect;\n #endif\n #ifdef ENVMAP_TYPE_CUBE\n vec4 envColor = textureCube( envMap, envMapRotation * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n #else\n vec4 envColor = vec4( 0.0 );\n #endif\n #ifdef ENVMAP_BLENDING_MULTIPLY\n outgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n #elif defined( ENVMAP_BLENDING_MIX )\n outgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n #elif defined( ENVMAP_BLENDING_ADD )\n outgoingLight += envColor.xyz * specularStrength * reflectivity;\n #endif\n#endif"; var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n uniform float envMapIntensity;\n uniform float flipEnvMap;\n uniform mat3 envMapRotation;\n #ifdef ENVMAP_TYPE_CUBE\n uniform samplerCube envMap;\n #else\n uniform sampler2D envMap;\n #endif\n \n#endif"; var envmap_pars_fragment = "#ifdef USE_ENVMAP\n uniform float reflectivity;\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )\n #define ENV_WORLDPOS\n #endif\n #ifdef ENV_WORLDPOS\n varying vec3 vWorldPosition;\n uniform float refractionRatio;\n #else\n varying vec3 vReflect;\n #endif\n#endif"; var envmap_pars_vertex = "#ifdef USE_ENVMAP\n #if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )\n #define ENV_WORLDPOS\n #endif\n #ifdef ENV_WORLDPOS\n \n varying vec3 vWorldPosition;\n #else\n varying vec3 vReflect;\n uniform float refractionRatio;\n #endif\n#endif"; var envmap_vertex = "#ifdef USE_ENVMAP\n #ifdef ENV_WORLDPOS\n vWorldPosition = worldPosition.xyz;\n #else\n vec3 cameraToVertex;\n if ( isOrthographic ) {\n cameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n } else {\n cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n }\n vec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n #ifdef ENVMAP_MODE_REFLECTION\n vReflect = reflect( cameraToVertex, worldNormal );\n #else\n vReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n #endif\n #endif\n#endif"; var fog_vertex = "#ifdef USE_FOG\n vFogDepth = - mvPosition.z;\n#endif"; var fog_pars_vertex = "#ifdef USE_FOG\n varying float vFogDepth;\n#endif"; var fog_fragment = "#ifdef USE_FOG\n #ifdef FOG_EXP2\n float fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n #else\n float fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n #endif\n gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif"; var fog_pars_fragment = "#ifdef USE_FOG\n uniform vec3 fogColor;\n varying float vFogDepth;\n #ifdef FOG_EXP2\n uniform float fogDensity;\n #else\n uniform float fogNear;\n uniform float fogFar;\n #endif\n#endif"; var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n uniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n float dotNL = dot( normal, lightDirection );\n vec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n #ifdef USE_GRADIENTMAP\n return vec3( texture2D( gradientMap, coord ).r );\n #else\n vec2 fw = fwidth( coord ) * 0.5;\n return mix( vec3( 0.7 ), vec3( 1.0 ), smoothstep( 0.7 - fw.x, 0.7 + fw.x, coord.x ) );\n #endif\n}"; var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n uniform sampler2D lightMap;\n uniform float lightMapIntensity;\n#endif"; var lights_lambert_fragment = "LambertMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularStrength = specularStrength;"; var lights_lambert_pars_fragment = "varying vec3 vViewPosition;\nstruct LambertMaterial {\n vec3 diffuseColor;\n float specularStrength;\n};\nvoid RE_Direct_Lambert( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {\n float dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n vec3 irradiance = dotNL * directLight.color;\n reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Lambert( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct RE_Direct_Lambert\n#define RE_IndirectDiffuse RE_IndirectDiffuse_Lambert"; var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\n#if defined( USE_LIGHT_PROBES )\n uniform vec3 lightProbe[ 9 ];\n#endif\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n float x = normal.x, y = normal.y, z = normal.z;\n vec3 result = shCoefficients[ 0 ] * 0.886227;\n result += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n result += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n result += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n result += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n result += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n result += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n result += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n result += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n return result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n vec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n return irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n vec3 irradiance = ambientLightColor;\n return irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n if ( cutoffDistance > 0.0 ) {\n distanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n }\n return distanceFalloff;\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n return smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n struct DirectionalLight {\n vec3 direction;\n vec3 color;\n };\n uniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n void getDirectionalLightInfo( const in DirectionalLight directionalLight, out IncidentLight light ) {\n light.color = directionalLight.color;\n light.direction = directionalLight.direction;\n light.visible = true;\n }\n#endif\n#if NUM_POINT_LIGHTS > 0\n struct PointLight {\n vec3 position;\n vec3 color;\n float distance;\n float decay;\n };\n uniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n void getPointLightInfo( const in PointLight pointLight, const in vec3 geometryPosition, out IncidentLight light ) {\n vec3 lVector = pointLight.position - geometryPosition;\n light.direction = normalize( lVector );\n float lightDistance = length( lVector );\n light.color = pointLight.color;\n light.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n light.visible = ( light.color != vec3( 0.0 ) );\n }\n#endif\n#if NUM_SPOT_LIGHTS > 0\n struct SpotLight {\n vec3 position;\n vec3 direction;\n vec3 color;\n float distance;\n float decay;\n float coneCos;\n float penumbraCos;\n };\n uniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n void getSpotLightInfo( const in SpotLight spotLight, const in vec3 geometryPosition, out IncidentLight light ) {\n vec3 lVector = spotLight.position - geometryPosition;\n light.direction = normalize( lVector );\n float angleCos = dot( light.direction, spotLight.direction );\n float spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n if ( spotAttenuation > 0.0 ) {\n float lightDistance = length( lVector );\n light.color = spotLight.color * spotAttenuation;\n light.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n light.visible = ( light.color != vec3( 0.0 ) );\n } else {\n light.color = vec3( 0.0 );\n light.visible = false;\n }\n }\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n struct RectAreaLight {\n vec3 color;\n vec3 position;\n vec3 halfWidth;\n vec3 halfHeight;\n };\n uniform sampler2D ltc_1; uniform sampler2D ltc_2;\n uniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n struct HemisphereLight {\n vec3 direction;\n vec3 skyColor;\n vec3 groundColor;\n };\n uniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n vec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n float dotNL = dot( normal, hemiLight.direction );\n float hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n vec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n return irradiance;\n }\n#endif"; var envmap_physical_pars_fragment = "#ifdef USE_ENVMAP\n vec3 getIBLIrradiance( const in vec3 normal ) {\n #ifdef ENVMAP_TYPE_CUBE_UV\n vec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n vec4 envMapColor = textureCubeUV( envMap, envMapRotation * worldNormal, 1.0 );\n return PI * envMapColor.rgb * envMapIntensity;\n #else\n return vec3( 0.0 );\n #endif\n }\n vec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n #ifdef ENVMAP_TYPE_CUBE_UV\n vec3 reflectVec = reflect( - viewDir, normal );\n reflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n reflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n vec4 envMapColor = textureCubeUV( envMap, envMapRotation * reflectVec, roughness );\n return envMapColor.rgb * envMapIntensity;\n #else\n return vec3( 0.0 );\n #endif\n }\n #ifdef USE_ANISOTROPY\n vec3 getIBLAnisotropyRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in vec3 bitangent, const in float anisotropy ) {\n #ifdef ENVMAP_TYPE_CUBE_UV\n vec3 bentNormal = cross( bitangent, viewDir );\n bentNormal = normalize( cross( bentNormal, bitangent ) );\n bentNormal = normalize( mix( bentNormal, normal, pow2( pow2( 1.0 - anisotropy * ( 1.0 - roughness ) ) ) ) );\n return getIBLRadiance( viewDir, bentNormal, roughness );\n #else\n return vec3( 0.0 );\n #endif\n }\n #endif\n#endif"; var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;"; var lights_toon_pars_fragment = "varying vec3 vViewPosition;\nstruct ToonMaterial {\n vec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n vec3 irradiance = getGradientIrradiance( geometryNormal, directLight.direction ) * directLight.color;\n reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct RE_Direct_Toon\n#define RE_IndirectDiffuse RE_IndirectDiffuse_Toon"; var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;"; var lights_phong_pars_fragment = "varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n vec3 diffuseColor;\n vec3 specularColor;\n float specularShininess;\n float specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n float dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n vec3 irradiance = dotNL * directLight.color;\n reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n reflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometryViewDir, geometryNormal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct RE_Direct_BlinnPhong\n#define RE_IndirectDiffuse RE_IndirectDiffuse_BlinnPhong"; var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( nonPerturbedNormal ) ), abs( dFdy( nonPerturbedNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n material.ior = ior;\n #ifdef USE_SPECULAR\n float specularIntensityFactor = specularIntensity;\n vec3 specularColorFactor = specularColor;\n #ifdef USE_SPECULAR_COLORMAP\n specularColorFactor *= texture2D( specularColorMap, vSpecularColorMapUv ).rgb;\n #endif\n #ifdef USE_SPECULAR_INTENSITYMAP\n specularIntensityFactor *= texture2D( specularIntensityMap, vSpecularIntensityMapUv ).a;\n #endif\n material.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n #else\n float specularIntensityFactor = 1.0;\n vec3 specularColorFactor = vec3( 1.0 );\n material.specularF90 = 1.0;\n #endif\n material.specularColor = mix( min( pow2( ( material.ior - 1.0 ) / ( material.ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n material.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n material.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n material.clearcoat = clearcoat;\n material.clearcoatRoughness = clearcoatRoughness;\n material.clearcoatF0 = vec3( 0.04 );\n material.clearcoatF90 = 1.0;\n #ifdef USE_CLEARCOATMAP\n material.clearcoat *= texture2D( clearcoatMap, vClearcoatMapUv ).x;\n #endif\n #ifdef USE_CLEARCOAT_ROUGHNESSMAP\n material.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vClearcoatRoughnessMapUv ).y;\n #endif\n material.clearcoat = saturate( material.clearcoat ); material.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n material.clearcoatRoughness += geometryRoughness;\n material.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_DISPERSION\n material.dispersion = dispersion;\n#endif\n#ifdef USE_IRIDESCENCE\n material.iridescence = iridescence;\n material.iridescenceIOR = iridescenceIOR;\n #ifdef USE_IRIDESCENCEMAP\n material.iridescence *= texture2D( iridescenceMap, vIridescenceMapUv ).r;\n #endif\n #ifdef USE_IRIDESCENCE_THICKNESSMAP\n material.iridescenceThickness = (iridescenceThicknessMaximum - iridescenceThicknessMinimum) * texture2D( iridescenceThicknessMap, vIridescenceThicknessMapUv ).g + iridescenceThicknessMinimum;\n #else\n material.iridescenceThickness = iridescenceThicknessMaximum;\n #endif\n#endif\n#ifdef USE_SHEEN\n material.sheenColor = sheenColor;\n #ifdef USE_SHEEN_COLORMAP\n material.sheenColor *= texture2D( sheenColorMap, vSheenColorMapUv ).rgb;\n #endif\n material.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n #ifdef USE_SHEEN_ROUGHNESSMAP\n material.sheenRoughness *= texture2D( sheenRoughnessMap, vSheenRoughnessMapUv ).a;\n #endif\n#endif\n#ifdef USE_ANISOTROPY\n #ifdef USE_ANISOTROPYMAP\n mat2 anisotropyMat = mat2( anisotropyVector.x, anisotropyVector.y, - anisotropyVector.y, anisotropyVector.x );\n vec3 anisotropyPolar = texture2D( anisotropyMap, vAnisotropyMapUv ).rgb;\n vec2 anisotropyV = anisotropyMat * normalize( 2.0 * anisotropyPolar.rg - vec2( 1.0 ) ) * anisotropyPolar.b;\n #else\n vec2 anisotropyV = anisotropyVector;\n #endif\n material.anisotropy = length( anisotropyV );\n if( material.anisotropy == 0.0 ) {\n anisotropyV = vec2( 1.0, 0.0 );\n } else {\n anisotropyV /= material.anisotropy;\n material.anisotropy = saturate( material.anisotropy );\n }\n material.alphaT = mix( pow2( material.roughness ), 1.0, pow2( material.anisotropy ) );\n material.anisotropyT = tbn[ 0 ] * anisotropyV.x + tbn[ 1 ] * anisotropyV.y;\n material.anisotropyB = tbn[ 1 ] * anisotropyV.x - tbn[ 0 ] * anisotropyV.y;\n#endif"; var lights_physical_pars_fragment = "struct PhysicalMaterial {\n vec3 diffuseColor;\n float roughness;\n vec3 specularColor;\n float specularF90;\n float dispersion;\n #ifdef USE_CLEARCOAT\n float clearcoat;\n float clearcoatRoughness;\n vec3 clearcoatF0;\n float clearcoatF90;\n #endif\n #ifdef USE_IRIDESCENCE\n float iridescence;\n float iridescenceIOR;\n float iridescenceThickness;\n vec3 iridescenceFresnel;\n vec3 iridescenceF0;\n #endif\n #ifdef USE_SHEEN\n vec3 sheenColor;\n float sheenRoughness;\n #endif\n #ifdef IOR\n float ior;\n #endif\n #ifdef USE_TRANSMISSION\n float transmission;\n float transmissionAlpha;\n float thickness;\n float attenuationDistance;\n vec3 attenuationColor;\n #endif\n #ifdef USE_ANISOTROPY\n float anisotropy;\n float alphaT;\n vec3 anisotropyT;\n vec3 anisotropyB;\n #endif\n};\nvec3 clearcoatSpecularDirect = vec3( 0.0 );\nvec3 clearcoatSpecularIndirect = vec3( 0.0 );\nvec3 sheenSpecularDirect = vec3( 0.0 );\nvec3 sheenSpecularIndirect = vec3(0.0 );\nvec3 Schlick_to_F0( const in vec3 f, const in float f90, const in float dotVH ) {\n float x = clamp( 1.0 - dotVH, 0.0, 1.0 );\n float x2 = x * x;\n float x5 = clamp( x * x2 * x2, 0.0, 0.9999 );\n return ( f - vec3( f90 ) * x5 ) / ( 1.0 - x5 );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n float a2 = pow2( alpha );\n float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n return 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n float a2 = pow2( alpha );\n float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n return RECIPROCAL_PI * a2 / pow2( denom );\n}\n#ifdef USE_ANISOTROPY\n float V_GGX_SmithCorrelated_Anisotropic( const in float alphaT, const in float alphaB, const in float dotTV, const in float dotBV, const in float dotTL, const in float dotBL, const in float dotNV, const in float dotNL ) {\n float gv = dotNL * length( vec3( alphaT * dotTV, alphaB * dotBV, dotNV ) );\n float gl = dotNV * length( vec3( alphaT * dotTL, alphaB * dotBL, dotNL ) );\n float v = 0.5 / ( gv + gl );\n return saturate(v);\n }\n float D_GGX_Anisotropic( const in float alphaT, const in float alphaB, const in float dotNH, const in float dotTH, const in float dotBH ) {\n float a2 = alphaT * alphaB;\n highp vec3 v = vec3( alphaB * dotTH, alphaT * dotBH, a2 * dotNH );\n highp float v2 = dot( v, v );\n float w2 = a2 / v2;\n return RECIPROCAL_PI * a2 * pow2 ( w2 );\n }\n#endif\n#ifdef USE_CLEARCOAT\n vec3 BRDF_GGX_Clearcoat( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material) {\n vec3 f0 = material.clearcoatF0;\n float f90 = material.clearcoatF90;\n float roughness = material.clearcoatRoughness;\n float alpha = pow2( roughness );\n vec3 halfDir = normalize( lightDir + viewDir );\n float dotNL = saturate( dot( normal, lightDir ) );\n float dotNV = saturate( dot( normal, viewDir ) );\n float dotNH = saturate( dot( normal, halfDir ) );\n float dotVH = saturate( dot( viewDir, halfDir ) );\n vec3 F = F_Schlick( f0, f90, dotVH );\n float V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n float D = D_GGX( alpha, dotNH );\n return F * ( V * D );\n }\n#endif\nvec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material ) {\n vec3 f0 = material.specularColor;\n float f90 = material.specularF90;\n float roughness = material.roughness;\n float alpha = pow2( roughness );\n vec3 halfDir = normalize( lightDir + viewDir );\n float dotNL = saturate( dot( normal, lightDir ) );\n float dotNV = saturate( dot( normal, viewDir ) );\n float dotNH = saturate( dot( normal, halfDir ) );\n float dotVH = saturate( dot( viewDir, halfDir ) );\n vec3 F = F_Schlick( f0, f90, dotVH );\n #ifdef USE_IRIDESCENCE\n F = mix( F, material.iridescenceFresnel, material.iridescence );\n #endif\n #ifdef USE_ANISOTROPY\n float dotTL = dot( material.anisotropyT, lightDir );\n float dotTV = dot( material.anisotropyT, viewDir );\n float dotTH = dot( material.anisotropyT, halfDir );\n float dotBL = dot( material.anisotropyB, lightDir );\n float dotBV = dot( material.anisotropyB, viewDir );\n float dotBH = dot( material.anisotropyB, halfDir );\n float V = V_GGX_SmithCorrelated_Anisotropic( material.alphaT, alpha, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL );\n float D = D_GGX_Anisotropic( material.alphaT, alpha, dotNH, dotTH, dotBH );\n #else\n float V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n float D = D_GGX( alpha, dotNH );\n #endif\n return F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n const float LUT_SIZE = 64.0;\n const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n const float LUT_BIAS = 0.5 / LUT_SIZE;\n float dotNV = saturate( dot( N, V ) );\n vec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n uv = uv * LUT_SCALE + LUT_BIAS;\n return uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n float l = length( f );\n return max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n float x = dot( v1, v2 );\n float y = abs( x );\n float a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n float b = 3.4175940 + ( 4.1616724 + y ) * y;\n float v = a / b;\n float theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n return cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n vec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n vec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n vec3 lightNormal = cross( v1, v2 );\n if( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n vec3 T1, T2;\n T1 = normalize( V - N * dot( V, N ) );\n T2 = - cross( N, T1 );\n mat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n vec3 coords[ 4 ];\n coords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n coords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n coords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n coords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n coords[ 0 ] = normalize( coords[ 0 ] );\n coords[ 1 ] = normalize( coords[ 1 ] );\n coords[ 2 ] = normalize( coords[ 2 ] );\n coords[ 3 ] = normalize( coords[ 3 ] );\n vec3 vectorFormFactor = vec3( 0.0 );\n vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n float result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n return vec3( result );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n float alpha = pow2( roughness );\n float invAlpha = 1.0 / alpha;\n float cos2h = dotNH * dotNH;\n float sin2h = max( 1.0 - cos2h, 0.0078125 );\n return ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n return saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {\n vec3 halfDir = normalize( lightDir + viewDir );\n float dotNL = saturate( dot( normal, lightDir ) );\n float dotNV = saturate( dot( normal, viewDir ) );\n float dotNH = saturate( dot( normal, halfDir ) );\n float D = D_Charlie( sheenRoughness, dotNH );\n float V = V_Neubelt( dotNV, dotNL );\n return sheenColor * ( D * V );\n}\n#endif\nfloat IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n float dotNV = saturate( dot( normal, viewDir ) );\n float r2 = roughness * roughness;\n float a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95;\n float b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72;\n float DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) );\n return saturate( DG * RECIPROCAL_PI );\n}\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n float dotNV = saturate( dot( normal, viewDir ) );\n const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n vec4 r = roughness * c0 + c1;\n float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n vec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n return fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n vec2 fab = DFGApprox( normal, viewDir, roughness );\n return specularColor * fab.x + specularF90 * fab.y;\n}\n#ifdef USE_IRIDESCENCE\nvoid computeMultiscatteringIridescence( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float iridescence, const in vec3 iridescenceF0, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#else\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#endif\n vec2 fab = DFGApprox( normal, viewDir, roughness );\n #ifdef USE_IRIDESCENCE\n vec3 Fr = mix( specularColor, iridescenceF0, iridescence );\n #else\n vec3 Fr = specularColor;\n #endif\n vec3 FssEss = Fr * fab.x + specularF90 * fab.y;\n float Ess = fab.x + fab.y;\n float Ems = 1.0 - Ess;\n vec3 Favg = Fr + ( 1.0 - Fr ) * 0.047619; vec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n singleScatter += FssEss;\n multiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n void RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n vec3 normal = geometryNormal;\n vec3 viewDir = geometryViewDir;\n vec3 position = geometryPosition;\n vec3 lightPos = rectAreaLight.position;\n vec3 halfWidth = rectAreaLight.halfWidth;\n vec3 halfHeight = rectAreaLight.halfHeight;\n vec3 lightColor = rectAreaLight.color;\n float roughness = material.roughness;\n vec3 rectCoords[ 4 ];\n rectCoords[ 0 ] = lightPos + halfWidth - halfHeight; rectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n rectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n rectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n vec2 uv = LTC_Uv( normal, viewDir, roughness );\n vec4 t1 = texture2D( ltc_1, uv );\n vec4 t2 = texture2D( ltc_2, uv );\n mat3 mInv = mat3(\n vec3( t1.x, 0, t1.y ),\n vec3( 0, 1, 0 ),\n vec3( t1.z, 0, t1.w )\n );\n vec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n reflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n reflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n }\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n float dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n vec3 irradiance = dotNL * directLight.color;\n #ifdef USE_CLEARCOAT\n float dotNLcc = saturate( dot( geometryClearcoatNormal, directLight.direction ) );\n vec3 ccIrradiance = dotNLcc * directLight.color;\n clearcoatSpecularDirect += ccIrradiance * BRDF_GGX_Clearcoat( directLight.direction, geometryViewDir, geometryClearcoatNormal, material );\n #endif\n #ifdef USE_SHEEN\n sheenSpecularDirect += irradiance * BRDF_Sheen( directLight.direction, geometryViewDir, geometryNormal, material.sheenColor, material.sheenRoughness );\n #endif\n reflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometryViewDir, geometryNormal, material );\n reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n #ifdef USE_CLEARCOAT\n clearcoatSpecularIndirect += clearcoatRadiance * EnvironmentBRDF( geometryClearcoatNormal, geometryViewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n #endif\n #ifdef USE_SHEEN\n sheenSpecularIndirect += irradiance * material.sheenColor * IBLSheenBRDF( geometryNormal, geometryViewDir, material.sheenRoughness );\n #endif\n vec3 singleScattering = vec3( 0.0 );\n vec3 multiScattering = vec3( 0.0 );\n vec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n #ifdef USE_IRIDESCENCE\n computeMultiscatteringIridescence( geometryNormal, geometryViewDir, material.specularColor, material.specularF90, material.iridescence, material.iridescenceFresnel, material.roughness, singleScattering, multiScattering );\n #else\n computeMultiscattering( geometryNormal, geometryViewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n #endif\n vec3 totalScattering = singleScattering + multiScattering;\n vec3 diffuse = material.diffuseColor * ( 1.0 - max( max( totalScattering.r, totalScattering.g ), totalScattering.b ) );\n reflectedLight.indirectSpecular += radiance * singleScattering;\n reflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n reflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct RE_Direct_Physical\n#define RE_Direct_RectArea RE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse RE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular RE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n return saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}"; var lights_fragment_begin = "\nvec3 geometryPosition = - vViewPosition;\nvec3 geometryNormal = normal;\nvec3 geometryViewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\nvec3 geometryClearcoatNormal = vec3( 0.0 );\n#ifdef USE_CLEARCOAT\n geometryClearcoatNormal = clearcoatNormal;\n#endif\n#ifdef USE_IRIDESCENCE\n float dotNVi = saturate( dot( normal, geometryViewDir ) );\n if ( material.iridescenceThickness == 0.0 ) {\n material.iridescence = 0.0;\n } else {\n material.iridescence = saturate( material.iridescence );\n }\n if ( material.iridescence > 0.0 ) {\n material.iridescenceFresnel = evalIridescence( 1.0, material.iridescenceIOR, dotNVi, material.iridescenceThickness, material.specularColor );\n material.iridescenceF0 = Schlick_to_F0( material.iridescenceFresnel, 1.0, dotNVi );\n }\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n PointLight pointLight;\n #if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n PointLightShadow pointLightShadow;\n #endif\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n pointLight = pointLights[ i ];\n getPointLightInfo( pointLight, geometryPosition, directLight );\n #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n pointLightShadow = pointLightShadows[ i ];\n directLight.color *= ( directLight.visible && receiveShadow ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowIntensity, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n #endif\n RE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n }\n #pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n SpotLight spotLight;\n vec4 spotColor;\n vec3 spotLightCoord;\n bool inSpotLightMap;\n #if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n SpotLightShadow spotLightShadow;\n #endif\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n spotLight = spotLights[ i ];\n getSpotLightInfo( spotLight, geometryPosition, directLight );\n #if ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )\n #define SPOT_LIGHT_MAP_INDEX UNROLLED_LOOP_INDEX\n #elif ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n #define SPOT_LIGHT_MAP_INDEX NUM_SPOT_LIGHT_MAPS\n #else\n #define SPOT_LIGHT_MAP_INDEX ( UNROLLED_LOOP_INDEX - NUM_SPOT_LIGHT_SHADOWS + NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )\n #endif\n #if ( SPOT_LIGHT_MAP_INDEX < NUM_SPOT_LIGHT_MAPS )\n spotLightCoord = vSpotLightCoord[ i ].xyz / vSpotLightCoord[ i ].w;\n inSpotLightMap = all( lessThan( abs( spotLightCoord * 2. - 1. ), vec3( 1.0 ) ) );\n spotColor = texture2D( spotLightMap[ SPOT_LIGHT_MAP_INDEX ], spotLightCoord.xy );\n directLight.color = inSpotLightMap ? directLight.color * spotColor.rgb : directLight.color;\n #endif\n #undef SPOT_LIGHT_MAP_INDEX\n #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n spotLightShadow = spotLightShadows[ i ];\n directLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowIntensity, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n }\n #pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n DirectionalLight directionalLight;\n #if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n DirectionalLightShadow directionalLightShadow;\n #endif\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n directionalLight = directionalLights[ i ];\n getDirectionalLightInfo( directionalLight, directLight );\n #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n directionalLightShadow = directionalLightShadows[ i ];\n directLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowIntensity, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n #endif\n RE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n }\n #pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n RectAreaLight rectAreaLight;\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n rectAreaLight = rectAreaLights[ i ];\n RE_Direct_RectArea( rectAreaLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n }\n #pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n vec3 iblIrradiance = vec3( 0.0 );\n vec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n #if defined( USE_LIGHT_PROBES )\n irradiance += getLightProbeIrradiance( lightProbe, geometryNormal );\n #endif\n #if ( NUM_HEMI_LIGHTS > 0 )\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n irradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometryNormal );\n }\n #pragma unroll_loop_end\n #endif\n#endif\n#if defined( RE_IndirectSpecular )\n vec3 radiance = vec3( 0.0 );\n vec3 clearcoatRadiance = vec3( 0.0 );\n#endif"; var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n #ifdef USE_LIGHTMAP\n vec4 lightMapTexel = texture2D( lightMap, vLightMapUv );\n vec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;\n irradiance += lightMapIrradiance;\n #endif\n #if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n iblIrradiance += getIBLIrradiance( geometryNormal );\n #endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n #ifdef USE_ANISOTROPY\n radiance += getIBLAnisotropyRadiance( geometryViewDir, geometryNormal, material.roughness, material.anisotropyB, material.anisotropy );\n #else\n radiance += getIBLRadiance( geometryViewDir, geometryNormal, material.roughness );\n #endif\n #ifdef USE_CLEARCOAT\n clearcoatRadiance += getIBLRadiance( geometryViewDir, geometryClearcoatNormal, material.clearcoatRoughness );\n #endif\n#endif"; var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n RE_IndirectDiffuse( irradiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n RE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n#endif"; var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF )\n gl_FragDepth = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif"; var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF )\n uniform float logDepthBufFC;\n varying float vFragDepth;\n varying float vIsPerspective;\n#endif"; var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n varying float vFragDepth;\n varying float vIsPerspective;\n#endif"; var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n vFragDepth = 1.0 + gl_Position.w;\n vIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n#endif"; var map_fragment = "#ifdef USE_MAP\n vec4 sampledDiffuseColor = texture2D( map, vMapUv );\n #ifdef DECODE_VIDEO_TEXTURE\n sampledDiffuseColor = sRGBTransferEOTF( sampledDiffuseColor );\n #endif\n diffuseColor *= sampledDiffuseColor;\n#endif"; var map_pars_fragment = "#ifdef USE_MAP\n uniform sampler2D map;\n#endif"; var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n #if defined( USE_POINTS_UV )\n vec2 uv = vUv;\n #else\n vec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n #endif\n#endif\n#ifdef USE_MAP\n diffuseColor *= texture2D( map, uv );\n#endif\n#ifdef USE_ALPHAMAP\n diffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif"; var map_particle_pars_fragment = "#if defined( USE_POINTS_UV )\n varying vec2 vUv;\n#else\n #if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n uniform mat3 uvTransform;\n #endif\n#endif\n#ifdef USE_MAP\n uniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n uniform sampler2D alphaMap;\n#endif"; var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n vec4 texelMetalness = texture2D( metalnessMap, vMetalnessMapUv );\n metalnessFactor *= texelMetalness.b;\n#endif"; var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n uniform sampler2D metalnessMap;\n#endif"; var morphinstance_vertex = "#ifdef USE_INSTANCING_MORPH\n float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n float morphTargetBaseInfluence = texelFetch( morphTexture, ivec2( 0, gl_InstanceID ), 0 ).r;\n for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n morphTargetInfluences[i] = texelFetch( morphTexture, ivec2( i + 1, gl_InstanceID ), 0 ).r;\n }\n#endif"; var morphcolor_vertex = "#if defined( USE_MORPHCOLORS )\n vColor *= morphTargetBaseInfluence;\n for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n #if defined( USE_COLOR_ALPHA )\n if ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ) * morphTargetInfluences[ i ];\n #elif defined( USE_COLOR )\n if ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ).rgb * morphTargetInfluences[ i ];\n #endif\n }\n#endif"; var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n objectNormal *= morphTargetBaseInfluence;\n for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n if ( morphTargetInfluences[ i ] != 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1 ).xyz * morphTargetInfluences[ i ];\n }\n#endif"; var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n #ifndef USE_INSTANCING_MORPH\n uniform float morphTargetBaseInfluence;\n uniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n #endif\n uniform sampler2DArray morphTargetsTexture;\n uniform ivec2 morphTargetsTextureSize;\n vec4 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset ) {\n int texelIndex = vertexIndex * MORPHTARGETS_TEXTURE_STRIDE + offset;\n int y = texelIndex / morphTargetsTextureSize.x;\n int x = texelIndex - y * morphTargetsTextureSize.x;\n ivec3 morphUV = ivec3( x, y, morphTargetIndex );\n return texelFetch( morphTargetsTexture, morphUV, 0 );\n }\n#endif"; var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n transformed *= morphTargetBaseInfluence;\n for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n if ( morphTargetInfluences[ i ] != 0.0 ) transformed += getMorph( gl_VertexID, i, 0 ).xyz * morphTargetInfluences[ i ];\n }\n#endif"; var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n vec3 fdx = dFdx( vViewPosition );\n vec3 fdy = dFdy( vViewPosition );\n vec3 normal = normalize( cross( fdx, fdy ) );\n#else\n vec3 normal = normalize( vNormal );\n #ifdef DOUBLE_SIDED\n normal *= faceDirection;\n #endif\n#endif\n#if defined( USE_NORMALMAP_TANGENTSPACE ) || defined( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY )\n #ifdef USE_TANGENT\n mat3 tbn = mat3( normalize( vTangent ), normalize( vBitangent ), normal );\n #else\n mat3 tbn = getTangentFrame( - vViewPosition, normal,\n #if defined( USE_NORMALMAP )\n vNormalMapUv\n #elif defined( USE_CLEARCOAT_NORMALMAP )\n vClearcoatNormalMapUv\n #else\n vUv\n #endif\n );\n #endif\n #if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )\n tbn[0] *= faceDirection;\n tbn[1] *= faceDirection;\n #endif\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n #ifdef USE_TANGENT\n mat3 tbn2 = mat3( normalize( vTangent ), normalize( vBitangent ), normal );\n #else\n mat3 tbn2 = getTangentFrame( - vViewPosition, normal, vClearcoatNormalMapUv );\n #endif\n #if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )\n tbn2[0] *= faceDirection;\n tbn2[1] *= faceDirection;\n #endif\n#endif\nvec3 nonPerturbedNormal = normal;"; var normal_fragment_maps = "#ifdef USE_NORMALMAP_OBJECTSPACE\n normal = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;\n #ifdef FLIP_SIDED\n normal = - normal;\n #endif\n #ifdef DOUBLE_SIDED\n normal = normal * faceDirection;\n #endif\n normal = normalize( normalMatrix * normal );\n#elif defined( USE_NORMALMAP_TANGENTSPACE )\n vec3 mapN = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;\n mapN.xy *= normalScale;\n normal = normalize( tbn * mapN );\n#elif defined( USE_BUMPMAP )\n normal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif"; var normal_pars_fragment = "#ifndef FLAT_SHADED\n varying vec3 vNormal;\n #ifdef USE_TANGENT\n varying vec3 vTangent;\n varying vec3 vBitangent;\n #endif\n#endif"; var normal_pars_vertex = "#ifndef FLAT_SHADED\n varying vec3 vNormal;\n #ifdef USE_TANGENT\n varying vec3 vTangent;\n varying vec3 vBitangent;\n #endif\n#endif"; var normal_vertex = "#ifndef FLAT_SHADED\n vNormal = normalize( transformedNormal );\n #ifdef USE_TANGENT\n vTangent = normalize( transformedTangent );\n vBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n #endif\n#endif"; var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n uniform sampler2D normalMap;\n uniform vec2 normalScale;\n#endif\n#ifdef USE_NORMALMAP_OBJECTSPACE\n uniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( USE_NORMALMAP_TANGENTSPACE ) || defined ( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY ) )\n mat3 getTangentFrame( vec3 eye_pos, vec3 surf_norm, vec2 uv ) {\n vec3 q0 = dFdx( eye_pos.xyz );\n vec3 q1 = dFdy( eye_pos.xyz );\n vec2 st0 = dFdx( uv.st );\n vec2 st1 = dFdy( uv.st );\n vec3 N = surf_norm;\n vec3 q1perp = cross( q1, N );\n vec3 q0perp = cross( N, q0 );\n vec3 T = q1perp * st0.x + q0perp * st1.x;\n vec3 B = q1perp * st0.y + q0perp * st1.y;\n float det = max( dot( T, T ), dot( B, B ) );\n float scale = ( det == 0.0 ) ? 0.0 : inversesqrt( det );\n return mat3( T * scale, B * scale, N );\n }\n#endif"; var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT\n vec3 clearcoatNormal = nonPerturbedNormal;\n#endif"; var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n vec3 clearcoatMapN = texture2D( clearcoatNormalMap, vClearcoatNormalMapUv ).xyz * 2.0 - 1.0;\n clearcoatMapN.xy *= clearcoatNormalScale;\n clearcoatNormal = normalize( tbn2 * clearcoatMapN );\n#endif"; var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n uniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n uniform sampler2D clearcoatNormalMap;\n uniform vec2 clearcoatNormalScale;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n uniform sampler2D clearcoatRoughnessMap;\n#endif"; var iridescence_pars_fragment = "#ifdef USE_IRIDESCENCEMAP\n uniform sampler2D iridescenceMap;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n uniform sampler2D iridescenceThicknessMap;\n#endif"; var opaque_fragment = "#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= material.transmissionAlpha;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );"; var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n return normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n return 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;const float ShiftRight8 = 1. / 256.;\nconst float Inv255 = 1. / 255.;\nconst vec4 PackFactors = vec4( 1.0, 256.0, 256.0 * 256.0, 256.0 * 256.0 * 256.0 );\nconst vec2 UnpackFactors2 = vec2( UnpackDownscale, 1.0 / PackFactors.g );\nconst vec3 UnpackFactors3 = vec3( UnpackDownscale / PackFactors.rg, 1.0 / PackFactors.b );\nconst vec4 UnpackFactors4 = vec4( UnpackDownscale / PackFactors.rgb, 1.0 / PackFactors.a );\nvec4 packDepthToRGBA( const in float v ) {\n if( v <= 0.0 )\n return vec4( 0., 0., 0., 0. );\n if( v >= 1.0 )\n return vec4( 1., 1., 1., 1. );\n float vuf;\n float af = modf( v * PackFactors.a, vuf );\n float bf = modf( vuf * ShiftRight8, vuf );\n float gf = modf( vuf * ShiftRight8, vuf );\n return vec4( vuf * Inv255, gf * PackUpscale, bf * PackUpscale, af );\n}\nvec3 packDepthToRGB( const in float v ) {\n if( v <= 0.0 )\n return vec3( 0., 0., 0. );\n if( v >= 1.0 )\n return vec3( 1., 1., 1. );\n float vuf;\n float bf = modf( v * PackFactors.b, vuf );\n float gf = modf( vuf * ShiftRight8, vuf );\n return vec3( vuf * Inv255, gf * PackUpscale, bf );\n}\nvec2 packDepthToRG( const in float v ) {\n if( v <= 0.0 )\n return vec2( 0., 0. );\n if( v >= 1.0 )\n return vec2( 1., 1. );\n float vuf;\n float gf = modf( v * 256., vuf );\n return vec2( vuf * Inv255, gf );\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n return dot( v, UnpackFactors4 );\n}\nfloat unpackRGBToDepth( const in vec3 v ) {\n return dot( v, UnpackFactors3 );\n}\nfloat unpackRGToDepth( const in vec2 v ) {\n return v.r * UnpackFactors2.r + v.g * UnpackFactors2.g;\n}\nvec4 pack2HalfToRGBA( const in vec2 v ) {\n vec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n return vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( const in vec4 v ) {\n return vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n return ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float depth, const in float near, const in float far ) {\n return depth * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n return ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float depth, const in float near, const in float far ) {\n return ( near * far ) / ( ( far - near ) * depth - far );\n}"; var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n gl_FragColor.rgb *= gl_FragColor.a;\n#endif"; var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_BATCHING\n mvPosition = batchingMatrix * mvPosition;\n#endif\n#ifdef USE_INSTANCING\n mvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;"; var dithering_fragment = "#ifdef DITHERING\n gl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif"; var dithering_pars_fragment = "#ifdef DITHERING\n vec3 dithering( vec3 color ) {\n float grid_position = rand( gl_FragCoord.xy );\n vec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n dither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n return color + dither_shift_RGB;\n }\n#endif"; var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n vec4 texelRoughness = texture2D( roughnessMap, vRoughnessMapUv );\n roughnessFactor *= texelRoughness.g;\n#endif"; var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n uniform sampler2D roughnessMap;\n#endif"; var shadowmap_pars_fragment = "#if NUM_SPOT_LIGHT_COORDS > 0\n varying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];\n#endif\n#if NUM_SPOT_LIGHT_MAPS > 0\n uniform sampler2D spotLightMap[ NUM_SPOT_LIGHT_MAPS ];\n#endif\n#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHT_SHADOWS > 0\n uniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n struct DirectionalLightShadow {\n float shadowIntensity;\n float shadowBias;\n float shadowNormalBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n #endif\n #if NUM_SPOT_LIGHT_SHADOWS > 0\n uniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n struct SpotLightShadow {\n float shadowIntensity;\n float shadowBias;\n float shadowNormalBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n #endif\n #if NUM_POINT_LIGHT_SHADOWS > 0\n uniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n varying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n struct PointLightShadow {\n float shadowIntensity;\n float shadowBias;\n float shadowNormalBias;\n float shadowRadius;\n vec2 shadowMapSize;\n float shadowCameraNear;\n float shadowCameraFar;\n };\n uniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n #endif\n float texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n return step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n }\n vec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n return unpackRGBATo2Half( texture2D( shadow, uv ) );\n }\n float VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n float occlusion = 1.0;\n vec2 distribution = texture2DDistribution( shadow, uv );\n float hard_shadow = step( compare , distribution.x );\n if (hard_shadow != 1.0 ) {\n float distance = compare - distribution.x ;\n float variance = max( 0.00000, distribution.y * distribution.y );\n float softness_probability = variance / (variance + distance * distance ); softness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 ); occlusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n }\n return occlusion;\n }\n float getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowIntensity, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n float shadow = 1.0;\n shadowCoord.xyz /= shadowCoord.w;\n shadowCoord.z += shadowBias;\n bool inFrustum = shadowCoord.x >= 0.0 && shadowCoord.x <= 1.0 && shadowCoord.y >= 0.0 && shadowCoord.y <= 1.0;\n bool frustumTest = inFrustum && shadowCoord.z <= 1.0;\n if ( frustumTest ) {\n #if defined( SHADOWMAP_TYPE_PCF )\n vec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n float dx0 = - texelSize.x * shadowRadius;\n float dy0 = - texelSize.y * shadowRadius;\n float dx1 = + texelSize.x * shadowRadius;\n float dy1 = + texelSize.y * shadowRadius;\n float dx2 = dx0 / 2.0;\n float dy2 = dy0 / 2.0;\n float dx3 = dx1 / 2.0;\n float dy3 = dy1 / 2.0;\n shadow = (\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n ) * ( 1.0 / 17.0 );\n #elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n vec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n float dx = texelSize.x;\n float dy = texelSize.y;\n vec2 uv = shadowCoord.xy;\n vec2 f = fract( uv * shadowMapSize + 0.5 );\n uv -= f * texelSize;\n shadow = (\n texture2DCompare( shadowMap, uv, shadowCoord.z ) +\n texture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n texture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n texture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n mix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ),\n texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n f.x ) +\n mix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ),\n texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n f.x ) +\n mix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ),\n texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n f.y ) +\n mix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ),\n texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n f.y ) +\n mix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ),\n texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n f.x ),\n mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ),\n texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n f.x ),\n f.y )\n ) * ( 1.0 / 9.0 );\n #elif defined( SHADOWMAP_TYPE_VSM )\n shadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n #else\n shadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n #endif\n }\n return mix( 1.0, shadow, shadowIntensity );\n }\n vec2 cubeToUV( vec3 v, float texelSizeY ) {\n vec3 absV = abs( v );\n float scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n absV *= scaleToCube;\n v *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n vec2 planar = v.xy;\n float almostATexel = 1.5 * texelSizeY;\n float almostOne = 1.0 - almostATexel;\n if ( absV.z >= almostOne ) {\n if ( v.z > 0.0 )\n planar.x = 4.0 - v.x;\n } else if ( absV.x >= almostOne ) {\n float signX = sign( v.x );\n planar.x = v.z * signX + 2.0 * signX;\n } else if ( absV.y >= almostOne ) {\n float signY = sign( v.y );\n planar.x = v.x + 2.0 * signY + 2.0;\n planar.y = v.z * signY - 2.0;\n }\n return vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n }\n float getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowIntensity, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n float shadow = 1.0;\n vec3 lightToPosition = shadowCoord.xyz;\n \n float lightToPositionLength = length( lightToPosition );\n if ( lightToPositionLength - shadowCameraFar <= 0.0 && lightToPositionLength - shadowCameraNear >= 0.0 ) {\n float dp = ( lightToPositionLength - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear ); dp += shadowBias;\n vec3 bd3D = normalize( lightToPosition );\n vec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n #if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n vec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n shadow = (\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n ) * ( 1.0 / 9.0 );\n #else\n shadow = texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n #endif\n }\n return mix( 1.0, shadow, shadowIntensity );\n }\n#endif"; var shadowmap_pars_vertex = "#if NUM_SPOT_LIGHT_COORDS > 0\n uniform mat4 spotLightMatrix[ NUM_SPOT_LIGHT_COORDS ];\n varying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];\n#endif\n#ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHT_SHADOWS > 0\n uniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n struct DirectionalLightShadow {\n float shadowIntensity;\n float shadowBias;\n float shadowNormalBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n #endif\n #if NUM_SPOT_LIGHT_SHADOWS > 0\n struct SpotLightShadow {\n float shadowIntensity;\n float shadowBias;\n float shadowNormalBias;\n float shadowRadius;\n vec2 shadowMapSize;\n };\n uniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n #endif\n #if NUM_POINT_LIGHT_SHADOWS > 0\n uniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n varying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n struct PointLightShadow {\n float shadowIntensity;\n float shadowBias;\n float shadowNormalBias;\n float shadowRadius;\n vec2 shadowMapSize;\n float shadowCameraNear;\n float shadowCameraFar;\n };\n uniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n #endif\n#endif"; var shadowmap_vertex = "#if ( defined( USE_SHADOWMAP ) && ( NUM_DIR_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0 ) ) || ( NUM_SPOT_LIGHT_COORDS > 0 )\n vec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n vec4 shadowWorldPosition;\n#endif\n#if defined( USE_SHADOWMAP )\n #if NUM_DIR_LIGHT_SHADOWS > 0\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n vDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n }\n #pragma unroll_loop_end\n #endif\n #if NUM_POINT_LIGHT_SHADOWS > 0\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n vPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n }\n #pragma unroll_loop_end\n #endif\n#endif\n#if NUM_SPOT_LIGHT_COORDS > 0\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_SPOT_LIGHT_COORDS; i ++ ) {\n shadowWorldPosition = worldPosition;\n #if ( defined( USE_SHADOWMAP ) && UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n shadowWorldPosition.xyz += shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias;\n #endif\n vSpotLightCoord[ i ] = spotLightMatrix[ i ] * shadowWorldPosition;\n }\n #pragma unroll_loop_end\n#endif"; var shadowmask_pars_fragment = "float getShadowMask() {\n float shadow = 1.0;\n #ifdef USE_SHADOWMAP\n #if NUM_DIR_LIGHT_SHADOWS > 0\n DirectionalLightShadow directionalLight;\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n directionalLight = directionalLightShadows[ i ];\n shadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowIntensity, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n }\n #pragma unroll_loop_end\n #endif\n #if NUM_SPOT_LIGHT_SHADOWS > 0\n SpotLightShadow spotLight;\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n spotLight = spotLightShadows[ i ];\n shadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowIntensity, spotLight.shadowBias, spotLight.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;\n }\n #pragma unroll_loop_end\n #endif\n #if NUM_POINT_LIGHT_SHADOWS > 0\n PointLightShadow pointLight;\n #pragma unroll_loop_start\n for ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n pointLight = pointLightShadows[ i ];\n shadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowIntensity, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n }\n #pragma unroll_loop_end\n #endif\n #endif\n return shadow;\n}"; var skinbase_vertex = "#ifdef USE_SKINNING\n mat4 boneMatX = getBoneMatrix( skinIndex.x );\n mat4 boneMatY = getBoneMatrix( skinIndex.y );\n mat4 boneMatZ = getBoneMatrix( skinIndex.z );\n mat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif"; var skinning_pars_vertex = "#ifdef USE_SKINNING\n uniform mat4 bindMatrix;\n uniform mat4 bindMatrixInverse;\n uniform highp sampler2D boneTexture;\n mat4 getBoneMatrix( const in float i ) {\n int size = textureSize( boneTexture, 0 ).x;\n int j = int( i ) * 4;\n int x = j % size;\n int y = j / size;\n vec4 v1 = texelFetch( boneTexture, ivec2( x, y ), 0 );\n vec4 v2 = texelFetch( boneTexture, ivec2( x + 1, y ), 0 );\n vec4 v3 = texelFetch( boneTexture, ivec2( x + 2, y ), 0 );\n vec4 v4 = texelFetch( boneTexture, ivec2( x + 3, y ), 0 );\n return mat4( v1, v2, v3, v4 );\n }\n#endif"; var skinning_vertex = "#ifdef USE_SKINNING\n vec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n vec4 skinned = vec4( 0.0 );\n skinned += boneMatX * skinVertex * skinWeight.x;\n skinned += boneMatY * skinVertex * skinWeight.y;\n skinned += boneMatZ * skinVertex * skinWeight.z;\n skinned += boneMatW * skinVertex * skinWeight.w;\n transformed = ( bindMatrixInverse * skinned ).xyz;\n#endif"; var skinnormal_vertex = "#ifdef USE_SKINNING\n mat4 skinMatrix = mat4( 0.0 );\n skinMatrix += skinWeight.x * boneMatX;\n skinMatrix += skinWeight.y * boneMatY;\n skinMatrix += skinWeight.z * boneMatZ;\n skinMatrix += skinWeight.w * boneMatW;\n skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n objectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n #ifdef USE_TANGENT\n objectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n #endif\n#endif"; var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n vec4 texelSpecular = texture2D( specularMap, vSpecularMapUv );\n specularStrength = texelSpecular.r;\n#else\n specularStrength = 1.0;\n#endif"; var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n uniform sampler2D specularMap;\n#endif"; var tonemapping_fragment = "#if defined( TONE_MAPPING )\n gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif"; var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n return saturate( toneMappingExposure * color );\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n return saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 CineonToneMapping( vec3 color ) {\n color *= toneMappingExposure;\n color = max( vec3( 0.0 ), color - 0.004 );\n return pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n vec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n vec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n return a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n const mat3 ACESInputMat = mat3(\n vec3( 0.59719, 0.07600, 0.02840 ), vec3( 0.35458, 0.90834, 0.13383 ),\n vec3( 0.04823, 0.01566, 0.83777 )\n );\n const mat3 ACESOutputMat = mat3(\n vec3( 1.60475, -0.10208, -0.00327 ), vec3( -0.53108, 1.10813, -0.07276 ),\n vec3( -0.07367, -0.00605, 1.07602 )\n );\n color *= toneMappingExposure / 0.6;\n color = ACESInputMat * color;\n color = RRTAndODTFit( color );\n color = ACESOutputMat * color;\n return saturate( color );\n}\nconst mat3 LINEAR_REC2020_TO_LINEAR_SRGB = mat3(\n vec3( 1.6605, - 0.1246, - 0.0182 ),\n vec3( - 0.5876, 1.1329, - 0.1006 ),\n vec3( - 0.0728, - 0.0083, 1.1187 )\n);\nconst mat3 LINEAR_SRGB_TO_LINEAR_REC2020 = mat3(\n vec3( 0.6274, 0.0691, 0.0164 ),\n vec3( 0.3293, 0.9195, 0.0880 ),\n vec3( 0.0433, 0.0113, 0.8956 )\n);\nvec3 agxDefaultContrastApprox( vec3 x ) {\n vec3 x2 = x * x;\n vec3 x4 = x2 * x2;\n return + 15.5 * x4 * x2\n - 40.14 * x4 * x\n + 31.96 * x4\n - 6.868 * x2 * x\n + 0.4298 * x2\n + 0.1191 * x\n - 0.00232;\n}\nvec3 AgXToneMapping( vec3 color ) {\n const mat3 AgXInsetMatrix = mat3(\n vec3( 0.856627153315983, 0.137318972929847, 0.11189821299995 ),\n vec3( 0.0951212405381588, 0.761241990602591, 0.0767994186031903 ),\n vec3( 0.0482516061458583, 0.101439036467562, 0.811302368396859 )\n );\n const mat3 AgXOutsetMatrix = mat3(\n vec3( 1.1271005818144368, - 0.1413297634984383, - 0.14132976349843826 ),\n vec3( - 0.11060664309660323, 1.157823702216272, - 0.11060664309660294 ),\n vec3( - 0.016493938717834573, - 0.016493938717834257, 1.2519364065950405 )\n );\n const float AgxMinEv = - 12.47393; const float AgxMaxEv = 4.026069;\n color *= toneMappingExposure;\n color = LINEAR_SRGB_TO_LINEAR_REC2020 * color;\n color = AgXInsetMatrix * color;\n color = max( color, 1e-10 ); color = log2( color );\n color = ( color - AgxMinEv ) / ( AgxMaxEv - AgxMinEv );\n color = clamp( color, 0.0, 1.0 );\n color = agxDefaultContrastApprox( color );\n color = AgXOutsetMatrix * color;\n color = pow( max( vec3( 0.0 ), color ), vec3( 2.2 ) );\n color = LINEAR_REC2020_TO_LINEAR_SRGB * color;\n color = clamp( color, 0.0, 1.0 );\n return color;\n}\nvec3 NeutralToneMapping( vec3 color ) {\n const float StartCompression = 0.8 - 0.04;\n const float Desaturation = 0.15;\n color *= toneMappingExposure;\n float x = min( color.r, min( color.g, color.b ) );\n float offset = x < 0.08 ? x - 6.25 * x * x : 0.04;\n color -= offset;\n float peak = max( color.r, max( color.g, color.b ) );\n if ( peak < StartCompression ) return color;\n float d = 1. - StartCompression;\n float newPeak = 1. - d * d / ( peak + d - StartCompression );\n color *= newPeak / peak;\n float g = 1. - 1. / ( Desaturation * ( peak - newPeak ) + 1. );\n return mix( color, vec3( newPeak ), g );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }"; var transmission_fragment = "#ifdef USE_TRANSMISSION\n material.transmission = transmission;\n material.transmissionAlpha = 1.0;\n material.thickness = thickness;\n material.attenuationDistance = attenuationDistance;\n material.attenuationColor = attenuationColor;\n #ifdef USE_TRANSMISSIONMAP\n material.transmission *= texture2D( transmissionMap, vTransmissionMapUv ).r;\n #endif\n #ifdef USE_THICKNESSMAP\n material.thickness *= texture2D( thicknessMap, vThicknessMapUv ).g;\n #endif\n vec3 pos = vWorldPosition;\n vec3 v = normalize( cameraPosition - pos );\n vec3 n = inverseTransformDirection( normal, viewMatrix );\n vec4 transmitted = getIBLVolumeRefraction(\n n, v, material.roughness, material.diffuseColor, material.specularColor, material.specularF90,\n pos, modelMatrix, viewMatrix, projectionMatrix, material.dispersion, material.ior, material.thickness,\n material.attenuationColor, material.attenuationDistance );\n material.transmissionAlpha = mix( material.transmissionAlpha, transmitted.a, material.transmission );\n totalDiffuse = mix( totalDiffuse, transmitted.rgb, material.transmission );\n#endif"; var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n uniform float transmission;\n uniform float thickness;\n uniform float attenuationDistance;\n uniform vec3 attenuationColor;\n #ifdef USE_TRANSMISSIONMAP\n uniform sampler2D transmissionMap;\n #endif\n #ifdef USE_THICKNESSMAP\n uniform sampler2D thicknessMap;\n #endif\n uniform vec2 transmissionSamplerSize;\n uniform sampler2D transmissionSamplerMap;\n uniform mat4 modelMatrix;\n uniform mat4 projectionMatrix;\n varying vec3 vWorldPosition;\n float w0( float a ) {\n return ( 1.0 / 6.0 ) * ( a * ( a * ( - a + 3.0 ) - 3.0 ) + 1.0 );\n }\n float w1( float a ) {\n return ( 1.0 / 6.0 ) * ( a * a * ( 3.0 * a - 6.0 ) + 4.0 );\n }\n float w2( float a ){\n return ( 1.0 / 6.0 ) * ( a * ( a * ( - 3.0 * a + 3.0 ) + 3.0 ) + 1.0 );\n }\n float w3( float a ) {\n return ( 1.0 / 6.0 ) * ( a * a * a );\n }\n float g0( float a ) {\n return w0( a ) + w1( a );\n }\n float g1( float a ) {\n return w2( a ) + w3( a );\n }\n float h0( float a ) {\n return - 1.0 + w1( a ) / ( w0( a ) + w1( a ) );\n }\n float h1( float a ) {\n return 1.0 + w3( a ) / ( w2( a ) + w3( a ) );\n }\n vec4 bicubic( sampler2D tex, vec2 uv, vec4 texelSize, float lod ) {\n uv = uv * texelSize.zw + 0.5;\n vec2 iuv = floor( uv );\n vec2 fuv = fract( uv );\n float g0x = g0( fuv.x );\n float g1x = g1( fuv.x );\n float h0x = h0( fuv.x );\n float h1x = h1( fuv.x );\n float h0y = h0( fuv.y );\n float h1y = h1( fuv.y );\n vec2 p0 = ( vec2( iuv.x + h0x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;\n vec2 p1 = ( vec2( iuv.x + h1x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;\n vec2 p2 = ( vec2( iuv.x + h0x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;\n vec2 p3 = ( vec2( iuv.x + h1x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;\n return g0( fuv.y ) * ( g0x * textureLod( tex, p0, lod ) + g1x * textureLod( tex, p1, lod ) ) +\n g1( fuv.y ) * ( g0x * textureLod( tex, p2, lod ) + g1x * textureLod( tex, p3, lod ) );\n }\n vec4 textureBicubic( sampler2D sampler, vec2 uv, float lod ) {\n vec2 fLodSize = vec2( textureSize( sampler, int( lod ) ) );\n vec2 cLodSize = vec2( textureSize( sampler, int( lod + 1.0 ) ) );\n vec2 fLodSizeInv = 1.0 / fLodSize;\n vec2 cLodSizeInv = 1.0 / cLodSize;\n vec4 fSample = bicubic( sampler, uv, vec4( fLodSizeInv, fLodSize ), floor( lod ) );\n vec4 cSample = bicubic( sampler, uv, vec4( cLodSizeInv, cLodSize ), ceil( lod ) );\n return mix( fSample, cSample, fract( lod ) );\n }\n vec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) {\n vec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n vec3 modelScale;\n modelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n modelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n modelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n return normalize( refractionVector ) * thickness * modelScale;\n }\n float applyIorToRoughness( const in float roughness, const in float ior ) {\n return roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n }\n vec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) {\n float lod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n return textureBicubic( transmissionSamplerMap, fragCoord.xy, lod );\n }\n vec3 volumeAttenuation( const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) {\n if ( isinf( attenuationDistance ) ) {\n return vec3( 1.0 );\n } else {\n vec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n vec3 transmittance = exp( - attenuationCoefficient * transmissionDistance ); return transmittance;\n }\n }\n vec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor,\n const in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix,\n const in mat4 viewMatrix, const in mat4 projMatrix, const in float dispersion, const in float ior, const in float thickness,\n const in vec3 attenuationColor, const in float attenuationDistance ) {\n vec4 transmittedLight;\n vec3 transmittance;\n #ifdef USE_DISPERSION\n float halfSpread = ( ior - 1.0 ) * 0.025 * dispersion;\n vec3 iors = vec3( ior - halfSpread, ior, ior + halfSpread );\n for ( int i = 0; i < 3; i ++ ) {\n vec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, iors[ i ], modelMatrix );\n vec3 refractedRayExit = position + transmissionRay;\n \n vec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n vec2 refractionCoords = ndcPos.xy / ndcPos.w;\n refractionCoords += 1.0;\n refractionCoords /= 2.0;\n \n vec4 transmissionSample = getTransmissionSample( refractionCoords, roughness, iors[ i ] );\n transmittedLight[ i ] = transmissionSample[ i ];\n transmittedLight.a += transmissionSample.a;\n transmittance[ i ] = diffuseColor[ i ] * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance )[ i ];\n }\n transmittedLight.a /= 3.0;\n \n #else\n \n vec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n vec3 refractedRayExit = position + transmissionRay;\n vec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n vec2 refractionCoords = ndcPos.xy / ndcPos.w;\n refractionCoords += 1.0;\n refractionCoords /= 2.0;\n transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n transmittance = diffuseColor * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance );\n \n #endif\n vec3 attenuatedColor = transmittance * transmittedLight.rgb;\n vec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n float transmittanceFactor = ( transmittance.r + transmittance.g + transmittance.b ) / 3.0;\n return vec4( ( 1.0 - F ) * attenuatedColor, 1.0 - ( 1.0 - transmittedLight.a ) * transmittanceFactor );\n }\n#endif"; var uv_pars_fragment = "#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n varying vec2 vUv;\n#endif\n#ifdef USE_MAP\n varying vec2 vMapUv;\n#endif\n#ifdef USE_ALPHAMAP\n varying vec2 vAlphaMapUv;\n#endif\n#ifdef USE_LIGHTMAP\n varying vec2 vLightMapUv;\n#endif\n#ifdef USE_AOMAP\n varying vec2 vAoMapUv;\n#endif\n#ifdef USE_BUMPMAP\n varying vec2 vBumpMapUv;\n#endif\n#ifdef USE_NORMALMAP\n varying vec2 vNormalMapUv;\n#endif\n#ifdef USE_EMISSIVEMAP\n varying vec2 vEmissiveMapUv;\n#endif\n#ifdef USE_METALNESSMAP\n varying vec2 vMetalnessMapUv;\n#endif\n#ifdef USE_ROUGHNESSMAP\n varying vec2 vRoughnessMapUv;\n#endif\n#ifdef USE_ANISOTROPYMAP\n varying vec2 vAnisotropyMapUv;\n#endif\n#ifdef USE_CLEARCOATMAP\n varying vec2 vClearcoatMapUv;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n varying vec2 vClearcoatNormalMapUv;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n varying vec2 vClearcoatRoughnessMapUv;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n varying vec2 vIridescenceMapUv;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n varying vec2 vIridescenceThicknessMapUv;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n varying vec2 vSheenColorMapUv;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n varying vec2 vSheenRoughnessMapUv;\n#endif\n#ifdef USE_SPECULARMAP\n varying vec2 vSpecularMapUv;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n varying vec2 vSpecularColorMapUv;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n varying vec2 vSpecularIntensityMapUv;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n uniform mat3 transmissionMapTransform;\n varying vec2 vTransmissionMapUv;\n#endif\n#ifdef USE_THICKNESSMAP\n uniform mat3 thicknessMapTransform;\n varying vec2 vThicknessMapUv;\n#endif"; var uv_pars_vertex = "#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n varying vec2 vUv;\n#endif\n#ifdef USE_MAP\n uniform mat3 mapTransform;\n varying vec2 vMapUv;\n#endif\n#ifdef USE_ALPHAMAP\n uniform mat3 alphaMapTransform;\n varying vec2 vAlphaMapUv;\n#endif\n#ifdef USE_LIGHTMAP\n uniform mat3 lightMapTransform;\n varying vec2 vLightMapUv;\n#endif\n#ifdef USE_AOMAP\n uniform mat3 aoMapTransform;\n varying vec2 vAoMapUv;\n#endif\n#ifdef USE_BUMPMAP\n uniform mat3 bumpMapTransform;\n varying vec2 vBumpMapUv;\n#endif\n#ifdef USE_NORMALMAP\n uniform mat3 normalMapTransform;\n varying vec2 vNormalMapUv;\n#endif\n#ifdef USE_DISPLACEMENTMAP\n uniform mat3 displacementMapTransform;\n varying vec2 vDisplacementMapUv;\n#endif\n#ifdef USE_EMISSIVEMAP\n uniform mat3 emissiveMapTransform;\n varying vec2 vEmissiveMapUv;\n#endif\n#ifdef USE_METALNESSMAP\n uniform mat3 metalnessMapTransform;\n varying vec2 vMetalnessMapUv;\n#endif\n#ifdef USE_ROUGHNESSMAP\n uniform mat3 roughnessMapTransform;\n varying vec2 vRoughnessMapUv;\n#endif\n#ifdef USE_ANISOTROPYMAP\n uniform mat3 anisotropyMapTransform;\n varying vec2 vAnisotropyMapUv;\n#endif\n#ifdef USE_CLEARCOATMAP\n uniform mat3 clearcoatMapTransform;\n varying vec2 vClearcoatMapUv;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n uniform mat3 clearcoatNormalMapTransform;\n varying vec2 vClearcoatNormalMapUv;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n uniform mat3 clearcoatRoughnessMapTransform;\n varying vec2 vClearcoatRoughnessMapUv;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n uniform mat3 sheenColorMapTransform;\n varying vec2 vSheenColorMapUv;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n uniform mat3 sheenRoughnessMapTransform;\n varying vec2 vSheenRoughnessMapUv;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n uniform mat3 iridescenceMapTransform;\n varying vec2 vIridescenceMapUv;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n uniform mat3 iridescenceThicknessMapTransform;\n varying vec2 vIridescenceThicknessMapUv;\n#endif\n#ifdef USE_SPECULARMAP\n uniform mat3 specularMapTransform;\n varying vec2 vSpecularMapUv;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n uniform mat3 specularColorMapTransform;\n varying vec2 vSpecularColorMapUv;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n uniform mat3 specularIntensityMapTransform;\n varying vec2 vSpecularIntensityMapUv;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n uniform mat3 transmissionMapTransform;\n varying vec2 vTransmissionMapUv;\n#endif\n#ifdef USE_THICKNESSMAP\n uniform mat3 thicknessMapTransform;\n varying vec2 vThicknessMapUv;\n#endif"; var uv_vertex = "#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n vUv = vec3( uv, 1 ).xy;\n#endif\n#ifdef USE_MAP\n vMapUv = ( mapTransform * vec3( MAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ALPHAMAP\n vAlphaMapUv = ( alphaMapTransform * vec3( ALPHAMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_LIGHTMAP\n vLightMapUv = ( lightMapTransform * vec3( LIGHTMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_AOMAP\n vAoMapUv = ( aoMapTransform * vec3( AOMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_BUMPMAP\n vBumpMapUv = ( bumpMapTransform * vec3( BUMPMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_NORMALMAP\n vNormalMapUv = ( normalMapTransform * vec3( NORMALMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_DISPLACEMENTMAP\n vDisplacementMapUv = ( displacementMapTransform * vec3( DISPLACEMENTMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_EMISSIVEMAP\n vEmissiveMapUv = ( emissiveMapTransform * vec3( EMISSIVEMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_METALNESSMAP\n vMetalnessMapUv = ( metalnessMapTransform * vec3( METALNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ROUGHNESSMAP\n vRoughnessMapUv = ( roughnessMapTransform * vec3( ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ANISOTROPYMAP\n vAnisotropyMapUv = ( anisotropyMapTransform * vec3( ANISOTROPYMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOATMAP\n vClearcoatMapUv = ( clearcoatMapTransform * vec3( CLEARCOATMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n vClearcoatNormalMapUv = ( clearcoatNormalMapTransform * vec3( CLEARCOAT_NORMALMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n vClearcoatRoughnessMapUv = ( clearcoatRoughnessMapTransform * vec3( CLEARCOAT_ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n vIridescenceMapUv = ( iridescenceMapTransform * vec3( IRIDESCENCEMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n vIridescenceThicknessMapUv = ( iridescenceThicknessMapTransform * vec3( IRIDESCENCE_THICKNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n vSheenColorMapUv = ( sheenColorMapTransform * vec3( SHEEN_COLORMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n vSheenRoughnessMapUv = ( sheenRoughnessMapTransform * vec3( SHEEN_ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULARMAP\n vSpecularMapUv = ( specularMapTransform * vec3( SPECULARMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n vSpecularColorMapUv = ( specularColorMapTransform * vec3( SPECULAR_COLORMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n vSpecularIntensityMapUv = ( specularIntensityMapTransform * vec3( SPECULAR_INTENSITYMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n vTransmissionMapUv = ( transmissionMapTransform * vec3( TRANSMISSIONMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_THICKNESSMAP\n vThicknessMapUv = ( thicknessMapTransform * vec3( THICKNESSMAP_UV, 1 ) ).xy;\n#endif"; var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION ) || NUM_SPOT_LIGHT_COORDS > 0\n vec4 worldPosition = vec4( transformed, 1.0 );\n #ifdef USE_BATCHING\n worldPosition = batchingMatrix * worldPosition;\n #endif\n #ifdef USE_INSTANCING\n worldPosition = instanceMatrix * worldPosition;\n #endif\n worldPosition = modelMatrix * worldPosition;\n#endif"; const vertex$h = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n vUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n gl_Position = vec4( position.xy, 1.0, 1.0 );\n}"; const fragment$h = "uniform sampler2D t2D;\nuniform float backgroundIntensity;\nvarying vec2 vUv;\nvoid main() {\n vec4 texColor = texture2D( t2D, vUv );\n #ifdef DECODE_VIDEO_TEXTURE\n texColor = vec4( mix( pow( texColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), texColor.rgb * 0.0773993808, vec3( lessThanEqual( texColor.rgb, vec3( 0.04045 ) ) ) ), texColor.w );\n #endif\n texColor.rgb *= backgroundIntensity;\n gl_FragColor = texColor;\n #include \n #include \n}"; const vertex$g = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n vWorldDirection = transformDirection( position, modelMatrix );\n #include \n #include \n gl_Position.z = gl_Position.w;\n}"; const fragment$g = "#ifdef ENVMAP_TYPE_CUBE\n uniform samplerCube envMap;\n#elif defined( ENVMAP_TYPE_CUBE_UV )\n uniform sampler2D envMap;\n#endif\nuniform float flipEnvMap;\nuniform float backgroundBlurriness;\nuniform float backgroundIntensity;\nuniform mat3 backgroundRotation;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n #ifdef ENVMAP_TYPE_CUBE\n vec4 texColor = textureCube( envMap, backgroundRotation * vec3( flipEnvMap * vWorldDirection.x, vWorldDirection.yz ) );\n #elif defined( ENVMAP_TYPE_CUBE_UV )\n vec4 texColor = textureCubeUV( envMap, backgroundRotation * vWorldDirection, backgroundBlurriness );\n #else\n vec4 texColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n #endif\n texColor.rgb *= backgroundIntensity;\n gl_FragColor = texColor;\n #include \n #include \n}"; const vertex$f = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n vWorldDirection = transformDirection( position, modelMatrix );\n #include \n #include \n gl_Position.z = gl_Position.w;\n}"; const fragment$f = "uniform samplerCube tCube;\nuniform float tFlip;\nuniform float opacity;\nvarying vec3 vWorldDirection;\nvoid main() {\n vec4 texColor = textureCube( tCube, vec3( tFlip * vWorldDirection.x, vWorldDirection.yz ) );\n gl_FragColor = texColor;\n gl_FragColor.a *= opacity;\n #include \n #include \n}"; const vertex$e = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n #include \n #include \n #include \n #include \n #ifdef USE_DISPLACEMENTMAP\n #include \n #include \n #include \n #endif\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vHighPrecisionZW = gl_Position.zw;\n}"; const fragment$e = "#if DEPTH_PACKING == 3200\n uniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n vec4 diffuseColor = vec4( 1.0 );\n #include \n #if DEPTH_PACKING == 3200\n diffuseColor.a = opacity;\n #endif\n #include \n #include \n #include \n #include \n #include \n float fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n #if DEPTH_PACKING == 3200\n gl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n #elif DEPTH_PACKING == 3201\n gl_FragColor = packDepthToRGBA( fragCoordZ );\n #elif DEPTH_PACKING == 3202\n gl_FragColor = vec4( packDepthToRGB( fragCoordZ ), 1.0 );\n #elif DEPTH_PACKING == 3203\n gl_FragColor = vec4( packDepthToRG( fragCoordZ ), 0.0, 1.0 );\n #endif\n}"; const vertex$d = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #ifdef USE_DISPLACEMENTMAP\n #include \n #include \n #include \n #endif\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vWorldPosition = worldPosition.xyz;\n}"; const fragment$d = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n vec4 diffuseColor = vec4( 1.0 );\n #include \n #include \n #include \n #include \n #include \n float dist = length( vWorldPosition - referencePosition );\n dist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n dist = saturate( dist );\n gl_FragColor = packDepthToRGBA( dist );\n}"; const vertex$c = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n vWorldDirection = transformDirection( position, modelMatrix );\n #include \n #include \n}"; const fragment$c = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n vec3 direction = normalize( vWorldDirection );\n vec2 sampleUV = equirectUv( direction );\n gl_FragColor = texture2D( tEquirect, sampleUV );\n #include \n #include \n}"; const vertex$b = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vLineDistance = scale * lineDistance;\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n}"; const fragment$b = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include \n if ( mod( vLineDistance, totalSize ) > dashSize ) {\n discard;\n }\n vec3 outgoingLight = vec3( 0.0 );\n #include \n #include \n #include \n outgoingLight = diffuseColor.rgb;\n #include \n #include \n #include \n #include \n #include \n}"; const vertex$a = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #include \n #if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n #include \n #include \n #include \n #include \n #include \n #endif\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n}"; const fragment$a = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n varying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n #ifdef USE_LIGHTMAP\n vec4 lightMapTexel = texture2D( lightMap, vLightMapUv );\n reflectedLight.indirectDiffuse += lightMapTexel.rgb * lightMapIntensity * RECIPROCAL_PI;\n #else\n reflectedLight.indirectDiffuse += vec3( 1.0 );\n #endif\n #include \n reflectedLight.indirectDiffuse *= diffuseColor.rgb;\n vec3 outgoingLight = reflectedLight.indirectDiffuse;\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n}"; const vertex$9 = "#define LAMBERT\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vViewPosition = - mvPosition.xyz;\n #include \n #include \n #include \n #include \n}"; const fragment$9 = "#define LAMBERT\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include \n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n vec3 totalEmissiveRadiance = emissive;\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n}"; const vertex$8 = "#define MATCAP\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vViewPosition = - mvPosition.xyz;\n}"; const fragment$8 = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vec3 viewDir = normalize( vViewPosition );\n vec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n vec3 y = cross( viewDir, x );\n vec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n #ifdef USE_MATCAP\n vec4 matcapColor = texture2D( matcap, uv );\n #else\n vec4 matcapColor = vec4( vec3( mix( 0.2, 0.8, uv.y ) ), 1.0 );\n #endif\n vec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n #include \n #include \n #include \n #include \n #include \n #include \n}"; const vertex$7 = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )\n varying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )\n vViewPosition = - mvPosition.xyz;\n#endif\n}"; const fragment$7 = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )\n varying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( 0.0, 0.0, 0.0, opacity );\n #include \n #include \n #include \n #include \n gl_FragColor = vec4( packNormalToRGB( normal ), diffuseColor.a );\n #ifdef OPAQUE\n gl_FragColor.a = 1.0;\n #endif\n}"; const vertex$6 = "#define PHONG\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vViewPosition = - mvPosition.xyz;\n #include \n #include \n #include \n #include \n}"; const fragment$6 = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include \n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n vec3 totalEmissiveRadiance = emissive;\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n}"; const vertex$5 = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n varying vec3 vWorldPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vViewPosition = - mvPosition.xyz;\n #include \n #include \n #include \n#ifdef USE_TRANSMISSION\n vWorldPosition = worldPosition.xyz;\n#endif\n}"; const fragment$5 = "#define STANDARD\n#ifdef PHYSICAL\n #define IOR\n #define USE_SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n uniform float ior;\n#endif\n#ifdef USE_SPECULAR\n uniform float specularIntensity;\n uniform vec3 specularColor;\n #ifdef USE_SPECULAR_COLORMAP\n uniform sampler2D specularColorMap;\n #endif\n #ifdef USE_SPECULAR_INTENSITYMAP\n uniform sampler2D specularIntensityMap;\n #endif\n#endif\n#ifdef USE_CLEARCOAT\n uniform float clearcoat;\n uniform float clearcoatRoughness;\n#endif\n#ifdef USE_DISPERSION\n uniform float dispersion;\n#endif\n#ifdef USE_IRIDESCENCE\n uniform float iridescence;\n uniform float iridescenceIOR;\n uniform float iridescenceThicknessMinimum;\n uniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n uniform vec3 sheenColor;\n uniform float sheenRoughness;\n #ifdef USE_SHEEN_COLORMAP\n uniform sampler2D sheenColorMap;\n #endif\n #ifdef USE_SHEEN_ROUGHNESSMAP\n uniform sampler2D sheenRoughnessMap;\n #endif\n#endif\n#ifdef USE_ANISOTROPY\n uniform vec2 anisotropyVector;\n #ifdef USE_ANISOTROPYMAP\n uniform sampler2D anisotropyMap;\n #endif\n#endif\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include \n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n vec3 totalEmissiveRadiance = emissive;\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n vec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n #include \n vec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n #ifdef USE_SHEEN\n float sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n outgoingLight = outgoingLight * sheenEnergyComp + sheenSpecularDirect + sheenSpecularIndirect;\n #endif\n #ifdef USE_CLEARCOAT\n float dotNVcc = saturate( dot( geometryClearcoatNormal, geometryViewDir ) );\n vec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n outgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + ( clearcoatSpecularDirect + clearcoatSpecularIndirect ) * material.clearcoat;\n #endif\n #include \n #include \n #include \n #include \n #include \n #include \n}"; const vertex$4 = "#define TOON\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vViewPosition = - mvPosition.xyz;\n #include \n #include \n #include \n}"; const fragment$4 = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include \n ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n vec3 totalEmissiveRadiance = emissive;\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n #include \n #include \n #include \n #include \n #include \n #include \n}"; const vertex$3 = "uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \n#ifdef USE_POINTS_UV\n varying vec2 vUv;\n uniform mat3 uvTransform;\n#endif\nvoid main() {\n #ifdef USE_POINTS_UV\n vUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n #endif\n #include \n #include \n #include \n #include \n #include \n #include \n gl_PointSize = size;\n #ifdef USE_SIZEATTENUATION\n bool isPerspective = isPerspectiveMatrix( projectionMatrix );\n if ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n #endif\n #include \n #include \n #include \n #include \n}"; const fragment$3 = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include \n vec3 outgoingLight = vec3( 0.0 );\n #include \n #include \n #include \n #include \n #include \n outgoingLight = diffuseColor.rgb;\n #include \n #include \n #include \n #include \n #include \n}"; const vertex$2 = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n #include \n}"; const fragment$2 = "uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n gl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n #include \n #include \n #include \n}"; const vertex$1 = "uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n #include \n vec4 mvPosition = modelViewMatrix[ 3 ];\n vec2 scale = vec2( length( modelMatrix[ 0 ].xyz ), length( modelMatrix[ 1 ].xyz ) );\n #ifndef USE_SIZEATTENUATION\n bool isPerspective = isPerspectiveMatrix( projectionMatrix );\n if ( isPerspective ) scale *= - mvPosition.z;\n #endif\n vec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n vec2 rotatedPosition;\n rotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n rotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n mvPosition.xy += rotatedPosition;\n gl_Position = projectionMatrix * mvPosition;\n #include \n #include \n #include \n}"; const fragment$1 = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n vec4 diffuseColor = vec4( diffuse, opacity );\n #include \n vec3 outgoingLight = vec3( 0.0 );\n #include \n #include \n #include \n #include \n #include \n outgoingLight = diffuseColor.rgb;\n #include \n #include \n #include \n #include \n}"; const ShaderChunk = { alphahash_fragment, alphahash_pars_fragment, alphamap_fragment, alphamap_pars_fragment, alphatest_fragment, alphatest_pars_fragment, aomap_fragment, aomap_pars_fragment, batching_pars_vertex, batching_vertex, begin_vertex, beginnormal_vertex, bsdfs, iridescence_fragment, bumpmap_pars_fragment, clipping_planes_fragment, clipping_planes_pars_fragment, clipping_planes_pars_vertex, clipping_planes_vertex, color_fragment, color_pars_fragment, color_pars_vertex, color_vertex, common, cube_uv_reflection_fragment, defaultnormal_vertex, displacementmap_pars_vertex, displacementmap_vertex, emissivemap_fragment, emissivemap_pars_fragment, colorspace_fragment, colorspace_pars_fragment, envmap_fragment, envmap_common_pars_fragment, envmap_pars_fragment, envmap_pars_vertex, envmap_physical_pars_fragment, envmap_vertex, fog_vertex, fog_pars_vertex, fog_fragment, fog_pars_fragment, gradientmap_pars_fragment, lightmap_pars_fragment, lights_lambert_fragment, lights_lambert_pars_fragment, lights_pars_begin, lights_toon_fragment, lights_toon_pars_fragment, lights_phong_fragment, lights_phong_pars_fragment, lights_physical_fragment, lights_physical_pars_fragment, lights_fragment_begin, lights_fragment_maps, lights_fragment_end, logdepthbuf_fragment, logdepthbuf_pars_fragment, logdepthbuf_pars_vertex, logdepthbuf_vertex, map_fragment, map_pars_fragment, map_particle_fragment, map_particle_pars_fragment, metalnessmap_fragment, metalnessmap_pars_fragment, morphinstance_vertex, morphcolor_vertex, morphnormal_vertex, morphtarget_pars_vertex, morphtarget_vertex, normal_fragment_begin, normal_fragment_maps, normal_pars_fragment, normal_pars_vertex, normal_vertex, normalmap_pars_fragment, clearcoat_normal_fragment_begin, clearcoat_normal_fragment_maps, clearcoat_pars_fragment, iridescence_pars_fragment, opaque_fragment, packing, premultiplied_alpha_fragment, project_vertex, dithering_fragment, dithering_pars_fragment, roughnessmap_fragment, roughnessmap_pars_fragment, shadowmap_pars_fragment, shadowmap_pars_vertex, shadowmap_vertex, shadowmask_pars_fragment, skinbase_vertex, skinning_pars_vertex, skinning_vertex, skinnormal_vertex, specularmap_fragment, specularmap_pars_fragment, tonemapping_fragment, tonemapping_pars_fragment, transmission_fragment, transmission_pars_fragment, uv_pars_fragment, uv_pars_vertex, uv_vertex, worldpos_vertex, background_vert: vertex$h, background_frag: fragment$h, backgroundCube_vert: vertex$g, backgroundCube_frag: fragment$g, cube_vert: vertex$f, cube_frag: fragment$f, depth_vert: vertex$e, depth_frag: fragment$e, distanceRGBA_vert: vertex$d, distanceRGBA_frag: fragment$d, equirect_vert: vertex$c, equirect_frag: fragment$c, linedashed_vert: vertex$b, linedashed_frag: fragment$b, meshbasic_vert: vertex$a, meshbasic_frag: fragment$a, meshlambert_vert: vertex$9, meshlambert_frag: fragment$9, meshmatcap_vert: vertex$8, meshmatcap_frag: fragment$8, meshnormal_vert: vertex$7, meshnormal_frag: fragment$7, meshphong_vert: vertex$6, meshphong_frag: fragment$6, meshphysical_vert: vertex$5, meshphysical_frag: fragment$5, meshtoon_vert: vertex$4, meshtoon_frag: fragment$4, points_vert: vertex$3, points_frag: fragment$3, shadow_vert: vertex$2, shadow_frag: fragment$2, sprite_vert: vertex$1, sprite_frag: fragment$1 }; const UniformsLib = { common: { diffuse: { value: /* @__PURE__ */ new Color(16777215) }, opacity: { value: 1 }, map: { value: null }, mapTransform: { value: /* @__PURE__ */ new Matrix3() }, alphaMap: { value: null }, alphaMapTransform: { value: /* @__PURE__ */ new Matrix3() }, alphaTest: { value: 0 } }, specularmap: { specularMap: { value: null }, specularMapTransform: { value: /* @__PURE__ */ new Matrix3() } }, envmap: { envMap: { value: null }, envMapRotation: { value: /* @__PURE__ */ new Matrix3() }, flipEnvMap: { value: -1 }, reflectivity: { value: 1 }, // basic, lambert, phong ior: { value: 1.5 }, // physical refractionRatio: { value: 0.98 } // basic, lambert, phong }, aomap: { aoMap: { value: null }, aoMapIntensity: { value: 1 }, aoMapTransform: { value: /* @__PURE__ */ new Matrix3() } }, lightmap: { lightMap: { value: null }, lightMapIntensity: { value: 1 }, lightMapTransform: { value: /* @__PURE__ */ new Matrix3() } }, bumpmap: { bumpMap: { value: null }, bumpMapTransform: { value: /* @__PURE__ */ new Matrix3() }, bumpScale: { value: 1 } }, normalmap: { normalMap: { value: null }, normalMapTransform: { value: /* @__PURE__ */ new Matrix3() }, normalScale: { value: /* @__PURE__ */ new Vector2(1, 1) } }, displacementmap: { displacementMap: { value: null }, displacementMapTransform: { value: /* @__PURE__ */ new Matrix3() }, displacementScale: { value: 1 }, displacementBias: { value: 0 } }, emissivemap: { emissiveMap: { value: null }, emissiveMapTransform: { value: /* @__PURE__ */ new Matrix3() } }, metalnessmap: { metalnessMap: { value: null }, metalnessMapTransform: { value: /* @__PURE__ */ new Matrix3() } }, roughnessmap: { roughnessMap: { value: null }, roughnessMapTransform: { value: /* @__PURE__ */ new Matrix3() } }, gradientmap: { gradientMap: { value: null } }, fog: { fogDensity: { value: 25e-5 }, fogNear: { value: 1 }, fogFar: { value: 2e3 }, fogColor: { value: /* @__PURE__ */ new Color(16777215) } }, lights: { ambientLightColor: { value: [] }, lightProbe: { value: [] }, directionalLights: { value: [], properties: { direction: {}, color: {} } }, directionalLightShadows: { value: [], properties: { shadowIntensity: 1, shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, directionalShadowMap: { value: [] }, directionalShadowMatrix: { value: [] }, spotLights: { value: [], properties: { color: {}, position: {}, direction: {}, distance: {}, coneCos: {}, penumbraCos: {}, decay: {} } }, spotLightShadows: { value: [], properties: { shadowIntensity: 1, shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, spotLightMap: { value: [] }, spotShadowMap: { value: [] }, spotLightMatrix: { value: [] }, pointLights: { value: [], properties: { color: {}, position: {}, decay: {}, distance: {} } }, pointLightShadows: { value: [], properties: { shadowIntensity: 1, shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {}, shadowCameraNear: {}, shadowCameraFar: {} } }, pointShadowMap: { value: [] }, pointShadowMatrix: { value: [] }, hemisphereLights: { value: [], properties: { direction: {}, skyColor: {}, groundColor: {} } }, // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src rectAreaLights: { value: [], properties: { color: {}, position: {}, width: {}, height: {} } }, ltc_1: { value: null }, ltc_2: { value: null } }, points: { diffuse: { value: /* @__PURE__ */ new Color(16777215) }, opacity: { value: 1 }, size: { value: 1 }, scale: { value: 1 }, map: { value: null }, alphaMap: { value: null }, alphaMapTransform: { value: /* @__PURE__ */ new Matrix3() }, alphaTest: { value: 0 }, uvTransform: { value: /* @__PURE__ */ new Matrix3() } }, sprite: { diffuse: { value: /* @__PURE__ */ new Color(16777215) }, opacity: { value: 1 }, center: { value: /* @__PURE__ */ new Vector2(0.5, 0.5) }, rotation: { value: 0 }, map: { value: null }, mapTransform: { value: /* @__PURE__ */ new Matrix3() }, alphaMap: { value: null }, alphaMapTransform: { value: /* @__PURE__ */ new Matrix3() }, alphaTest: { value: 0 } } }; const ShaderLib = { basic: { uniforms: /* @__PURE__ */ mergeUniforms([ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog ]), vertexShader: ShaderChunk.meshbasic_vert, fragmentShader: ShaderChunk.meshbasic_frag }, lambert: { uniforms: /* @__PURE__ */ mergeUniforms([ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /* @__PURE__ */ new Color(0) } } ]), vertexShader: ShaderChunk.meshlambert_vert, fragmentShader: ShaderChunk.meshlambert_frag }, phong: { uniforms: /* @__PURE__ */ mergeUniforms([ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /* @__PURE__ */ new Color(0) }, specular: { value: /* @__PURE__ */ new Color(1118481) }, shininess: { value: 30 } } ]), vertexShader: ShaderChunk.meshphong_vert, fragmentShader: ShaderChunk.meshphong_frag }, standard: { uniforms: /* @__PURE__ */ mergeUniforms([ UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /* @__PURE__ */ new Color(0) }, roughness: { value: 1 }, metalness: { value: 0 }, envMapIntensity: { value: 1 } } ]), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }, toon: { uniforms: /* @__PURE__ */ mergeUniforms([ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /* @__PURE__ */ new Color(0) } } ]), vertexShader: ShaderChunk.meshtoon_vert, fragmentShader: ShaderChunk.meshtoon_frag }, matcap: { uniforms: /* @__PURE__ */ mergeUniforms([ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, { matcap: { value: null } } ]), vertexShader: ShaderChunk.meshmatcap_vert, fragmentShader: ShaderChunk.meshmatcap_frag }, points: { uniforms: /* @__PURE__ */ mergeUniforms([ UniformsLib.points, UniformsLib.fog ]), vertexShader: ShaderChunk.points_vert, fragmentShader: ShaderChunk.points_frag }, dashed: { uniforms: /* @__PURE__ */ mergeUniforms([ UniformsLib.common, UniformsLib.fog, { scale: { value: 1 }, dashSize: { value: 1 }, totalSize: { value: 2 } } ]), vertexShader: ShaderChunk.linedashed_vert, fragmentShader: ShaderChunk.linedashed_frag }, depth: { uniforms: /* @__PURE__ */ mergeUniforms([ UniformsLib.common, UniformsLib.displacementmap ]), vertexShader: ShaderChunk.depth_vert, fragmentShader: ShaderChunk.depth_frag }, normal: { uniforms: /* @__PURE__ */ mergeUniforms([ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, { opacity: { value: 1 } } ]), vertexShader: ShaderChunk.meshnormal_vert, fragmentShader: ShaderChunk.meshnormal_frag }, sprite: { uniforms: /* @__PURE__ */ mergeUniforms([ UniformsLib.sprite, UniformsLib.fog ]), vertexShader: ShaderChunk.sprite_vert, fragmentShader: ShaderChunk.sprite_frag }, background: { uniforms: { uvTransform: { value: /* @__PURE__ */ new Matrix3() }, t2D: { value: null }, backgroundIntensity: { value: 1 } }, vertexShader: ShaderChunk.background_vert, fragmentShader: ShaderChunk.background_frag }, backgroundCube: { uniforms: { envMap: { value: null }, flipEnvMap: { value: -1 }, backgroundBlurriness: { value: 0 }, backgroundIntensity: { value: 1 }, backgroundRotation: { value: /* @__PURE__ */ new Matrix3() } }, vertexShader: ShaderChunk.backgroundCube_vert, fragmentShader: ShaderChunk.backgroundCube_frag }, cube: { uniforms: { tCube: { value: null }, tFlip: { value: -1 }, opacity: { value: 1 } }, vertexShader: ShaderChunk.cube_vert, fragmentShader: ShaderChunk.cube_frag }, equirect: { uniforms: { tEquirect: { value: null } }, vertexShader: ShaderChunk.equirect_vert, fragmentShader: ShaderChunk.equirect_frag }, distanceRGBA: { uniforms: /* @__PURE__ */ mergeUniforms([ UniformsLib.common, UniformsLib.displacementmap, { referencePosition: { value: /* @__PURE__ */ new Vector3() }, nearDistance: { value: 1 }, farDistance: { value: 1e3 } } ]), vertexShader: ShaderChunk.distanceRGBA_vert, fragmentShader: ShaderChunk.distanceRGBA_frag }, shadow: { uniforms: /* @__PURE__ */ mergeUniforms([ UniformsLib.lights, UniformsLib.fog, { color: { value: /* @__PURE__ */ new Color(0) }, opacity: { value: 1 } } ]), vertexShader: ShaderChunk.shadow_vert, fragmentShader: ShaderChunk.shadow_frag } }; ShaderLib.physical = { uniforms: /* @__PURE__ */ mergeUniforms([ ShaderLib.standard.uniforms, { clearcoat: { value: 0 }, clearcoatMap: { value: null }, clearcoatMapTransform: { value: /* @__PURE__ */ new Matrix3() }, clearcoatNormalMap: { value: null }, clearcoatNormalMapTransform: { value: /* @__PURE__ */ new Matrix3() }, clearcoatNormalScale: { value: /* @__PURE__ */ new Vector2(1, 1) }, clearcoatRoughness: { value: 0 }, clearcoatRoughnessMap: { value: null }, clearcoatRoughnessMapTransform: { value: /* @__PURE__ */ new Matrix3() }, dispersion: { value: 0 }, iridescence: { value: 0 }, iridescenceMap: { value: null }, iridescenceMapTransform: { value: /* @__PURE__ */ new Matrix3() }, iridescenceIOR: { value: 1.3 }, iridescenceThicknessMinimum: { value: 100 }, iridescenceThicknessMaximum: { value: 400 }, iridescenceThicknessMap: { value: null }, iridescenceThicknessMapTransform: { value: /* @__PURE__ */ new Matrix3() }, sheen: { value: 0 }, sheenColor: { value: /* @__PURE__ */ new Color(0) }, sheenColorMap: { value: null }, sheenColorMapTransform: { value: /* @__PURE__ */ new Matrix3() }, sheenRoughness: { value: 1 }, sheenRoughnessMap: { value: null }, sheenRoughnessMapTransform: { value: /* @__PURE__ */ new Matrix3() }, transmission: { value: 0 }, transmissionMap: { value: null }, transmissionMapTransform: { value: /* @__PURE__ */ new Matrix3() }, transmissionSamplerSize: { value: /* @__PURE__ */ new Vector2() }, transmissionSamplerMap: { value: null }, thickness: { value: 0 }, thicknessMap: { value: null }, thicknessMapTransform: { value: /* @__PURE__ */ new Matrix3() }, attenuationDistance: { value: 0 }, attenuationColor: { value: /* @__PURE__ */ new Color(0) }, specularColor: { value: /* @__PURE__ */ new Color(1, 1, 1) }, specularColorMap: { value: null }, specularColorMapTransform: { value: /* @__PURE__ */ new Matrix3() }, specularIntensity: { value: 1 }, specularIntensityMap: { value: null }, specularIntensityMapTransform: { value: /* @__PURE__ */ new Matrix3() }, anisotropyVector: { value: /* @__PURE__ */ new Vector2() }, anisotropyMap: { value: null }, anisotropyMapTransform: { value: /* @__PURE__ */ new Matrix3() } } ]), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }; const _rgb = { r: 0, b: 0, g: 0 }; const _e1$1 = /* @__PURE__ */ new Euler(); const _m1$1 = /* @__PURE__ */ new Matrix4(); function WebGLBackground(renderer, cubemaps, cubeuvmaps, state, objects, alpha, premultipliedAlpha) { const clearColor = new Color(0); let clearAlpha = alpha === true ? 0 : 1; let planeMesh; let boxMesh; let currentBackground = null; let currentBackgroundVersion = 0; let currentTonemapping = null; function getBackground(scene) { let background = scene.isScene === true ? scene.background : null; if (background && background.isTexture) { const usePMREM = scene.backgroundBlurriness > 0; background = (usePMREM ? cubeuvmaps : cubemaps).get(background); } return background; } __name(getBackground, "getBackground"); function render(scene) { let forceClear = false; const background = getBackground(scene); if (background === null) { setClear(clearColor, clearAlpha); } else if (background && background.isColor) { setClear(background, 1); forceClear = true; } const environmentBlendMode = renderer.xr.getEnvironmentBlendMode(); if (environmentBlendMode === "additive") { state.buffers.color.setClear(0, 0, 0, 1, premultipliedAlpha); } else if (environmentBlendMode === "alpha-blend") { state.buffers.color.setClear(0, 0, 0, 0, premultipliedAlpha); } if (renderer.autoClear || forceClear) { state.buffers.depth.setTest(true); state.buffers.depth.setMask(true); state.buffers.color.setMask(true); renderer.clear(renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil); } } __name(render, "render"); function addToRenderList(renderList, scene) { const background = getBackground(scene); if (background && (background.isCubeTexture || background.mapping === CubeUVReflectionMapping)) { if (boxMesh === void 0) { boxMesh = new Mesh( new BoxGeometry(1, 1, 1), new ShaderMaterial({ name: "BackgroundCubeMaterial", uniforms: cloneUniforms(ShaderLib.backgroundCube.uniforms), vertexShader: ShaderLib.backgroundCube.vertexShader, fragmentShader: ShaderLib.backgroundCube.fragmentShader, side: BackSide, depthTest: false, depthWrite: false, fog: false }) ); boxMesh.geometry.deleteAttribute("normal"); boxMesh.geometry.deleteAttribute("uv"); boxMesh.onBeforeRender = function(renderer2, scene2, camera) { this.matrixWorld.copyPosition(camera.matrixWorld); }; Object.defineProperty(boxMesh.material, "envMap", { get: /* @__PURE__ */ __name(function() { return this.uniforms.envMap.value; }, "get") }); objects.update(boxMesh); } _e1$1.copy(scene.backgroundRotation); _e1$1.x *= -1; _e1$1.y *= -1; _e1$1.z *= -1; if (background.isCubeTexture && background.isRenderTargetTexture === false) { _e1$1.y *= -1; _e1$1.z *= -1; } boxMesh.material.uniforms.envMap.value = background; boxMesh.material.uniforms.flipEnvMap.value = background.isCubeTexture && background.isRenderTargetTexture === false ? -1 : 1; boxMesh.material.uniforms.backgroundBlurriness.value = scene.backgroundBlurriness; boxMesh.material.uniforms.backgroundIntensity.value = scene.backgroundIntensity; boxMesh.material.uniforms.backgroundRotation.value.setFromMatrix4(_m1$1.makeRotationFromEuler(_e1$1)); boxMesh.material.toneMapped = ColorManagement.getTransfer(background.colorSpace) !== SRGBTransfer; if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) { boxMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } boxMesh.layers.enableAll(); renderList.unshift(boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null); } else if (background && background.isTexture) { if (planeMesh === void 0) { planeMesh = new Mesh( new PlaneGeometry(2, 2), new ShaderMaterial({ name: "BackgroundMaterial", uniforms: cloneUniforms(ShaderLib.background.uniforms), vertexShader: ShaderLib.background.vertexShader, fragmentShader: ShaderLib.background.fragmentShader, side: FrontSide, depthTest: false, depthWrite: false, fog: false }) ); planeMesh.geometry.deleteAttribute("normal"); Object.defineProperty(planeMesh.material, "map", { get: /* @__PURE__ */ __name(function() { return this.uniforms.t2D.value; }, "get") }); objects.update(planeMesh); } planeMesh.material.uniforms.t2D.value = background; planeMesh.material.uniforms.backgroundIntensity.value = scene.backgroundIntensity; planeMesh.material.toneMapped = ColorManagement.getTransfer(background.colorSpace) !== SRGBTransfer; if (background.matrixAutoUpdate === true) { background.updateMatrix(); } planeMesh.material.uniforms.uvTransform.value.copy(background.matrix); if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) { planeMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } planeMesh.layers.enableAll(); renderList.unshift(planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null); } } __name(addToRenderList, "addToRenderList"); function setClear(color, alpha2) { color.getRGB(_rgb, getUnlitUniformColorSpace(renderer)); state.buffers.color.setClear(_rgb.r, _rgb.g, _rgb.b, alpha2, premultipliedAlpha); } __name(setClear, "setClear"); return { getClearColor: /* @__PURE__ */ __name(function() { return clearColor; }, "getClearColor"), setClearColor: /* @__PURE__ */ __name(function(color, alpha2 = 1) { clearColor.set(color); clearAlpha = alpha2; setClear(clearColor, clearAlpha); }, "setClearColor"), getClearAlpha: /* @__PURE__ */ __name(function() { return clearAlpha; }, "getClearAlpha"), setClearAlpha: /* @__PURE__ */ __name(function(alpha2) { clearAlpha = alpha2; setClear(clearColor, clearAlpha); }, "setClearAlpha"), render, addToRenderList }; } __name(WebGLBackground, "WebGLBackground"); function WebGLBindingStates(gl, attributes) { const maxVertexAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS); const bindingStates = {}; const defaultState = createBindingState(null); let currentState = defaultState; let forceUpdate = false; function setup(object, material, program, geometry, index) { let updateBuffers = false; const state = getBindingState(geometry, program, material); if (currentState !== state) { currentState = state; bindVertexArrayObject(currentState.object); } updateBuffers = needsUpdate(object, geometry, program, index); if (updateBuffers) saveCache(object, geometry, program, index); if (index !== null) { attributes.update(index, gl.ELEMENT_ARRAY_BUFFER); } if (updateBuffers || forceUpdate) { forceUpdate = false; setupVertexAttributes(object, material, program, geometry); if (index !== null) { gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, attributes.get(index).buffer); } } } __name(setup, "setup"); function createVertexArrayObject() { return gl.createVertexArray(); } __name(createVertexArrayObject, "createVertexArrayObject"); function bindVertexArrayObject(vao) { return gl.bindVertexArray(vao); } __name(bindVertexArrayObject, "bindVertexArrayObject"); function deleteVertexArrayObject(vao) { return gl.deleteVertexArray(vao); } __name(deleteVertexArrayObject, "deleteVertexArrayObject"); function getBindingState(geometry, program, material) { const wireframe = material.wireframe === true; let programMap = bindingStates[geometry.id]; if (programMap === void 0) { programMap = {}; bindingStates[geometry.id] = programMap; } let stateMap = programMap[program.id]; if (stateMap === void 0) { stateMap = {}; programMap[program.id] = stateMap; } let state = stateMap[wireframe]; if (state === void 0) { state = createBindingState(createVertexArrayObject()); stateMap[wireframe] = state; } return state; } __name(getBindingState, "getBindingState"); function createBindingState(vao) { const newAttributes = []; const enabledAttributes = []; const attributeDivisors = []; for (let i = 0; i < maxVertexAttributes; i++) { newAttributes[i] = 0; enabledAttributes[i] = 0; attributeDivisors[i] = 0; } return { // for backward compatibility on non-VAO support browser geometry: null, program: null, wireframe: false, newAttributes, enabledAttributes, attributeDivisors, object: vao, attributes: {}, index: null }; } __name(createBindingState, "createBindingState"); function needsUpdate(object, geometry, program, index) { const cachedAttributes = currentState.attributes; const geometryAttributes = geometry.attributes; let attributesNum = 0; const programAttributes = program.getAttributes(); for (const name in programAttributes) { const programAttribute = programAttributes[name]; if (programAttribute.location >= 0) { const cachedAttribute = cachedAttributes[name]; let geometryAttribute = geometryAttributes[name]; if (geometryAttribute === void 0) { if (name === "instanceMatrix" && object.instanceMatrix) geometryAttribute = object.instanceMatrix; if (name === "instanceColor" && object.instanceColor) geometryAttribute = object.instanceColor; } if (cachedAttribute === void 0) return true; if (cachedAttribute.attribute !== geometryAttribute) return true; if (geometryAttribute && cachedAttribute.data !== geometryAttribute.data) return true; attributesNum++; } } if (currentState.attributesNum !== attributesNum) return true; if (currentState.index !== index) return true; return false; } __name(needsUpdate, "needsUpdate"); function saveCache(object, geometry, program, index) { const cache = {}; const attributes2 = geometry.attributes; let attributesNum = 0; const programAttributes = program.getAttributes(); for (const name in programAttributes) { const programAttribute = programAttributes[name]; if (programAttribute.location >= 0) { let attribute = attributes2[name]; if (attribute === void 0) { if (name === "instanceMatrix" && object.instanceMatrix) attribute = object.instanceMatrix; if (name === "instanceColor" && object.instanceColor) attribute = object.instanceColor; } const data = {}; data.attribute = attribute; if (attribute && attribute.data) { data.data = attribute.data; } cache[name] = data; attributesNum++; } } currentState.attributes = cache; currentState.attributesNum = attributesNum; currentState.index = index; } __name(saveCache, "saveCache"); function initAttributes() { const newAttributes = currentState.newAttributes; for (let i = 0, il = newAttributes.length; i < il; i++) { newAttributes[i] = 0; } } __name(initAttributes, "initAttributes"); function enableAttribute(attribute) { enableAttributeAndDivisor(attribute, 0); } __name(enableAttribute, "enableAttribute"); function enableAttributeAndDivisor(attribute, meshPerAttribute) { const newAttributes = currentState.newAttributes; const enabledAttributes = currentState.enabledAttributes; const attributeDivisors = currentState.attributeDivisors; newAttributes[attribute] = 1; if (enabledAttributes[attribute] === 0) { gl.enableVertexAttribArray(attribute); enabledAttributes[attribute] = 1; } if (attributeDivisors[attribute] !== meshPerAttribute) { gl.vertexAttribDivisor(attribute, meshPerAttribute); attributeDivisors[attribute] = meshPerAttribute; } } __name(enableAttributeAndDivisor, "enableAttributeAndDivisor"); function disableUnusedAttributes() { const newAttributes = currentState.newAttributes; const enabledAttributes = currentState.enabledAttributes; for (let i = 0, il = enabledAttributes.length; i < il; i++) { if (enabledAttributes[i] !== newAttributes[i]) { gl.disableVertexAttribArray(i); enabledAttributes[i] = 0; } } } __name(disableUnusedAttributes, "disableUnusedAttributes"); function vertexAttribPointer(index, size, type, normalized, stride, offset, integer) { if (integer === true) { gl.vertexAttribIPointer(index, size, type, stride, offset); } else { gl.vertexAttribPointer(index, size, type, normalized, stride, offset); } } __name(vertexAttribPointer, "vertexAttribPointer"); function setupVertexAttributes(object, material, program, geometry) { initAttributes(); const geometryAttributes = geometry.attributes; const programAttributes = program.getAttributes(); const materialDefaultAttributeValues = material.defaultAttributeValues; for (const name in programAttributes) { const programAttribute = programAttributes[name]; if (programAttribute.location >= 0) { let geometryAttribute = geometryAttributes[name]; if (geometryAttribute === void 0) { if (name === "instanceMatrix" && object.instanceMatrix) geometryAttribute = object.instanceMatrix; if (name === "instanceColor" && object.instanceColor) geometryAttribute = object.instanceColor; } if (geometryAttribute !== void 0) { const normalized = geometryAttribute.normalized; const size = geometryAttribute.itemSize; const attribute = attributes.get(geometryAttribute); if (attribute === void 0) continue; const buffer = attribute.buffer; const type = attribute.type; const bytesPerElement = attribute.bytesPerElement; const integer = type === gl.INT || type === gl.UNSIGNED_INT || geometryAttribute.gpuType === IntType; if (geometryAttribute.isInterleavedBufferAttribute) { const data = geometryAttribute.data; const stride = data.stride; const offset = geometryAttribute.offset; if (data.isInstancedInterleavedBuffer) { for (let i = 0; i < programAttribute.locationSize; i++) { enableAttributeAndDivisor(programAttribute.location + i, data.meshPerAttribute); } if (object.isInstancedMesh !== true && geometry._maxInstanceCount === void 0) { geometry._maxInstanceCount = data.meshPerAttribute * data.count; } } else { for (let i = 0; i < programAttribute.locationSize; i++) { enableAttribute(programAttribute.location + i); } } gl.bindBuffer(gl.ARRAY_BUFFER, buffer); for (let i = 0; i < programAttribute.locationSize; i++) { vertexAttribPointer( programAttribute.location + i, size / programAttribute.locationSize, type, normalized, stride * bytesPerElement, (offset + size / programAttribute.locationSize * i) * bytesPerElement, integer ); } } else { if (geometryAttribute.isInstancedBufferAttribute) { for (let i = 0; i < programAttribute.locationSize; i++) { enableAttributeAndDivisor(programAttribute.location + i, geometryAttribute.meshPerAttribute); } if (object.isInstancedMesh !== true && geometry._maxInstanceCount === void 0) { geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; } } else { for (let i = 0; i < programAttribute.locationSize; i++) { enableAttribute(programAttribute.location + i); } } gl.bindBuffer(gl.ARRAY_BUFFER, buffer); for (let i = 0; i < programAttribute.locationSize; i++) { vertexAttribPointer( programAttribute.location + i, size / programAttribute.locationSize, type, normalized, size * bytesPerElement, size / programAttribute.locationSize * i * bytesPerElement, integer ); } } } else if (materialDefaultAttributeValues !== void 0) { const value = materialDefaultAttributeValues[name]; if (value !== void 0) { switch (value.length) { case 2: gl.vertexAttrib2fv(programAttribute.location, value); break; case 3: gl.vertexAttrib3fv(programAttribute.location, value); break; case 4: gl.vertexAttrib4fv(programAttribute.location, value); break; default: gl.vertexAttrib1fv(programAttribute.location, value); } } } } } disableUnusedAttributes(); } __name(setupVertexAttributes, "setupVertexAttributes"); function dispose() { reset(); for (const geometryId in bindingStates) { const programMap = bindingStates[geometryId]; for (const programId in programMap) { const stateMap = programMap[programId]; for (const wireframe in stateMap) { deleteVertexArrayObject(stateMap[wireframe].object); delete stateMap[wireframe]; } delete programMap[programId]; } delete bindingStates[geometryId]; } } __name(dispose, "dispose"); function releaseStatesOfGeometry(geometry) { if (bindingStates[geometry.id] === void 0) return; const programMap = bindingStates[geometry.id]; for (const programId in programMap) { const stateMap = programMap[programId]; for (const wireframe in stateMap) { deleteVertexArrayObject(stateMap[wireframe].object); delete stateMap[wireframe]; } delete programMap[programId]; } delete bindingStates[geometry.id]; } __name(releaseStatesOfGeometry, "releaseStatesOfGeometry"); function releaseStatesOfProgram(program) { for (const geometryId in bindingStates) { const programMap = bindingStates[geometryId]; if (programMap[program.id] === void 0) continue; const stateMap = programMap[program.id]; for (const wireframe in stateMap) { deleteVertexArrayObject(stateMap[wireframe].object); delete stateMap[wireframe]; } delete programMap[program.id]; } } __name(releaseStatesOfProgram, "releaseStatesOfProgram"); function reset() { resetDefaultState(); forceUpdate = true; if (currentState === defaultState) return; currentState = defaultState; bindVertexArrayObject(currentState.object); } __name(reset, "reset"); function resetDefaultState() { defaultState.geometry = null; defaultState.program = null; defaultState.wireframe = false; } __name(resetDefaultState, "resetDefaultState"); return { setup, reset, resetDefaultState, dispose, releaseStatesOfGeometry, releaseStatesOfProgram, initAttributes, enableAttribute, disableUnusedAttributes }; } __name(WebGLBindingStates, "WebGLBindingStates"); function WebGLBufferRenderer(gl, extensions, info) { let mode; function setMode(value) { mode = value; } __name(setMode, "setMode"); function render(start, count) { gl.drawArrays(mode, start, count); info.update(count, mode, 1); } __name(render, "render"); function renderInstances(start, count, primcount) { if (primcount === 0) return; gl.drawArraysInstanced(mode, start, count, primcount); info.update(count, mode, primcount); } __name(renderInstances, "renderInstances"); function renderMultiDraw(starts, counts, drawCount) { if (drawCount === 0) return; const extension = extensions.get("WEBGL_multi_draw"); extension.multiDrawArraysWEBGL(mode, starts, 0, counts, 0, drawCount); let elementCount = 0; for (let i = 0; i < drawCount; i++) { elementCount += counts[i]; } info.update(elementCount, mode, 1); } __name(renderMultiDraw, "renderMultiDraw"); function renderMultiDrawInstances(starts, counts, drawCount, primcount) { if (drawCount === 0) return; const extension = extensions.get("WEBGL_multi_draw"); if (extension === null) { for (let i = 0; i < starts.length; i++) { renderInstances(starts[i], counts[i], primcount[i]); } } else { extension.multiDrawArraysInstancedWEBGL(mode, starts, 0, counts, 0, primcount, 0, drawCount); let elementCount = 0; for (let i = 0; i < drawCount; i++) { elementCount += counts[i] * primcount[i]; } info.update(elementCount, mode, 1); } } __name(renderMultiDrawInstances, "renderMultiDrawInstances"); this.setMode = setMode; this.render = render; this.renderInstances = renderInstances; this.renderMultiDraw = renderMultiDraw; this.renderMultiDrawInstances = renderMultiDrawInstances; } __name(WebGLBufferRenderer, "WebGLBufferRenderer"); function WebGLCapabilities(gl, extensions, parameters, utils) { let maxAnisotropy; function getMaxAnisotropy() { if (maxAnisotropy !== void 0) return maxAnisotropy; if (extensions.has("EXT_texture_filter_anisotropic") === true) { const extension = extensions.get("EXT_texture_filter_anisotropic"); maxAnisotropy = gl.getParameter(extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT); } else { maxAnisotropy = 0; } return maxAnisotropy; } __name(getMaxAnisotropy, "getMaxAnisotropy"); function textureFormatReadable(textureFormat) { if (textureFormat !== RGBAFormat && utils.convert(textureFormat) !== gl.getParameter(gl.IMPLEMENTATION_COLOR_READ_FORMAT)) { return false; } return true; } __name(textureFormatReadable, "textureFormatReadable"); function textureTypeReadable(textureType) { const halfFloatSupportedByExt = textureType === HalfFloatType && (extensions.has("EXT_color_buffer_half_float") || extensions.has("EXT_color_buffer_float")); if (textureType !== UnsignedByteType && utils.convert(textureType) !== gl.getParameter(gl.IMPLEMENTATION_COLOR_READ_TYPE) && // Edge and Chrome Mac < 52 (#9513) textureType !== FloatType && !halfFloatSupportedByExt) { return false; } return true; } __name(textureTypeReadable, "textureTypeReadable"); function getMaxPrecision(precision2) { if (precision2 === "highp") { if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.HIGH_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.HIGH_FLOAT).precision > 0) { return "highp"; } precision2 = "mediump"; } if (precision2 === "mediump") { if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.MEDIUM_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT).precision > 0) { return "mediump"; } } return "lowp"; } __name(getMaxPrecision, "getMaxPrecision"); let precision = parameters.precision !== void 0 ? parameters.precision : "highp"; const maxPrecision = getMaxPrecision(precision); if (maxPrecision !== precision) { console.warn("THREE.WebGLRenderer:", precision, "not supported, using", maxPrecision, "instead."); precision = maxPrecision; } const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true; const reverseDepthBuffer = parameters.reverseDepthBuffer === true && extensions.has("EXT_clip_control"); const maxTextures = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS); const maxVertexTextures = gl.getParameter(gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS); const maxTextureSize = gl.getParameter(gl.MAX_TEXTURE_SIZE); const maxCubemapSize = gl.getParameter(gl.MAX_CUBE_MAP_TEXTURE_SIZE); const maxAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS); const maxVertexUniforms = gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS); const maxVaryings = gl.getParameter(gl.MAX_VARYING_VECTORS); const maxFragmentUniforms = gl.getParameter(gl.MAX_FRAGMENT_UNIFORM_VECTORS); const vertexTextures = maxVertexTextures > 0; const maxSamples = gl.getParameter(gl.MAX_SAMPLES); return { isWebGL2: true, // keeping this for backwards compatibility getMaxAnisotropy, getMaxPrecision, textureFormatReadable, textureTypeReadable, precision, logarithmicDepthBuffer, reverseDepthBuffer, maxTextures, maxVertexTextures, maxTextureSize, maxCubemapSize, maxAttributes, maxVertexUniforms, maxVaryings, maxFragmentUniforms, vertexTextures, maxSamples }; } __name(WebGLCapabilities, "WebGLCapabilities"); function WebGLClipping(properties) { const scope = this; let globalState = null, numGlobalPlanes = 0, localClippingEnabled = false, renderingShadows = false; const plane = new Plane(), viewNormalMatrix = new Matrix3(), uniform = { value: null, needsUpdate: false }; this.uniform = uniform; this.numPlanes = 0; this.numIntersection = 0; this.init = function(planes, enableLocalClipping) { const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to // run another frame in order to reset the state: numGlobalPlanes !== 0 || localClippingEnabled; localClippingEnabled = enableLocalClipping; numGlobalPlanes = planes.length; return enabled; }; this.beginShadows = function() { renderingShadows = true; projectPlanes(null); }; this.endShadows = function() { renderingShadows = false; }; this.setGlobalState = function(planes, camera) { globalState = projectPlanes(planes, camera, 0); }; this.setState = function(material, camera, useCache) { const planes = material.clippingPlanes, clipIntersection = material.clipIntersection, clipShadows = material.clipShadows; const materialProperties = properties.get(material); if (!localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && !clipShadows) { if (renderingShadows) { projectPlanes(null); } else { resetGlobalState(); } } else { const nGlobal = renderingShadows ? 0 : numGlobalPlanes, lGlobal = nGlobal * 4; let dstArray = materialProperties.clippingState || null; uniform.value = dstArray; dstArray = projectPlanes(planes, camera, lGlobal, useCache); for (let i = 0; i !== lGlobal; ++i) { dstArray[i] = globalState[i]; } materialProperties.clippingState = dstArray; this.numIntersection = clipIntersection ? this.numPlanes : 0; this.numPlanes += nGlobal; } }; function resetGlobalState() { if (uniform.value !== globalState) { uniform.value = globalState; uniform.needsUpdate = numGlobalPlanes > 0; } scope.numPlanes = numGlobalPlanes; scope.numIntersection = 0; } __name(resetGlobalState, "resetGlobalState"); function projectPlanes(planes, camera, dstOffset, skipTransform) { const nPlanes = planes !== null ? planes.length : 0; let dstArray = null; if (nPlanes !== 0) { dstArray = uniform.value; if (skipTransform !== true || dstArray === null) { const flatSize = dstOffset + nPlanes * 4, viewMatrix = camera.matrixWorldInverse; viewNormalMatrix.getNormalMatrix(viewMatrix); if (dstArray === null || dstArray.length < flatSize) { dstArray = new Float32Array(flatSize); } for (let i = 0, i4 = dstOffset; i !== nPlanes; ++i, i4 += 4) { plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix); plane.normal.toArray(dstArray, i4); dstArray[i4 + 3] = plane.constant; } } uniform.value = dstArray; uniform.needsUpdate = true; } scope.numPlanes = nPlanes; scope.numIntersection = 0; return dstArray; } __name(projectPlanes, "projectPlanes"); } __name(WebGLClipping, "WebGLClipping"); function WebGLCubeMaps(renderer) { let cubemaps = /* @__PURE__ */ new WeakMap(); function mapTextureMapping(texture, mapping) { if (mapping === EquirectangularReflectionMapping) { texture.mapping = CubeReflectionMapping; } else if (mapping === EquirectangularRefractionMapping) { texture.mapping = CubeRefractionMapping; } return texture; } __name(mapTextureMapping, "mapTextureMapping"); function get(texture) { if (texture && texture.isTexture) { const mapping = texture.mapping; if (mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping) { if (cubemaps.has(texture)) { const cubemap = cubemaps.get(texture).texture; return mapTextureMapping(cubemap, texture.mapping); } else { const image = texture.image; if (image && image.height > 0) { const renderTarget = new WebGLCubeRenderTarget(image.height); renderTarget.fromEquirectangularTexture(renderer, texture); cubemaps.set(texture, renderTarget); texture.addEventListener("dispose", onTextureDispose); return mapTextureMapping(renderTarget.texture, texture.mapping); } else { return null; } } } } return texture; } __name(get, "get"); function onTextureDispose(event) { const texture = event.target; texture.removeEventListener("dispose", onTextureDispose); const cubemap = cubemaps.get(texture); if (cubemap !== void 0) { cubemaps.delete(texture); cubemap.dispose(); } } __name(onTextureDispose, "onTextureDispose"); function dispose() { cubemaps = /* @__PURE__ */ new WeakMap(); } __name(dispose, "dispose"); return { get, dispose }; } __name(WebGLCubeMaps, "WebGLCubeMaps"); class OrthographicCamera extends Camera { static { __name(this, "OrthographicCamera"); } constructor(left = -1, right = 1, top = 1, bottom = -1, near = 0.1, far = 2e3) { super(); this.isOrthographicCamera = true; this.type = "OrthographicCamera"; this.zoom = 1; this.view = null; this.left = left; this.right = right; this.top = top; this.bottom = bottom; this.near = near; this.far = far; this.updateProjectionMatrix(); } copy(source, recursive) { super.copy(source, recursive); this.left = source.left; this.right = source.right; this.top = source.top; this.bottom = source.bottom; this.near = source.near; this.far = source.far; this.zoom = source.zoom; this.view = source.view === null ? null : Object.assign({}, source.view); return this; } setViewOffset(fullWidth, fullHeight, x, y, width, height) { if (this.view === null) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); } clearViewOffset() { if (this.view !== null) { this.view.enabled = false; } this.updateProjectionMatrix(); } updateProjectionMatrix() { const dx = (this.right - this.left) / (2 * this.zoom); const dy = (this.top - this.bottom) / (2 * this.zoom); const cx = (this.right + this.left) / 2; const cy = (this.top + this.bottom) / 2; let left = cx - dx; let right = cx + dx; let top = cy + dy; let bottom = cy - dy; if (this.view !== null && this.view.enabled) { const scaleW = (this.right - this.left) / this.view.fullWidth / this.zoom; const scaleH = (this.top - this.bottom) / this.view.fullHeight / this.zoom; left += scaleW * this.view.offsetX; right = left + scaleW * this.view.width; top -= scaleH * this.view.offsetY; bottom = top - scaleH * this.view.height; } this.projectionMatrix.makeOrthographic(left, right, top, bottom, this.near, this.far, this.coordinateSystem); this.projectionMatrixInverse.copy(this.projectionMatrix).invert(); } toJSON(meta) { const data = super.toJSON(meta); data.object.zoom = this.zoom; data.object.left = this.left; data.object.right = this.right; data.object.top = this.top; data.object.bottom = this.bottom; data.object.near = this.near; data.object.far = this.far; if (this.view !== null) data.object.view = Object.assign({}, this.view); return data; } } const LOD_MIN = 4; const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582]; const MAX_SAMPLES = 20; const _flatCamera = /* @__PURE__ */ new OrthographicCamera(); const _clearColor = /* @__PURE__ */ new Color(); let _oldTarget = null; let _oldActiveCubeFace = 0; let _oldActiveMipmapLevel = 0; let _oldXrEnabled = false; const PHI = (1 + Math.sqrt(5)) / 2; const INV_PHI = 1 / PHI; const _axisDirections = [ /* @__PURE__ */ new Vector3(-PHI, INV_PHI, 0), /* @__PURE__ */ new Vector3(PHI, INV_PHI, 0), /* @__PURE__ */ new Vector3(-INV_PHI, 0, PHI), /* @__PURE__ */ new Vector3(INV_PHI, 0, PHI), /* @__PURE__ */ new Vector3(0, PHI, -INV_PHI), /* @__PURE__ */ new Vector3(0, PHI, INV_PHI), /* @__PURE__ */ new Vector3(-1, 1, -1), /* @__PURE__ */ new Vector3(1, 1, -1), /* @__PURE__ */ new Vector3(-1, 1, 1), /* @__PURE__ */ new Vector3(1, 1, 1) ]; class PMREMGenerator { static { __name(this, "PMREMGenerator"); } constructor(renderer) { this._renderer = renderer; this._pingPongRenderTarget = null; this._lodMax = 0; this._cubeSize = 0; this._lodPlanes = []; this._sizeLods = []; this._sigmas = []; this._blurMaterial = null; this._cubemapMaterial = null; this._equirectMaterial = null; this._compileMaterial(this._blurMaterial); } /** * Generates a PMREM from a supplied Scene, which can be faster than using an * image if networking bandwidth is low. Optional sigma specifies a blur radius * in radians to be applied to the scene before PMREM generation. Optional near * and far planes ensure the scene is rendered in its entirety (the cubeCamera * is placed at the origin). */ fromScene(scene, sigma = 0, near = 0.1, far = 100) { _oldTarget = this._renderer.getRenderTarget(); _oldActiveCubeFace = this._renderer.getActiveCubeFace(); _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); _oldXrEnabled = this._renderer.xr.enabled; this._renderer.xr.enabled = false; this._setSize(256); const cubeUVRenderTarget = this._allocateTargets(); cubeUVRenderTarget.depthBuffer = true; this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget); if (sigma > 0) { this._blur(cubeUVRenderTarget, 0, 0, sigma); } this._applyPMREM(cubeUVRenderTarget); this._cleanup(cubeUVRenderTarget); return cubeUVRenderTarget; } /** * Generates a PMREM from an equirectangular texture, which can be either LDR * or HDR. The ideal input image size is 1k (1024 x 512), * as this matches best with the 256 x 256 cubemap output. * The smallest supported equirectangular image size is 64 x 32. */ fromEquirectangular(equirectangular, renderTarget = null) { return this._fromTexture(equirectangular, renderTarget); } /** * Generates a PMREM from an cubemap texture, which can be either LDR * or HDR. The ideal input cube size is 256 x 256, * as this matches best with the 256 x 256 cubemap output. * The smallest supported cube size is 16 x 16. */ fromCubemap(cubemap, renderTarget = null) { return this._fromTexture(cubemap, renderTarget); } /** * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileCubemapShader() { if (this._cubemapMaterial === null) { this._cubemapMaterial = _getCubemapMaterial(); this._compileMaterial(this._cubemapMaterial); } } /** * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileEquirectangularShader() { if (this._equirectMaterial === null) { this._equirectMaterial = _getEquirectMaterial(); this._compileMaterial(this._equirectMaterial); } } /** * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on * one of them will cause any others to also become unusable. */ dispose() { this._dispose(); if (this._cubemapMaterial !== null) this._cubemapMaterial.dispose(); if (this._equirectMaterial !== null) this._equirectMaterial.dispose(); } // private interface _setSize(cubeSize) { this._lodMax = Math.floor(Math.log2(cubeSize)); this._cubeSize = Math.pow(2, this._lodMax); } _dispose() { if (this._blurMaterial !== null) this._blurMaterial.dispose(); if (this._pingPongRenderTarget !== null) this._pingPongRenderTarget.dispose(); for (let i = 0; i < this._lodPlanes.length; i++) { this._lodPlanes[i].dispose(); } } _cleanup(outputTarget) { this._renderer.setRenderTarget(_oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel); this._renderer.xr.enabled = _oldXrEnabled; outputTarget.scissorTest = false; _setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height); } _fromTexture(texture, renderTarget) { if (texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping) { this._setSize(texture.image.length === 0 ? 16 : texture.image[0].width || texture.image[0].image.width); } else { this._setSize(texture.image.width / 4); } _oldTarget = this._renderer.getRenderTarget(); _oldActiveCubeFace = this._renderer.getActiveCubeFace(); _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); _oldXrEnabled = this._renderer.xr.enabled; this._renderer.xr.enabled = false; const cubeUVRenderTarget = renderTarget || this._allocateTargets(); this._textureToCubeUV(texture, cubeUVRenderTarget); this._applyPMREM(cubeUVRenderTarget); this._cleanup(cubeUVRenderTarget); return cubeUVRenderTarget; } _allocateTargets() { const width = 3 * Math.max(this._cubeSize, 16 * 7); const height = 4 * this._cubeSize; const params = { magFilter: LinearFilter, minFilter: LinearFilter, generateMipmaps: false, type: HalfFloatType, format: RGBAFormat, colorSpace: LinearSRGBColorSpace, depthBuffer: false }; const cubeUVRenderTarget = _createRenderTarget(width, height, params); if (this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height) { if (this._pingPongRenderTarget !== null) { this._dispose(); } this._pingPongRenderTarget = _createRenderTarget(width, height, params); const { _lodMax } = this; ({ sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas } = _createPlanes(_lodMax)); this._blurMaterial = _getBlurShader(_lodMax, width, height); } return cubeUVRenderTarget; } _compileMaterial(material) { const tmpMesh = new Mesh(this._lodPlanes[0], material); this._renderer.compile(tmpMesh, _flatCamera); } _sceneToCubeUV(scene, near, far, cubeUVRenderTarget) { const fov2 = 90; const aspect2 = 1; const cubeCamera = new PerspectiveCamera(fov2, aspect2, near, far); const upSign = [1, -1, 1, 1, 1, 1]; const forwardSign = [1, 1, 1, -1, -1, -1]; const renderer = this._renderer; const originalAutoClear = renderer.autoClear; const toneMapping = renderer.toneMapping; renderer.getClearColor(_clearColor); renderer.toneMapping = NoToneMapping; renderer.autoClear = false; const backgroundMaterial = new MeshBasicMaterial({ name: "PMREM.Background", side: BackSide, depthWrite: false, depthTest: false }); const backgroundBox = new Mesh(new BoxGeometry(), backgroundMaterial); let useSolidColor = false; const background = scene.background; if (background) { if (background.isColor) { backgroundMaterial.color.copy(background); scene.background = null; useSolidColor = true; } } else { backgroundMaterial.color.copy(_clearColor); useSolidColor = true; } for (let i = 0; i < 6; i++) { const col = i % 3; if (col === 0) { cubeCamera.up.set(0, upSign[i], 0); cubeCamera.lookAt(forwardSign[i], 0, 0); } else if (col === 1) { cubeCamera.up.set(0, 0, upSign[i]); cubeCamera.lookAt(0, forwardSign[i], 0); } else { cubeCamera.up.set(0, upSign[i], 0); cubeCamera.lookAt(0, 0, forwardSign[i]); } const size = this._cubeSize; _setViewport(cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size); renderer.setRenderTarget(cubeUVRenderTarget); if (useSolidColor) { renderer.render(backgroundBox, cubeCamera); } renderer.render(scene, cubeCamera); } backgroundBox.geometry.dispose(); backgroundBox.material.dispose(); renderer.toneMapping = toneMapping; renderer.autoClear = originalAutoClear; scene.background = background; } _textureToCubeUV(texture, cubeUVRenderTarget) { const renderer = this._renderer; const isCubeTexture = texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping; if (isCubeTexture) { if (this._cubemapMaterial === null) { this._cubemapMaterial = _getCubemapMaterial(); } this._cubemapMaterial.uniforms.flipEnvMap.value = texture.isRenderTargetTexture === false ? -1 : 1; } else { if (this._equirectMaterial === null) { this._equirectMaterial = _getEquirectMaterial(); } } const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial; const mesh = new Mesh(this._lodPlanes[0], material); const uniforms = material.uniforms; uniforms["envMap"].value = texture; const size = this._cubeSize; _setViewport(cubeUVRenderTarget, 0, 0, 3 * size, 2 * size); renderer.setRenderTarget(cubeUVRenderTarget); renderer.render(mesh, _flatCamera); } _applyPMREM(cubeUVRenderTarget) { const renderer = this._renderer; const autoClear = renderer.autoClear; renderer.autoClear = false; const n = this._lodPlanes.length; for (let i = 1; i < n; i++) { const sigma = Math.sqrt(this._sigmas[i] * this._sigmas[i] - this._sigmas[i - 1] * this._sigmas[i - 1]); const poleAxis = _axisDirections[(n - i - 1) % _axisDirections.length]; this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis); } renderer.autoClear = autoClear; } /** * This is a two-pass Gaussian blur for a cubemap. Normally this is done * vertically and horizontally, but this breaks down on a cube. Here we apply * the blur latitudinally (around the poles), and then longitudinally (towards * the poles) to approximate the orthogonally-separable blur. It is least * accurate at the poles, but still does a decent job. */ _blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis) { const pingPongRenderTarget = this._pingPongRenderTarget; this._halfBlur( cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, "latitudinal", poleAxis ); this._halfBlur( pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, "longitudinal", poleAxis ); } _halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis) { const renderer = this._renderer; const blurMaterial = this._blurMaterial; if (direction !== "latitudinal" && direction !== "longitudinal") { console.error( "blur direction must be either latitudinal or longitudinal!" ); } const STANDARD_DEVIATIONS = 3; const blurMesh = new Mesh(this._lodPlanes[lodOut], blurMaterial); const blurUniforms = blurMaterial.uniforms; const pixels = this._sizeLods[lodIn] - 1; const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1); const sigmaPixels = sigmaRadians / radiansPerPixel; const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES; if (samples > MAX_SAMPLES) { console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`); } const weights = []; let sum = 0; for (let i = 0; i < MAX_SAMPLES; ++i) { const x2 = i / sigmaPixels; const weight = Math.exp(-x2 * x2 / 2); weights.push(weight); if (i === 0) { sum += weight; } else if (i < samples) { sum += 2 * weight; } } for (let i = 0; i < weights.length; i++) { weights[i] = weights[i] / sum; } blurUniforms["envMap"].value = targetIn.texture; blurUniforms["samples"].value = samples; blurUniforms["weights"].value = weights; blurUniforms["latitudinal"].value = direction === "latitudinal"; if (poleAxis) { blurUniforms["poleAxis"].value = poleAxis; } const { _lodMax } = this; blurUniforms["dTheta"].value = radiansPerPixel; blurUniforms["mipInt"].value = _lodMax - lodIn; const outputSize = this._sizeLods[lodOut]; const x = 3 * outputSize * (lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0); const y = 4 * (this._cubeSize - outputSize); _setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize); renderer.setRenderTarget(targetOut); renderer.render(blurMesh, _flatCamera); } } function _createPlanes(lodMax) { const lodPlanes = []; const sizeLods = []; const sigmas = []; let lod = lodMax; const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; for (let i = 0; i < totalLods; i++) { const sizeLod = Math.pow(2, lod); sizeLods.push(sizeLod); let sigma = 1 / sizeLod; if (i > lodMax - LOD_MIN) { sigma = EXTRA_LOD_SIGMA[i - lodMax + LOD_MIN - 1]; } else if (i === 0) { sigma = 0; } sigmas.push(sigma); const texelSize = 1 / (sizeLod - 2); const min = -texelSize; const max2 = 1 + texelSize; const uv1 = [min, min, max2, min, max2, max2, min, min, max2, max2, min, max2]; const cubeFaces = 6; const vertices = 6; const positionSize = 3; const uvSize = 2; const faceIndexSize = 1; const position = new Float32Array(positionSize * vertices * cubeFaces); const uv = new Float32Array(uvSize * vertices * cubeFaces); const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces); for (let face = 0; face < cubeFaces; face++) { const x = face % 3 * 2 / 3 - 1; const y = face > 2 ? 0 : -1; const coordinates = [ x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0 ]; position.set(coordinates, positionSize * vertices * face); uv.set(uv1, uvSize * vertices * face); const fill2 = [face, face, face, face, face, face]; faceIndex.set(fill2, faceIndexSize * vertices * face); } const planes = new BufferGeometry(); planes.setAttribute("position", new BufferAttribute(position, positionSize)); planes.setAttribute("uv", new BufferAttribute(uv, uvSize)); planes.setAttribute("faceIndex", new BufferAttribute(faceIndex, faceIndexSize)); lodPlanes.push(planes); if (lod > LOD_MIN) { lod--; } } return { lodPlanes, sizeLods, sigmas }; } __name(_createPlanes, "_createPlanes"); function _createRenderTarget(width, height, params) { const cubeUVRenderTarget = new WebGLRenderTarget(width, height, params); cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; cubeUVRenderTarget.texture.name = "PMREM.cubeUv"; cubeUVRenderTarget.scissorTest = true; return cubeUVRenderTarget; } __name(_createRenderTarget, "_createRenderTarget"); function _setViewport(target, x, y, width, height) { target.viewport.set(x, y, width, height); target.scissor.set(x, y, width, height); } __name(_setViewport, "_setViewport"); function _getBlurShader(lodMax, width, height) { const weights = new Float32Array(MAX_SAMPLES); const poleAxis = new Vector3(0, 1, 0); const shaderMaterial = new ShaderMaterial({ name: "SphericalGaussianBlur", defines: { "n": MAX_SAMPLES, "CUBEUV_TEXEL_WIDTH": 1 / width, "CUBEUV_TEXEL_HEIGHT": 1 / height, "CUBEUV_MAX_MIP": `${lodMax}.0` }, uniforms: { "envMap": { value: null }, "samples": { value: 1 }, "weights": { value: weights }, "latitudinal": { value: false }, "dTheta": { value: 0 }, "mipInt": { value: 0 }, "poleAxis": { value: poleAxis } }, vertexShader: _getCommonVertexShader(), fragmentShader: ( /* glsl */ ` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; uniform int samples; uniform float weights[ n ]; uniform bool latitudinal; uniform float dTheta; uniform float mipInt; uniform vec3 poleAxis; #define ENVMAP_TYPE_CUBE_UV #include vec3 getSample( float theta, vec3 axis ) { float cosTheta = cos( theta ); // Rodrigues' axis-angle rotation vec3 sampleDirection = vOutputDirection * cosTheta + cross( axis, vOutputDirection ) * sin( theta ) + axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta ); return bilinearCubeUV( envMap, sampleDirection, mipInt ); } void main() { vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection ); if ( all( equal( axis, vec3( 0.0 ) ) ) ) { axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x ); } axis = normalize( axis ); gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis ); for ( int i = 1; i < n; i++ ) { if ( i >= samples ) { break; } float theta = dTheta * float( i ); gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis ); gl_FragColor.rgb += weights[ i ] * getSample( theta, axis ); } } ` ), blending: NoBlending, depthTest: false, depthWrite: false }); return shaderMaterial; } __name(_getBlurShader, "_getBlurShader"); function _getEquirectMaterial() { return new ShaderMaterial({ name: "EquirectangularToCubeUV", uniforms: { "envMap": { value: null } }, vertexShader: _getCommonVertexShader(), fragmentShader: ( /* glsl */ ` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; #include void main() { vec3 outputDirection = normalize( vOutputDirection ); vec2 uv = equirectUv( outputDirection ); gl_FragColor = vec4( texture2D ( envMap, uv ).rgb, 1.0 ); } ` ), blending: NoBlending, depthTest: false, depthWrite: false }); } __name(_getEquirectMaterial, "_getEquirectMaterial"); function _getCubemapMaterial() { return new ShaderMaterial({ name: "CubemapToCubeUV", uniforms: { "envMap": { value: null }, "flipEnvMap": { value: -1 } }, vertexShader: _getCommonVertexShader(), fragmentShader: ( /* glsl */ ` precision mediump float; precision mediump int; uniform float flipEnvMap; varying vec3 vOutputDirection; uniform samplerCube envMap; void main() { gl_FragColor = textureCube( envMap, vec3( flipEnvMap * vOutputDirection.x, vOutputDirection.yz ) ); } ` ), blending: NoBlending, depthTest: false, depthWrite: false }); } __name(_getCubemapMaterial, "_getCubemapMaterial"); function _getCommonVertexShader() { return ( /* glsl */ ` precision mediump float; precision mediump int; attribute float faceIndex; varying vec3 vOutputDirection; // RH coordinate system; PMREM face-indexing convention vec3 getDirection( vec2 uv, float face ) { uv = 2.0 * uv - 1.0; vec3 direction = vec3( uv, 1.0 ); if ( face == 0.0 ) { direction = direction.zyx; // ( 1, v, u ) pos x } else if ( face == 1.0 ) { direction = direction.xzy; direction.xz *= -1.0; // ( -u, 1, -v ) pos y } else if ( face == 2.0 ) { direction.x *= -1.0; // ( -u, v, 1 ) pos z } else if ( face == 3.0 ) { direction = direction.zyx; direction.xz *= -1.0; // ( -1, v, -u ) neg x } else if ( face == 4.0 ) { direction = direction.xzy; direction.xy *= -1.0; // ( -u, -1, v ) neg y } else if ( face == 5.0 ) { direction.z *= -1.0; // ( u, v, -1 ) neg z } return direction; } void main() { vOutputDirection = getDirection( uv, faceIndex ); gl_Position = vec4( position, 1.0 ); } ` ); } __name(_getCommonVertexShader, "_getCommonVertexShader"); function WebGLCubeUVMaps(renderer) { let cubeUVmaps = /* @__PURE__ */ new WeakMap(); let pmremGenerator = null; function get(texture) { if (texture && texture.isTexture) { const mapping = texture.mapping; const isEquirectMap = mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping; const isCubeMap = mapping === CubeReflectionMapping || mapping === CubeRefractionMapping; if (isEquirectMap || isCubeMap) { let renderTarget = cubeUVmaps.get(texture); const currentPMREMVersion = renderTarget !== void 0 ? renderTarget.texture.pmremVersion : 0; if (texture.isRenderTargetTexture && texture.pmremVersion !== currentPMREMVersion) { if (pmremGenerator === null) pmremGenerator = new PMREMGenerator(renderer); renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular(texture, renderTarget) : pmremGenerator.fromCubemap(texture, renderTarget); renderTarget.texture.pmremVersion = texture.pmremVersion; cubeUVmaps.set(texture, renderTarget); return renderTarget.texture; } else { if (renderTarget !== void 0) { return renderTarget.texture; } else { const image = texture.image; if (isEquirectMap && image && image.height > 0 || isCubeMap && image && isCubeTextureComplete(image)) { if (pmremGenerator === null) pmremGenerator = new PMREMGenerator(renderer); renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular(texture) : pmremGenerator.fromCubemap(texture); renderTarget.texture.pmremVersion = texture.pmremVersion; cubeUVmaps.set(texture, renderTarget); texture.addEventListener("dispose", onTextureDispose); return renderTarget.texture; } else { return null; } } } } } return texture; } __name(get, "get"); function isCubeTextureComplete(image) { let count = 0; const length = 6; for (let i = 0; i < length; i++) { if (image[i] !== void 0) count++; } return count === length; } __name(isCubeTextureComplete, "isCubeTextureComplete"); function onTextureDispose(event) { const texture = event.target; texture.removeEventListener("dispose", onTextureDispose); const cubemapUV = cubeUVmaps.get(texture); if (cubemapUV !== void 0) { cubeUVmaps.delete(texture); cubemapUV.dispose(); } } __name(onTextureDispose, "onTextureDispose"); function dispose() { cubeUVmaps = /* @__PURE__ */ new WeakMap(); if (pmremGenerator !== null) { pmremGenerator.dispose(); pmremGenerator = null; } } __name(dispose, "dispose"); return { get, dispose }; } __name(WebGLCubeUVMaps, "WebGLCubeUVMaps"); function WebGLExtensions(gl) { const extensions = {}; function getExtension(name) { if (extensions[name] !== void 0) { return extensions[name]; } let extension; switch (name) { case "WEBGL_depth_texture": extension = gl.getExtension("WEBGL_depth_texture") || gl.getExtension("MOZ_WEBGL_depth_texture") || gl.getExtension("WEBKIT_WEBGL_depth_texture"); break; case "EXT_texture_filter_anisotropic": extension = gl.getExtension("EXT_texture_filter_anisotropic") || gl.getExtension("MOZ_EXT_texture_filter_anisotropic") || gl.getExtension("WEBKIT_EXT_texture_filter_anisotropic"); break; case "WEBGL_compressed_texture_s3tc": extension = gl.getExtension("WEBGL_compressed_texture_s3tc") || gl.getExtension("MOZ_WEBGL_compressed_texture_s3tc") || gl.getExtension("WEBKIT_WEBGL_compressed_texture_s3tc"); break; case "WEBGL_compressed_texture_pvrtc": extension = gl.getExtension("WEBGL_compressed_texture_pvrtc") || gl.getExtension("WEBKIT_WEBGL_compressed_texture_pvrtc"); break; default: extension = gl.getExtension(name); } extensions[name] = extension; return extension; } __name(getExtension, "getExtension"); return { has: /* @__PURE__ */ __name(function(name) { return getExtension(name) !== null; }, "has"), init: /* @__PURE__ */ __name(function() { getExtension("EXT_color_buffer_float"); getExtension("WEBGL_clip_cull_distance"); getExtension("OES_texture_float_linear"); getExtension("EXT_color_buffer_half_float"); getExtension("WEBGL_multisampled_render_to_texture"); getExtension("WEBGL_render_shared_exponent"); }, "init"), get: /* @__PURE__ */ __name(function(name) { const extension = getExtension(name); if (extension === null) { warnOnce("THREE.WebGLRenderer: " + name + " extension not supported."); } return extension; }, "get") }; } __name(WebGLExtensions, "WebGLExtensions"); function WebGLGeometries(gl, attributes, info, bindingStates) { const geometries = {}; const wireframeAttributes = /* @__PURE__ */ new WeakMap(); function onGeometryDispose(event) { const geometry = event.target; if (geometry.index !== null) { attributes.remove(geometry.index); } for (const name in geometry.attributes) { attributes.remove(geometry.attributes[name]); } for (const name in geometry.morphAttributes) { const array = geometry.morphAttributes[name]; for (let i = 0, l = array.length; i < l; i++) { attributes.remove(array[i]); } } geometry.removeEventListener("dispose", onGeometryDispose); delete geometries[geometry.id]; const attribute = wireframeAttributes.get(geometry); if (attribute) { attributes.remove(attribute); wireframeAttributes.delete(geometry); } bindingStates.releaseStatesOfGeometry(geometry); if (geometry.isInstancedBufferGeometry === true) { delete geometry._maxInstanceCount; } info.memory.geometries--; } __name(onGeometryDispose, "onGeometryDispose"); function get(object, geometry) { if (geometries[geometry.id] === true) return geometry; geometry.addEventListener("dispose", onGeometryDispose); geometries[geometry.id] = true; info.memory.geometries++; return geometry; } __name(get, "get"); function update(geometry) { const geometryAttributes = geometry.attributes; for (const name in geometryAttributes) { attributes.update(geometryAttributes[name], gl.ARRAY_BUFFER); } const morphAttributes = geometry.morphAttributes; for (const name in morphAttributes) { const array = morphAttributes[name]; for (let i = 0, l = array.length; i < l; i++) { attributes.update(array[i], gl.ARRAY_BUFFER); } } } __name(update, "update"); function updateWireframeAttribute(geometry) { const indices = []; const geometryIndex = geometry.index; const geometryPosition = geometry.attributes.position; let version = 0; if (geometryIndex !== null) { const array = geometryIndex.array; version = geometryIndex.version; for (let i = 0, l = array.length; i < l; i += 3) { const a = array[i + 0]; const b = array[i + 1]; const c = array[i + 2]; indices.push(a, b, b, c, c, a); } } else if (geometryPosition !== void 0) { const array = geometryPosition.array; version = geometryPosition.version; for (let i = 0, l = array.length / 3 - 1; i < l; i += 3) { const a = i + 0; const b = i + 1; const c = i + 2; indices.push(a, b, b, c, c, a); } } else { return; } const attribute = new (arrayNeedsUint32(indices) ? Uint32BufferAttribute : Uint16BufferAttribute)(indices, 1); attribute.version = version; const previousAttribute = wireframeAttributes.get(geometry); if (previousAttribute) attributes.remove(previousAttribute); wireframeAttributes.set(geometry, attribute); } __name(updateWireframeAttribute, "updateWireframeAttribute"); function getWireframeAttribute(geometry) { const currentAttribute = wireframeAttributes.get(geometry); if (currentAttribute) { const geometryIndex = geometry.index; if (geometryIndex !== null) { if (currentAttribute.version < geometryIndex.version) { updateWireframeAttribute(geometry); } } } else { updateWireframeAttribute(geometry); } return wireframeAttributes.get(geometry); } __name(getWireframeAttribute, "getWireframeAttribute"); return { get, update, getWireframeAttribute }; } __name(WebGLGeometries, "WebGLGeometries"); function WebGLIndexedBufferRenderer(gl, extensions, info) { let mode; function setMode(value) { mode = value; } __name(setMode, "setMode"); let type, bytesPerElement; function setIndex(value) { type = value.type; bytesPerElement = value.bytesPerElement; } __name(setIndex, "setIndex"); function render(start, count) { gl.drawElements(mode, count, type, start * bytesPerElement); info.update(count, mode, 1); } __name(render, "render"); function renderInstances(start, count, primcount) { if (primcount === 0) return; gl.drawElementsInstanced(mode, count, type, start * bytesPerElement, primcount); info.update(count, mode, primcount); } __name(renderInstances, "renderInstances"); function renderMultiDraw(starts, counts, drawCount) { if (drawCount === 0) return; const extension = extensions.get("WEBGL_multi_draw"); extension.multiDrawElementsWEBGL(mode, counts, 0, type, starts, 0, drawCount); let elementCount = 0; for (let i = 0; i < drawCount; i++) { elementCount += counts[i]; } info.update(elementCount, mode, 1); } __name(renderMultiDraw, "renderMultiDraw"); function renderMultiDrawInstances(starts, counts, drawCount, primcount) { if (drawCount === 0) return; const extension = extensions.get("WEBGL_multi_draw"); if (extension === null) { for (let i = 0; i < starts.length; i++) { renderInstances(starts[i] / bytesPerElement, counts[i], primcount[i]); } } else { extension.multiDrawElementsInstancedWEBGL(mode, counts, 0, type, starts, 0, primcount, 0, drawCount); let elementCount = 0; for (let i = 0; i < drawCount; i++) { elementCount += counts[i] * primcount[i]; } info.update(elementCount, mode, 1); } } __name(renderMultiDrawInstances, "renderMultiDrawInstances"); this.setMode = setMode; this.setIndex = setIndex; this.render = render; this.renderInstances = renderInstances; this.renderMultiDraw = renderMultiDraw; this.renderMultiDrawInstances = renderMultiDrawInstances; } __name(WebGLIndexedBufferRenderer, "WebGLIndexedBufferRenderer"); function WebGLInfo(gl) { const memory = { geometries: 0, textures: 0 }; const render = { frame: 0, calls: 0, triangles: 0, points: 0, lines: 0 }; function update(count, mode, instanceCount) { render.calls++; switch (mode) { case gl.TRIANGLES: render.triangles += instanceCount * (count / 3); break; case gl.LINES: render.lines += instanceCount * (count / 2); break; case gl.LINE_STRIP: render.lines += instanceCount * (count - 1); break; case gl.LINE_LOOP: render.lines += instanceCount * count; break; case gl.POINTS: render.points += instanceCount * count; break; default: console.error("THREE.WebGLInfo: Unknown draw mode:", mode); break; } } __name(update, "update"); function reset() { render.calls = 0; render.triangles = 0; render.points = 0; render.lines = 0; } __name(reset, "reset"); return { memory, render, programs: null, autoReset: true, reset, update }; } __name(WebGLInfo, "WebGLInfo"); function WebGLMorphtargets(gl, capabilities, textures) { const morphTextures = /* @__PURE__ */ new WeakMap(); const morph = new Vector4(); function update(object, geometry, program) { const objectInfluences = object.morphTargetInfluences; const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = morphAttribute !== void 0 ? morphAttribute.length : 0; let entry = morphTextures.get(geometry); if (entry === void 0 || entry.count !== morphTargetsCount) { let disposeTexture = function() { texture.dispose(); morphTextures.delete(geometry); geometry.removeEventListener("dispose", disposeTexture); }; __name(disposeTexture, "disposeTexture"); if (entry !== void 0) entry.texture.dispose(); const hasMorphPosition = geometry.morphAttributes.position !== void 0; const hasMorphNormals = geometry.morphAttributes.normal !== void 0; const hasMorphColors = geometry.morphAttributes.color !== void 0; const morphTargets = geometry.morphAttributes.position || []; const morphNormals = geometry.morphAttributes.normal || []; const morphColors = geometry.morphAttributes.color || []; let vertexDataCount = 0; if (hasMorphPosition === true) vertexDataCount = 1; if (hasMorphNormals === true) vertexDataCount = 2; if (hasMorphColors === true) vertexDataCount = 3; let width = geometry.attributes.position.count * vertexDataCount; let height = 1; if (width > capabilities.maxTextureSize) { height = Math.ceil(width / capabilities.maxTextureSize); width = capabilities.maxTextureSize; } const buffer = new Float32Array(width * height * 4 * morphTargetsCount); const texture = new DataArrayTexture(buffer, width, height, morphTargetsCount); texture.type = FloatType; texture.needsUpdate = true; const vertexDataStride = vertexDataCount * 4; for (let i = 0; i < morphTargetsCount; i++) { const morphTarget = morphTargets[i]; const morphNormal = morphNormals[i]; const morphColor = morphColors[i]; const offset = width * height * 4 * i; for (let j = 0; j < morphTarget.count; j++) { const stride = j * vertexDataStride; if (hasMorphPosition === true) { morph.fromBufferAttribute(morphTarget, j); buffer[offset + stride + 0] = morph.x; buffer[offset + stride + 1] = morph.y; buffer[offset + stride + 2] = morph.z; buffer[offset + stride + 3] = 0; } if (hasMorphNormals === true) { morph.fromBufferAttribute(morphNormal, j); buffer[offset + stride + 4] = morph.x; buffer[offset + stride + 5] = morph.y; buffer[offset + stride + 6] = morph.z; buffer[offset + stride + 7] = 0; } if (hasMorphColors === true) { morph.fromBufferAttribute(morphColor, j); buffer[offset + stride + 8] = morph.x; buffer[offset + stride + 9] = morph.y; buffer[offset + stride + 10] = morph.z; buffer[offset + stride + 11] = morphColor.itemSize === 4 ? morph.w : 1; } } } entry = { count: morphTargetsCount, texture, size: new Vector2(width, height) }; morphTextures.set(geometry, entry); geometry.addEventListener("dispose", disposeTexture); } if (object.isInstancedMesh === true && object.morphTexture !== null) { program.getUniforms().setValue(gl, "morphTexture", object.morphTexture, textures); } else { let morphInfluencesSum = 0; for (let i = 0; i < objectInfluences.length; i++) { morphInfluencesSum += objectInfluences[i]; } const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; program.getUniforms().setValue(gl, "morphTargetBaseInfluence", morphBaseInfluence); program.getUniforms().setValue(gl, "morphTargetInfluences", objectInfluences); } program.getUniforms().setValue(gl, "morphTargetsTexture", entry.texture, textures); program.getUniforms().setValue(gl, "morphTargetsTextureSize", entry.size); } __name(update, "update"); return { update }; } __name(WebGLMorphtargets, "WebGLMorphtargets"); function WebGLObjects(gl, geometries, attributes, info) { let updateMap = /* @__PURE__ */ new WeakMap(); function update(object) { const frame = info.render.frame; const geometry = object.geometry; const buffergeometry = geometries.get(object, geometry); if (updateMap.get(buffergeometry) !== frame) { geometries.update(buffergeometry); updateMap.set(buffergeometry, frame); } if (object.isInstancedMesh) { if (object.hasEventListener("dispose", onInstancedMeshDispose) === false) { object.addEventListener("dispose", onInstancedMeshDispose); } if (updateMap.get(object) !== frame) { attributes.update(object.instanceMatrix, gl.ARRAY_BUFFER); if (object.instanceColor !== null) { attributes.update(object.instanceColor, gl.ARRAY_BUFFER); } updateMap.set(object, frame); } } if (object.isSkinnedMesh) { const skeleton = object.skeleton; if (updateMap.get(skeleton) !== frame) { skeleton.update(); updateMap.set(skeleton, frame); } } return buffergeometry; } __name(update, "update"); function dispose() { updateMap = /* @__PURE__ */ new WeakMap(); } __name(dispose, "dispose"); function onInstancedMeshDispose(event) { const instancedMesh = event.target; instancedMesh.removeEventListener("dispose", onInstancedMeshDispose); attributes.remove(instancedMesh.instanceMatrix); if (instancedMesh.instanceColor !== null) attributes.remove(instancedMesh.instanceColor); } __name(onInstancedMeshDispose, "onInstancedMeshDispose"); return { update, dispose }; } __name(WebGLObjects, "WebGLObjects"); class DepthTexture extends Texture { static { __name(this, "DepthTexture"); } constructor(width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format = DepthFormat) { if (format !== DepthFormat && format !== DepthStencilFormat) { throw new Error("DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat"); } if (type === void 0 && format === DepthFormat) type = UnsignedIntType; if (type === void 0 && format === DepthStencilFormat) type = UnsignedInt248Type; super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy); this.isDepthTexture = true; this.image = { width, height }; this.magFilter = magFilter !== void 0 ? magFilter : NearestFilter; this.minFilter = minFilter !== void 0 ? minFilter : NearestFilter; this.flipY = false; this.generateMipmaps = false; this.compareFunction = null; } copy(source) { super.copy(source); this.compareFunction = source.compareFunction; return this; } toJSON(meta) { const data = super.toJSON(meta); if (this.compareFunction !== null) data.compareFunction = this.compareFunction; return data; } } const emptyTexture = /* @__PURE__ */ new Texture(); const emptyShadowTexture = /* @__PURE__ */ new DepthTexture(1, 1); const emptyArrayTexture = /* @__PURE__ */ new DataArrayTexture(); const empty3dTexture = /* @__PURE__ */ new Data3DTexture(); const emptyCubeTexture = /* @__PURE__ */ new CubeTexture(); const arrayCacheF32 = []; const arrayCacheI32 = []; const mat4array = new Float32Array(16); const mat3array = new Float32Array(9); const mat2array = new Float32Array(4); function flatten(array, nBlocks, blockSize) { const firstElem = array[0]; if (firstElem <= 0 || firstElem > 0) return array; const n = nBlocks * blockSize; let r = arrayCacheF32[n]; if (r === void 0) { r = new Float32Array(n); arrayCacheF32[n] = r; } if (nBlocks !== 0) { firstElem.toArray(r, 0); for (let i = 1, offset = 0; i !== nBlocks; ++i) { offset += blockSize; array[i].toArray(r, offset); } } return r; } __name(flatten, "flatten"); function arraysEqual(a, b) { if (a.length !== b.length) return false; for (let i = 0, l = a.length; i < l; i++) { if (a[i] !== b[i]) return false; } return true; } __name(arraysEqual, "arraysEqual"); function copyArray(a, b) { for (let i = 0, l = b.length; i < l; i++) { a[i] = b[i]; } } __name(copyArray, "copyArray"); function allocTexUnits(textures, n) { let r = arrayCacheI32[n]; if (r === void 0) { r = new Int32Array(n); arrayCacheI32[n] = r; } for (let i = 0; i !== n; ++i) { r[i] = textures.allocateTextureUnit(); } return r; } __name(allocTexUnits, "allocTexUnits"); function setValueV1f(gl, v) { const cache = this.cache; if (cache[0] === v) return; gl.uniform1f(this.addr, v); cache[0] = v; } __name(setValueV1f, "setValueV1f"); function setValueV2f(gl, v) { const cache = this.cache; if (v.x !== void 0) { if (cache[0] !== v.x || cache[1] !== v.y) { gl.uniform2f(this.addr, v.x, v.y); cache[0] = v.x; cache[1] = v.y; } } else { if (arraysEqual(cache, v)) return; gl.uniform2fv(this.addr, v); copyArray(cache, v); } } __name(setValueV2f, "setValueV2f"); function setValueV3f(gl, v) { const cache = this.cache; if (v.x !== void 0) { if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) { gl.uniform3f(this.addr, v.x, v.y, v.z); cache[0] = v.x; cache[1] = v.y; cache[2] = v.z; } } else if (v.r !== void 0) { if (cache[0] !== v.r || cache[1] !== v.g || cache[2] !== v.b) { gl.uniform3f(this.addr, v.r, v.g, v.b); cache[0] = v.r; cache[1] = v.g; cache[2] = v.b; } } else { if (arraysEqual(cache, v)) return; gl.uniform3fv(this.addr, v); copyArray(cache, v); } } __name(setValueV3f, "setValueV3f"); function setValueV4f(gl, v) { const cache = this.cache; if (v.x !== void 0) { if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) { gl.uniform4f(this.addr, v.x, v.y, v.z, v.w); cache[0] = v.x; cache[1] = v.y; cache[2] = v.z; cache[3] = v.w; } } else { if (arraysEqual(cache, v)) return; gl.uniform4fv(this.addr, v); copyArray(cache, v); } } __name(setValueV4f, "setValueV4f"); function setValueM2(gl, v) { const cache = this.cache; const elements = v.elements; if (elements === void 0) { if (arraysEqual(cache, v)) return; gl.uniformMatrix2fv(this.addr, false, v); copyArray(cache, v); } else { if (arraysEqual(cache, elements)) return; mat2array.set(elements); gl.uniformMatrix2fv(this.addr, false, mat2array); copyArray(cache, elements); } } __name(setValueM2, "setValueM2"); function setValueM3(gl, v) { const cache = this.cache; const elements = v.elements; if (elements === void 0) { if (arraysEqual(cache, v)) return; gl.uniformMatrix3fv(this.addr, false, v); copyArray(cache, v); } else { if (arraysEqual(cache, elements)) return; mat3array.set(elements); gl.uniformMatrix3fv(this.addr, false, mat3array); copyArray(cache, elements); } } __name(setValueM3, "setValueM3"); function setValueM4(gl, v) { const cache = this.cache; const elements = v.elements; if (elements === void 0) { if (arraysEqual(cache, v)) return; gl.uniformMatrix4fv(this.addr, false, v); copyArray(cache, v); } else { if (arraysEqual(cache, elements)) return; mat4array.set(elements); gl.uniformMatrix4fv(this.addr, false, mat4array); copyArray(cache, elements); } } __name(setValueM4, "setValueM4"); function setValueV1i(gl, v) { const cache = this.cache; if (cache[0] === v) return; gl.uniform1i(this.addr, v); cache[0] = v; } __name(setValueV1i, "setValueV1i"); function setValueV2i(gl, v) { const cache = this.cache; if (v.x !== void 0) { if (cache[0] !== v.x || cache[1] !== v.y) { gl.uniform2i(this.addr, v.x, v.y); cache[0] = v.x; cache[1] = v.y; } } else { if (arraysEqual(cache, v)) return; gl.uniform2iv(this.addr, v); copyArray(cache, v); } } __name(setValueV2i, "setValueV2i"); function setValueV3i(gl, v) { const cache = this.cache; if (v.x !== void 0) { if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) { gl.uniform3i(this.addr, v.x, v.y, v.z); cache[0] = v.x; cache[1] = v.y; cache[2] = v.z; } } else { if (arraysEqual(cache, v)) return; gl.uniform3iv(this.addr, v); copyArray(cache, v); } } __name(setValueV3i, "setValueV3i"); function setValueV4i(gl, v) { const cache = this.cache; if (v.x !== void 0) { if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) { gl.uniform4i(this.addr, v.x, v.y, v.z, v.w); cache[0] = v.x; cache[1] = v.y; cache[2] = v.z; cache[3] = v.w; } } else { if (arraysEqual(cache, v)) return; gl.uniform4iv(this.addr, v); copyArray(cache, v); } } __name(setValueV4i, "setValueV4i"); function setValueV1ui(gl, v) { const cache = this.cache; if (cache[0] === v) return; gl.uniform1ui(this.addr, v); cache[0] = v; } __name(setValueV1ui, "setValueV1ui"); function setValueV2ui(gl, v) { const cache = this.cache; if (v.x !== void 0) { if (cache[0] !== v.x || cache[1] !== v.y) { gl.uniform2ui(this.addr, v.x, v.y); cache[0] = v.x; cache[1] = v.y; } } else { if (arraysEqual(cache, v)) return; gl.uniform2uiv(this.addr, v); copyArray(cache, v); } } __name(setValueV2ui, "setValueV2ui"); function setValueV3ui(gl, v) { const cache = this.cache; if (v.x !== void 0) { if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) { gl.uniform3ui(this.addr, v.x, v.y, v.z); cache[0] = v.x; cache[1] = v.y; cache[2] = v.z; } } else { if (arraysEqual(cache, v)) return; gl.uniform3uiv(this.addr, v); copyArray(cache, v); } } __name(setValueV3ui, "setValueV3ui"); function setValueV4ui(gl, v) { const cache = this.cache; if (v.x !== void 0) { if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) { gl.uniform4ui(this.addr, v.x, v.y, v.z, v.w); cache[0] = v.x; cache[1] = v.y; cache[2] = v.z; cache[3] = v.w; } } else { if (arraysEqual(cache, v)) return; gl.uniform4uiv(this.addr, v); copyArray(cache, v); } } __name(setValueV4ui, "setValueV4ui"); function setValueT1(gl, v, textures) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if (cache[0] !== unit) { gl.uniform1i(this.addr, unit); cache[0] = unit; } let emptyTexture2D; if (this.type === gl.SAMPLER_2D_SHADOW) { emptyShadowTexture.compareFunction = LessEqualCompare; emptyTexture2D = emptyShadowTexture; } else { emptyTexture2D = emptyTexture; } textures.setTexture2D(v || emptyTexture2D, unit); } __name(setValueT1, "setValueT1"); function setValueT3D1(gl, v, textures) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if (cache[0] !== unit) { gl.uniform1i(this.addr, unit); cache[0] = unit; } textures.setTexture3D(v || empty3dTexture, unit); } __name(setValueT3D1, "setValueT3D1"); function setValueT6(gl, v, textures) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if (cache[0] !== unit) { gl.uniform1i(this.addr, unit); cache[0] = unit; } textures.setTextureCube(v || emptyCubeTexture, unit); } __name(setValueT6, "setValueT6"); function setValueT2DArray1(gl, v, textures) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if (cache[0] !== unit) { gl.uniform1i(this.addr, unit); cache[0] = unit; } textures.setTexture2DArray(v || emptyArrayTexture, unit); } __name(setValueT2DArray1, "setValueT2DArray1"); function getSingularSetter(type) { switch (type) { case 5126: return setValueV1f; case 35664: return setValueV2f; case 35665: return setValueV3f; case 35666: return setValueV4f; case 35674: return setValueM2; case 35675: return setValueM3; case 35676: return setValueM4; case 5124: case 35670: return setValueV1i; case 35667: case 35671: return setValueV2i; case 35668: case 35672: return setValueV3i; case 35669: case 35673: return setValueV4i; case 5125: return setValueV1ui; case 36294: return setValueV2ui; case 36295: return setValueV3ui; case 36296: return setValueV4ui; case 35678: case 36198: case 36298: case 36306: case 35682: return setValueT1; case 35679: case 36299: case 36307: return setValueT3D1; case 35680: case 36300: case 36308: case 36293: return setValueT6; case 36289: case 36303: case 36311: case 36292: return setValueT2DArray1; } } __name(getSingularSetter, "getSingularSetter"); function setValueV1fArray(gl, v) { gl.uniform1fv(this.addr, v); } __name(setValueV1fArray, "setValueV1fArray"); function setValueV2fArray(gl, v) { const data = flatten(v, this.size, 2); gl.uniform2fv(this.addr, data); } __name(setValueV2fArray, "setValueV2fArray"); function setValueV3fArray(gl, v) { const data = flatten(v, this.size, 3); gl.uniform3fv(this.addr, data); } __name(setValueV3fArray, "setValueV3fArray"); function setValueV4fArray(gl, v) { const data = flatten(v, this.size, 4); gl.uniform4fv(this.addr, data); } __name(setValueV4fArray, "setValueV4fArray"); function setValueM2Array(gl, v) { const data = flatten(v, this.size, 4); gl.uniformMatrix2fv(this.addr, false, data); } __name(setValueM2Array, "setValueM2Array"); function setValueM3Array(gl, v) { const data = flatten(v, this.size, 9); gl.uniformMatrix3fv(this.addr, false, data); } __name(setValueM3Array, "setValueM3Array"); function setValueM4Array(gl, v) { const data = flatten(v, this.size, 16); gl.uniformMatrix4fv(this.addr, false, data); } __name(setValueM4Array, "setValueM4Array"); function setValueV1iArray(gl, v) { gl.uniform1iv(this.addr, v); } __name(setValueV1iArray, "setValueV1iArray"); function setValueV2iArray(gl, v) { gl.uniform2iv(this.addr, v); } __name(setValueV2iArray, "setValueV2iArray"); function setValueV3iArray(gl, v) { gl.uniform3iv(this.addr, v); } __name(setValueV3iArray, "setValueV3iArray"); function setValueV4iArray(gl, v) { gl.uniform4iv(this.addr, v); } __name(setValueV4iArray, "setValueV4iArray"); function setValueV1uiArray(gl, v) { gl.uniform1uiv(this.addr, v); } __name(setValueV1uiArray, "setValueV1uiArray"); function setValueV2uiArray(gl, v) { gl.uniform2uiv(this.addr, v); } __name(setValueV2uiArray, "setValueV2uiArray"); function setValueV3uiArray(gl, v) { gl.uniform3uiv(this.addr, v); } __name(setValueV3uiArray, "setValueV3uiArray"); function setValueV4uiArray(gl, v) { gl.uniform4uiv(this.addr, v); } __name(setValueV4uiArray, "setValueV4uiArray"); function setValueT1Array(gl, v, textures) { const cache = this.cache; const n = v.length; const units = allocTexUnits(textures, n); if (!arraysEqual(cache, units)) { gl.uniform1iv(this.addr, units); copyArray(cache, units); } for (let i = 0; i !== n; ++i) { textures.setTexture2D(v[i] || emptyTexture, units[i]); } } __name(setValueT1Array, "setValueT1Array"); function setValueT3DArray(gl, v, textures) { const cache = this.cache; const n = v.length; const units = allocTexUnits(textures, n); if (!arraysEqual(cache, units)) { gl.uniform1iv(this.addr, units); copyArray(cache, units); } for (let i = 0; i !== n; ++i) { textures.setTexture3D(v[i] || empty3dTexture, units[i]); } } __name(setValueT3DArray, "setValueT3DArray"); function setValueT6Array(gl, v, textures) { const cache = this.cache; const n = v.length; const units = allocTexUnits(textures, n); if (!arraysEqual(cache, units)) { gl.uniform1iv(this.addr, units); copyArray(cache, units); } for (let i = 0; i !== n; ++i) { textures.setTextureCube(v[i] || emptyCubeTexture, units[i]); } } __name(setValueT6Array, "setValueT6Array"); function setValueT2DArrayArray(gl, v, textures) { const cache = this.cache; const n = v.length; const units = allocTexUnits(textures, n); if (!arraysEqual(cache, units)) { gl.uniform1iv(this.addr, units); copyArray(cache, units); } for (let i = 0; i !== n; ++i) { textures.setTexture2DArray(v[i] || emptyArrayTexture, units[i]); } } __name(setValueT2DArrayArray, "setValueT2DArrayArray"); function getPureArraySetter(type) { switch (type) { case 5126: return setValueV1fArray; case 35664: return setValueV2fArray; case 35665: return setValueV3fArray; case 35666: return setValueV4fArray; case 35674: return setValueM2Array; case 35675: return setValueM3Array; case 35676: return setValueM4Array; case 5124: case 35670: return setValueV1iArray; case 35667: case 35671: return setValueV2iArray; case 35668: case 35672: return setValueV3iArray; case 35669: case 35673: return setValueV4iArray; case 5125: return setValueV1uiArray; case 36294: return setValueV2uiArray; case 36295: return setValueV3uiArray; case 36296: return setValueV4uiArray; case 35678: case 36198: case 36298: case 36306: case 35682: return setValueT1Array; case 35679: case 36299: case 36307: return setValueT3DArray; case 35680: case 36300: case 36308: case 36293: return setValueT6Array; case 36289: case 36303: case 36311: case 36292: return setValueT2DArrayArray; } } __name(getPureArraySetter, "getPureArraySetter"); class SingleUniform { static { __name(this, "SingleUniform"); } constructor(id2, activeInfo, addr) { this.id = id2; this.addr = addr; this.cache = []; this.type = activeInfo.type; this.setValue = getSingularSetter(activeInfo.type); } } class PureArrayUniform { static { __name(this, "PureArrayUniform"); } constructor(id2, activeInfo, addr) { this.id = id2; this.addr = addr; this.cache = []; this.type = activeInfo.type; this.size = activeInfo.size; this.setValue = getPureArraySetter(activeInfo.type); } } class StructuredUniform { static { __name(this, "StructuredUniform"); } constructor(id2) { this.id = id2; this.seq = []; this.map = {}; } setValue(gl, value, textures) { const seq = this.seq; for (let i = 0, n = seq.length; i !== n; ++i) { const u = seq[i]; u.setValue(gl, value[u.id], textures); } } } const RePathPart = /(\w+)(\])?(\[|\.)?/g; function addUniform(container, uniformObject) { container.seq.push(uniformObject); container.map[uniformObject.id] = uniformObject; } __name(addUniform, "addUniform"); function parseUniform(activeInfo, addr, container) { const path = activeInfo.name, pathLength = path.length; RePathPart.lastIndex = 0; while (true) { const match = RePathPart.exec(path), matchEnd = RePathPart.lastIndex; let id2 = match[1]; const idIsIndex = match[2] === "]", subscript = match[3]; if (idIsIndex) id2 = id2 | 0; if (subscript === void 0 || subscript === "[" && matchEnd + 2 === pathLength) { addUniform(container, subscript === void 0 ? new SingleUniform(id2, activeInfo, addr) : new PureArrayUniform(id2, activeInfo, addr)); break; } else { const map = container.map; let next = map[id2]; if (next === void 0) { next = new StructuredUniform(id2); addUniform(container, next); } container = next; } } } __name(parseUniform, "parseUniform"); class WebGLUniforms { static { __name(this, "WebGLUniforms"); } constructor(gl, program) { this.seq = []; this.map = {}; const n = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS); for (let i = 0; i < n; ++i) { const info = gl.getActiveUniform(program, i), addr = gl.getUniformLocation(program, info.name); parseUniform(info, addr, this); } } setValue(gl, name, value, textures) { const u = this.map[name]; if (u !== void 0) u.setValue(gl, value, textures); } setOptional(gl, object, name) { const v = object[name]; if (v !== void 0) this.setValue(gl, name, v); } static upload(gl, seq, values, textures) { for (let i = 0, n = seq.length; i !== n; ++i) { const u = seq[i], v = values[u.id]; if (v.needsUpdate !== false) { u.setValue(gl, v.value, textures); } } } static seqWithValue(seq, values) { const r = []; for (let i = 0, n = seq.length; i !== n; ++i) { const u = seq[i]; if (u.id in values) r.push(u); } return r; } } function WebGLShader(gl, type, string) { const shader = gl.createShader(type); gl.shaderSource(shader, string); gl.compileShader(shader); return shader; } __name(WebGLShader, "WebGLShader"); const COMPLETION_STATUS_KHR = 37297; let programIdCount = 0; function handleSource(string, errorLine) { const lines = string.split("\n"); const lines2 = []; const from = Math.max(errorLine - 6, 0); const to = Math.min(errorLine + 6, lines.length); for (let i = from; i < to; i++) { const line = i + 1; lines2.push(`${line === errorLine ? ">" : " "} ${line}: ${lines[i]}`); } return lines2.join("\n"); } __name(handleSource, "handleSource"); const _m0 = /* @__PURE__ */ new Matrix3(); function getEncodingComponents(colorSpace) { ColorManagement._getMatrix(_m0, ColorManagement.workingColorSpace, colorSpace); const encodingMatrix = `mat3( ${_m0.elements.map((v) => v.toFixed(4))} )`; switch (ColorManagement.getTransfer(colorSpace)) { case LinearTransfer: return [encodingMatrix, "LinearTransferOETF"]; case SRGBTransfer: return [encodingMatrix, "sRGBTransferOETF"]; default: console.warn("THREE.WebGLProgram: Unsupported color space: ", colorSpace); return [encodingMatrix, "LinearTransferOETF"]; } } __name(getEncodingComponents, "getEncodingComponents"); function getShaderErrors(gl, shader, type) { const status = gl.getShaderParameter(shader, gl.COMPILE_STATUS); const errors = gl.getShaderInfoLog(shader).trim(); if (status && errors === "") return ""; const errorMatches = /ERROR: 0:(\d+)/.exec(errors); if (errorMatches) { const errorLine = parseInt(errorMatches[1]); return type.toUpperCase() + "\n\n" + errors + "\n\n" + handleSource(gl.getShaderSource(shader), errorLine); } else { return errors; } } __name(getShaderErrors, "getShaderErrors"); function getTexelEncodingFunction(functionName, colorSpace) { const components = getEncodingComponents(colorSpace); return [ `vec4 ${functionName}( vec4 value ) {`, ` return ${components[1]}( vec4( value.rgb * ${components[0]}, value.a ) );`, "}" ].join("\n"); } __name(getTexelEncodingFunction, "getTexelEncodingFunction"); function getToneMappingFunction(functionName, toneMapping) { let toneMappingName; switch (toneMapping) { case LinearToneMapping: toneMappingName = "Linear"; break; case ReinhardToneMapping: toneMappingName = "Reinhard"; break; case CineonToneMapping: toneMappingName = "Cineon"; break; case ACESFilmicToneMapping: toneMappingName = "ACESFilmic"; break; case AgXToneMapping: toneMappingName = "AgX"; break; case NeutralToneMapping: toneMappingName = "Neutral"; break; case CustomToneMapping: toneMappingName = "Custom"; break; default: console.warn("THREE.WebGLProgram: Unsupported toneMapping:", toneMapping); toneMappingName = "Linear"; } return "vec3 " + functionName + "( vec3 color ) { return " + toneMappingName + "ToneMapping( color ); }"; } __name(getToneMappingFunction, "getToneMappingFunction"); const _v0$1 = /* @__PURE__ */ new Vector3(); function getLuminanceFunction() { ColorManagement.getLuminanceCoefficients(_v0$1); const r = _v0$1.x.toFixed(4); const g = _v0$1.y.toFixed(4); const b = _v0$1.z.toFixed(4); return [ "float luminance( const in vec3 rgb ) {", ` const vec3 weights = vec3( ${r}, ${g}, ${b} );`, " return dot( weights, rgb );", "}" ].join("\n"); } __name(getLuminanceFunction, "getLuminanceFunction"); function generateVertexExtensions(parameters) { const chunks = [ parameters.extensionClipCullDistance ? "#extension GL_ANGLE_clip_cull_distance : require" : "", parameters.extensionMultiDraw ? "#extension GL_ANGLE_multi_draw : require" : "" ]; return chunks.filter(filterEmptyLine).join("\n"); } __name(generateVertexExtensions, "generateVertexExtensions"); function generateDefines(defines) { const chunks = []; for (const name in defines) { const value = defines[name]; if (value === false) continue; chunks.push("#define " + name + " " + value); } return chunks.join("\n"); } __name(generateDefines, "generateDefines"); function fetchAttributeLocations(gl, program) { const attributes = {}; const n = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES); for (let i = 0; i < n; i++) { const info = gl.getActiveAttrib(program, i); const name = info.name; let locationSize = 1; if (info.type === gl.FLOAT_MAT2) locationSize = 2; if (info.type === gl.FLOAT_MAT3) locationSize = 3; if (info.type === gl.FLOAT_MAT4) locationSize = 4; attributes[name] = { type: info.type, location: gl.getAttribLocation(program, name), locationSize }; } return attributes; } __name(fetchAttributeLocations, "fetchAttributeLocations"); function filterEmptyLine(string) { return string !== ""; } __name(filterEmptyLine, "filterEmptyLine"); function replaceLightNums(string, parameters) { const numSpotLightCoords = parameters.numSpotLightShadows + parameters.numSpotLightMaps - parameters.numSpotLightShadowsWithMaps; return string.replace(/NUM_DIR_LIGHTS/g, parameters.numDirLights).replace(/NUM_SPOT_LIGHTS/g, parameters.numSpotLights).replace(/NUM_SPOT_LIGHT_MAPS/g, parameters.numSpotLightMaps).replace(/NUM_SPOT_LIGHT_COORDS/g, numSpotLightCoords).replace(/NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights).replace(/NUM_POINT_LIGHTS/g, parameters.numPointLights).replace(/NUM_HEMI_LIGHTS/g, parameters.numHemiLights).replace(/NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows).replace(/NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS/g, parameters.numSpotLightShadowsWithMaps).replace(/NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows).replace(/NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows); } __name(replaceLightNums, "replaceLightNums"); function replaceClippingPlaneNums(string, parameters) { return string.replace(/NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes).replace(/UNION_CLIPPING_PLANES/g, parameters.numClippingPlanes - parameters.numClipIntersection); } __name(replaceClippingPlaneNums, "replaceClippingPlaneNums"); const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm; function resolveIncludes(string) { return string.replace(includePattern, includeReplacer); } __name(resolveIncludes, "resolveIncludes"); const shaderChunkMap = /* @__PURE__ */ new Map(); function includeReplacer(match, include) { let string = ShaderChunk[include]; if (string === void 0) { const newInclude = shaderChunkMap.get(include); if (newInclude !== void 0) { string = ShaderChunk[newInclude]; console.warn('THREE.WebGLRenderer: Shader chunk "%s" has been deprecated. Use "%s" instead.', include, newInclude); } else { throw new Error("Can not resolve #include <" + include + ">"); } } return resolveIncludes(string); } __name(includeReplacer, "includeReplacer"); const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g; function unrollLoops(string) { return string.replace(unrollLoopPattern, loopReplacer); } __name(unrollLoops, "unrollLoops"); function loopReplacer(match, start, end, snippet) { let string = ""; for (let i = parseInt(start); i < parseInt(end); i++) { string += snippet.replace(/\[\s*i\s*\]/g, "[ " + i + " ]").replace(/UNROLLED_LOOP_INDEX/g, i); } return string; } __name(loopReplacer, "loopReplacer"); function generatePrecision(parameters) { let precisionstring = `precision ${parameters.precision} float; precision ${parameters.precision} int; precision ${parameters.precision} sampler2D; precision ${parameters.precision} samplerCube; precision ${parameters.precision} sampler3D; precision ${parameters.precision} sampler2DArray; precision ${parameters.precision} sampler2DShadow; precision ${parameters.precision} samplerCubeShadow; precision ${parameters.precision} sampler2DArrayShadow; precision ${parameters.precision} isampler2D; precision ${parameters.precision} isampler3D; precision ${parameters.precision} isamplerCube; precision ${parameters.precision} isampler2DArray; precision ${parameters.precision} usampler2D; precision ${parameters.precision} usampler3D; precision ${parameters.precision} usamplerCube; precision ${parameters.precision} usampler2DArray; `; if (parameters.precision === "highp") { precisionstring += "\n#define HIGH_PRECISION"; } else if (parameters.precision === "mediump") { precisionstring += "\n#define MEDIUM_PRECISION"; } else if (parameters.precision === "lowp") { precisionstring += "\n#define LOW_PRECISION"; } return precisionstring; } __name(generatePrecision, "generatePrecision"); function generateShadowMapTypeDefine(parameters) { let shadowMapTypeDefine = "SHADOWMAP_TYPE_BASIC"; if (parameters.shadowMapType === PCFShadowMap) { shadowMapTypeDefine = "SHADOWMAP_TYPE_PCF"; } else if (parameters.shadowMapType === PCFSoftShadowMap) { shadowMapTypeDefine = "SHADOWMAP_TYPE_PCF_SOFT"; } else if (parameters.shadowMapType === VSMShadowMap) { shadowMapTypeDefine = "SHADOWMAP_TYPE_VSM"; } return shadowMapTypeDefine; } __name(generateShadowMapTypeDefine, "generateShadowMapTypeDefine"); function generateEnvMapTypeDefine(parameters) { let envMapTypeDefine = "ENVMAP_TYPE_CUBE"; if (parameters.envMap) { switch (parameters.envMapMode) { case CubeReflectionMapping: case CubeRefractionMapping: envMapTypeDefine = "ENVMAP_TYPE_CUBE"; break; case CubeUVReflectionMapping: envMapTypeDefine = "ENVMAP_TYPE_CUBE_UV"; break; } } return envMapTypeDefine; } __name(generateEnvMapTypeDefine, "generateEnvMapTypeDefine"); function generateEnvMapModeDefine(parameters) { let envMapModeDefine = "ENVMAP_MODE_REFLECTION"; if (parameters.envMap) { switch (parameters.envMapMode) { case CubeRefractionMapping: envMapModeDefine = "ENVMAP_MODE_REFRACTION"; break; } } return envMapModeDefine; } __name(generateEnvMapModeDefine, "generateEnvMapModeDefine"); function generateEnvMapBlendingDefine(parameters) { let envMapBlendingDefine = "ENVMAP_BLENDING_NONE"; if (parameters.envMap) { switch (parameters.combine) { case MultiplyOperation: envMapBlendingDefine = "ENVMAP_BLENDING_MULTIPLY"; break; case MixOperation: envMapBlendingDefine = "ENVMAP_BLENDING_MIX"; break; case AddOperation: envMapBlendingDefine = "ENVMAP_BLENDING_ADD"; break; } } return envMapBlendingDefine; } __name(generateEnvMapBlendingDefine, "generateEnvMapBlendingDefine"); function generateCubeUVSize(parameters) { const imageHeight = parameters.envMapCubeUVHeight; if (imageHeight === null) return null; const maxMip = Math.log2(imageHeight) - 2; const texelHeight = 1 / imageHeight; const texelWidth = 1 / (3 * Math.max(Math.pow(2, maxMip), 7 * 16)); return { texelWidth, texelHeight, maxMip }; } __name(generateCubeUVSize, "generateCubeUVSize"); function WebGLProgram(renderer, cacheKey, parameters, bindingStates) { const gl = renderer.getContext(); const defines = parameters.defines; let vertexShader = parameters.vertexShader; let fragmentShader = parameters.fragmentShader; const shadowMapTypeDefine = generateShadowMapTypeDefine(parameters); const envMapTypeDefine = generateEnvMapTypeDefine(parameters); const envMapModeDefine = generateEnvMapModeDefine(parameters); const envMapBlendingDefine = generateEnvMapBlendingDefine(parameters); const envMapCubeUVSize = generateCubeUVSize(parameters); const customVertexExtensions = generateVertexExtensions(parameters); const customDefines = generateDefines(defines); const program = gl.createProgram(); let prefixVertex, prefixFragment; let versionString = parameters.glslVersion ? "#version " + parameters.glslVersion + "\n" : ""; if (parameters.isRawShaderMaterial) { prefixVertex = [ "#define SHADER_TYPE " + parameters.shaderType, "#define SHADER_NAME " + parameters.shaderName, customDefines ].filter(filterEmptyLine).join("\n"); if (prefixVertex.length > 0) { prefixVertex += "\n"; } prefixFragment = [ "#define SHADER_TYPE " + parameters.shaderType, "#define SHADER_NAME " + parameters.shaderName, customDefines ].filter(filterEmptyLine).join("\n"); if (prefixFragment.length > 0) { prefixFragment += "\n"; } } else { prefixVertex = [ generatePrecision(parameters), "#define SHADER_TYPE " + parameters.shaderType, "#define SHADER_NAME " + parameters.shaderName, customDefines, parameters.extensionClipCullDistance ? "#define USE_CLIP_DISTANCE" : "", parameters.batching ? "#define USE_BATCHING" : "", parameters.batchingColor ? "#define USE_BATCHING_COLOR" : "", parameters.instancing ? "#define USE_INSTANCING" : "", parameters.instancingColor ? "#define USE_INSTANCING_COLOR" : "", parameters.instancingMorph ? "#define USE_INSTANCING_MORPH" : "", parameters.useFog && parameters.fog ? "#define USE_FOG" : "", parameters.useFog && parameters.fogExp2 ? "#define FOG_EXP2" : "", parameters.map ? "#define USE_MAP" : "", parameters.envMap ? "#define USE_ENVMAP" : "", parameters.envMap ? "#define " + envMapModeDefine : "", parameters.lightMap ? "#define USE_LIGHTMAP" : "", parameters.aoMap ? "#define USE_AOMAP" : "", parameters.bumpMap ? "#define USE_BUMPMAP" : "", parameters.normalMap ? "#define USE_NORMALMAP" : "", parameters.normalMapObjectSpace ? "#define USE_NORMALMAP_OBJECTSPACE" : "", parameters.normalMapTangentSpace ? "#define USE_NORMALMAP_TANGENTSPACE" : "", parameters.displacementMap ? "#define USE_DISPLACEMENTMAP" : "", parameters.emissiveMap ? "#define USE_EMISSIVEMAP" : "", parameters.anisotropy ? "#define USE_ANISOTROPY" : "", parameters.anisotropyMap ? "#define USE_ANISOTROPYMAP" : "", parameters.clearcoatMap ? "#define USE_CLEARCOATMAP" : "", parameters.clearcoatRoughnessMap ? "#define USE_CLEARCOAT_ROUGHNESSMAP" : "", parameters.clearcoatNormalMap ? "#define USE_CLEARCOAT_NORMALMAP" : "", parameters.iridescenceMap ? "#define USE_IRIDESCENCEMAP" : "", parameters.iridescenceThicknessMap ? "#define USE_IRIDESCENCE_THICKNESSMAP" : "", parameters.specularMap ? "#define USE_SPECULARMAP" : "", parameters.specularColorMap ? "#define USE_SPECULAR_COLORMAP" : "", parameters.specularIntensityMap ? "#define USE_SPECULAR_INTENSITYMAP" : "", parameters.roughnessMap ? "#define USE_ROUGHNESSMAP" : "", parameters.metalnessMap ? "#define USE_METALNESSMAP" : "", parameters.alphaMap ? "#define USE_ALPHAMAP" : "", parameters.alphaHash ? "#define USE_ALPHAHASH" : "", parameters.transmission ? "#define USE_TRANSMISSION" : "", parameters.transmissionMap ? "#define USE_TRANSMISSIONMAP" : "", parameters.thicknessMap ? "#define USE_THICKNESSMAP" : "", parameters.sheenColorMap ? "#define USE_SHEEN_COLORMAP" : "", parameters.sheenRoughnessMap ? "#define USE_SHEEN_ROUGHNESSMAP" : "", // parameters.mapUv ? "#define MAP_UV " + parameters.mapUv : "", parameters.alphaMapUv ? "#define ALPHAMAP_UV " + parameters.alphaMapUv : "", parameters.lightMapUv ? "#define LIGHTMAP_UV " + parameters.lightMapUv : "", parameters.aoMapUv ? "#define AOMAP_UV " + parameters.aoMapUv : "", parameters.emissiveMapUv ? "#define EMISSIVEMAP_UV " + parameters.emissiveMapUv : "", parameters.bumpMapUv ? "#define BUMPMAP_UV " + parameters.bumpMapUv : "", parameters.normalMapUv ? "#define NORMALMAP_UV " + parameters.normalMapUv : "", parameters.displacementMapUv ? "#define DISPLACEMENTMAP_UV " + parameters.displacementMapUv : "", parameters.metalnessMapUv ? "#define METALNESSMAP_UV " + parameters.metalnessMapUv : "", parameters.roughnessMapUv ? "#define ROUGHNESSMAP_UV " + parameters.roughnessMapUv : "", parameters.anisotropyMapUv ? "#define ANISOTROPYMAP_UV " + parameters.anisotropyMapUv : "", parameters.clearcoatMapUv ? "#define CLEARCOATMAP_UV " + parameters.clearcoatMapUv : "", parameters.clearcoatNormalMapUv ? "#define CLEARCOAT_NORMALMAP_UV " + parameters.clearcoatNormalMapUv : "", parameters.clearcoatRoughnessMapUv ? "#define CLEARCOAT_ROUGHNESSMAP_UV " + parameters.clearcoatRoughnessMapUv : "", parameters.iridescenceMapUv ? "#define IRIDESCENCEMAP_UV " + parameters.iridescenceMapUv : "", parameters.iridescenceThicknessMapUv ? "#define IRIDESCENCE_THICKNESSMAP_UV " + parameters.iridescenceThicknessMapUv : "", parameters.sheenColorMapUv ? "#define SHEEN_COLORMAP_UV " + parameters.sheenColorMapUv : "", parameters.sheenRoughnessMapUv ? "#define SHEEN_ROUGHNESSMAP_UV " + parameters.sheenRoughnessMapUv : "", parameters.specularMapUv ? "#define SPECULARMAP_UV " + parameters.specularMapUv : "", parameters.specularColorMapUv ? "#define SPECULAR_COLORMAP_UV " + parameters.specularColorMapUv : "", parameters.specularIntensityMapUv ? "#define SPECULAR_INTENSITYMAP_UV " + parameters.specularIntensityMapUv : "", parameters.transmissionMapUv ? "#define TRANSMISSIONMAP_UV " + parameters.transmissionMapUv : "", parameters.thicknessMapUv ? "#define THICKNESSMAP_UV " + parameters.thicknessMapUv : "", // parameters.vertexTangents && parameters.flatShading === false ? "#define USE_TANGENT" : "", parameters.vertexColors ? "#define USE_COLOR" : "", parameters.vertexAlphas ? "#define USE_COLOR_ALPHA" : "", parameters.vertexUv1s ? "#define USE_UV1" : "", parameters.vertexUv2s ? "#define USE_UV2" : "", parameters.vertexUv3s ? "#define USE_UV3" : "", parameters.pointsUvs ? "#define USE_POINTS_UV" : "", parameters.flatShading ? "#define FLAT_SHADED" : "", parameters.skinning ? "#define USE_SKINNING" : "", parameters.morphTargets ? "#define USE_MORPHTARGETS" : "", parameters.morphNormals && parameters.flatShading === false ? "#define USE_MORPHNORMALS" : "", parameters.morphColors ? "#define USE_MORPHCOLORS" : "", parameters.morphTargetsCount > 0 ? "#define MORPHTARGETS_TEXTURE_STRIDE " + parameters.morphTextureStride : "", parameters.morphTargetsCount > 0 ? "#define MORPHTARGETS_COUNT " + parameters.morphTargetsCount : "", parameters.doubleSided ? "#define DOUBLE_SIDED" : "", parameters.flipSided ? "#define FLIP_SIDED" : "", parameters.shadowMapEnabled ? "#define USE_SHADOWMAP" : "", parameters.shadowMapEnabled ? "#define " + shadowMapTypeDefine : "", parameters.sizeAttenuation ? "#define USE_SIZEATTENUATION" : "", parameters.numLightProbes > 0 ? "#define USE_LIGHT_PROBES" : "", parameters.logarithmicDepthBuffer ? "#define USE_LOGDEPTHBUF" : "", parameters.reverseDepthBuffer ? "#define USE_REVERSEDEPTHBUF" : "", "uniform mat4 modelMatrix;", "uniform mat4 modelViewMatrix;", "uniform mat4 projectionMatrix;", "uniform mat4 viewMatrix;", "uniform mat3 normalMatrix;", "uniform vec3 cameraPosition;", "uniform bool isOrthographic;", "#ifdef USE_INSTANCING", " attribute mat4 instanceMatrix;", "#endif", "#ifdef USE_INSTANCING_COLOR", " attribute vec3 instanceColor;", "#endif", "#ifdef USE_INSTANCING_MORPH", " uniform sampler2D morphTexture;", "#endif", "attribute vec3 position;", "attribute vec3 normal;", "attribute vec2 uv;", "#ifdef USE_UV1", " attribute vec2 uv1;", "#endif", "#ifdef USE_UV2", " attribute vec2 uv2;", "#endif", "#ifdef USE_UV3", " attribute vec2 uv3;", "#endif", "#ifdef USE_TANGENT", " attribute vec4 tangent;", "#endif", "#if defined( USE_COLOR_ALPHA )", " attribute vec4 color;", "#elif defined( USE_COLOR )", " attribute vec3 color;", "#endif", "#ifdef USE_SKINNING", " attribute vec4 skinIndex;", " attribute vec4 skinWeight;", "#endif", "\n" ].filter(filterEmptyLine).join("\n"); prefixFragment = [ generatePrecision(parameters), "#define SHADER_TYPE " + parameters.shaderType, "#define SHADER_NAME " + parameters.shaderName, customDefines, parameters.useFog && parameters.fog ? "#define USE_FOG" : "", parameters.useFog && parameters.fogExp2 ? "#define FOG_EXP2" : "", parameters.alphaToCoverage ? "#define ALPHA_TO_COVERAGE" : "", parameters.map ? "#define USE_MAP" : "", parameters.matcap ? "#define USE_MATCAP" : "", parameters.envMap ? "#define USE_ENVMAP" : "", parameters.envMap ? "#define " + envMapTypeDefine : "", parameters.envMap ? "#define " + envMapModeDefine : "", parameters.envMap ? "#define " + envMapBlendingDefine : "", envMapCubeUVSize ? "#define CUBEUV_TEXEL_WIDTH " + envMapCubeUVSize.texelWidth : "", envMapCubeUVSize ? "#define CUBEUV_TEXEL_HEIGHT " + envMapCubeUVSize.texelHeight : "", envMapCubeUVSize ? "#define CUBEUV_MAX_MIP " + envMapCubeUVSize.maxMip + ".0" : "", parameters.lightMap ? "#define USE_LIGHTMAP" : "", parameters.aoMap ? "#define USE_AOMAP" : "", parameters.bumpMap ? "#define USE_BUMPMAP" : "", parameters.normalMap ? "#define USE_NORMALMAP" : "", parameters.normalMapObjectSpace ? "#define USE_NORMALMAP_OBJECTSPACE" : "", parameters.normalMapTangentSpace ? "#define USE_NORMALMAP_TANGENTSPACE" : "", parameters.emissiveMap ? "#define USE_EMISSIVEMAP" : "", parameters.anisotropy ? "#define USE_ANISOTROPY" : "", parameters.anisotropyMap ? "#define USE_ANISOTROPYMAP" : "", parameters.clearcoat ? "#define USE_CLEARCOAT" : "", parameters.clearcoatMap ? "#define USE_CLEARCOATMAP" : "", parameters.clearcoatRoughnessMap ? "#define USE_CLEARCOAT_ROUGHNESSMAP" : "", parameters.clearcoatNormalMap ? "#define USE_CLEARCOAT_NORMALMAP" : "", parameters.dispersion ? "#define USE_DISPERSION" : "", parameters.iridescence ? "#define USE_IRIDESCENCE" : "", parameters.iridescenceMap ? "#define USE_IRIDESCENCEMAP" : "", parameters.iridescenceThicknessMap ? "#define USE_IRIDESCENCE_THICKNESSMAP" : "", parameters.specularMap ? "#define USE_SPECULARMAP" : "", parameters.specularColorMap ? "#define USE_SPECULAR_COLORMAP" : "", parameters.specularIntensityMap ? "#define USE_SPECULAR_INTENSITYMAP" : "", parameters.roughnessMap ? "#define USE_ROUGHNESSMAP" : "", parameters.metalnessMap ? "#define USE_METALNESSMAP" : "", parameters.alphaMap ? "#define USE_ALPHAMAP" : "", parameters.alphaTest ? "#define USE_ALPHATEST" : "", parameters.alphaHash ? "#define USE_ALPHAHASH" : "", parameters.sheen ? "#define USE_SHEEN" : "", parameters.sheenColorMap ? "#define USE_SHEEN_COLORMAP" : "", parameters.sheenRoughnessMap ? "#define USE_SHEEN_ROUGHNESSMAP" : "", parameters.transmission ? "#define USE_TRANSMISSION" : "", parameters.transmissionMap ? "#define USE_TRANSMISSIONMAP" : "", parameters.thicknessMap ? "#define USE_THICKNESSMAP" : "", parameters.vertexTangents && parameters.flatShading === false ? "#define USE_TANGENT" : "", parameters.vertexColors || parameters.instancingColor || parameters.batchingColor ? "#define USE_COLOR" : "", parameters.vertexAlphas ? "#define USE_COLOR_ALPHA" : "", parameters.vertexUv1s ? "#define USE_UV1" : "", parameters.vertexUv2s ? "#define USE_UV2" : "", parameters.vertexUv3s ? "#define USE_UV3" : "", parameters.pointsUvs ? "#define USE_POINTS_UV" : "", parameters.gradientMap ? "#define USE_GRADIENTMAP" : "", parameters.flatShading ? "#define FLAT_SHADED" : "", parameters.doubleSided ? "#define DOUBLE_SIDED" : "", parameters.flipSided ? "#define FLIP_SIDED" : "", parameters.shadowMapEnabled ? "#define USE_SHADOWMAP" : "", parameters.shadowMapEnabled ? "#define " + shadowMapTypeDefine : "", parameters.premultipliedAlpha ? "#define PREMULTIPLIED_ALPHA" : "", parameters.numLightProbes > 0 ? "#define USE_LIGHT_PROBES" : "", parameters.decodeVideoTexture ? "#define DECODE_VIDEO_TEXTURE" : "", parameters.decodeVideoTextureEmissive ? "#define DECODE_VIDEO_TEXTURE_EMISSIVE" : "", parameters.logarithmicDepthBuffer ? "#define USE_LOGDEPTHBUF" : "", parameters.reverseDepthBuffer ? "#define USE_REVERSEDEPTHBUF" : "", "uniform mat4 viewMatrix;", "uniform vec3 cameraPosition;", "uniform bool isOrthographic;", parameters.toneMapping !== NoToneMapping ? "#define TONE_MAPPING" : "", parameters.toneMapping !== NoToneMapping ? ShaderChunk["tonemapping_pars_fragment"] : "", // this code is required here because it is used by the toneMapping() function defined below parameters.toneMapping !== NoToneMapping ? getToneMappingFunction("toneMapping", parameters.toneMapping) : "", parameters.dithering ? "#define DITHERING" : "", parameters.opaque ? "#define OPAQUE" : "", ShaderChunk["colorspace_pars_fragment"], // this code is required here because it is used by the various encoding/decoding function defined below getTexelEncodingFunction("linearToOutputTexel", parameters.outputColorSpace), getLuminanceFunction(), parameters.useDepthPacking ? "#define DEPTH_PACKING " + parameters.depthPacking : "", "\n" ].filter(filterEmptyLine).join("\n"); } vertexShader = resolveIncludes(vertexShader); vertexShader = replaceLightNums(vertexShader, parameters); vertexShader = replaceClippingPlaneNums(vertexShader, parameters); fragmentShader = resolveIncludes(fragmentShader); fragmentShader = replaceLightNums(fragmentShader, parameters); fragmentShader = replaceClippingPlaneNums(fragmentShader, parameters); vertexShader = unrollLoops(vertexShader); fragmentShader = unrollLoops(fragmentShader); if (parameters.isRawShaderMaterial !== true) { versionString = "#version 300 es\n"; prefixVertex = [ customVertexExtensions, "#define attribute in", "#define varying out", "#define texture2D texture" ].join("\n") + "\n" + prefixVertex; prefixFragment = [ "#define varying in", parameters.glslVersion === GLSL3 ? "" : "layout(location = 0) out highp vec4 pc_fragColor;", parameters.glslVersion === GLSL3 ? "" : "#define gl_FragColor pc_fragColor", "#define gl_FragDepthEXT gl_FragDepth", "#define texture2D texture", "#define textureCube texture", "#define texture2DProj textureProj", "#define texture2DLodEXT textureLod", "#define texture2DProjLodEXT textureProjLod", "#define textureCubeLodEXT textureLod", "#define texture2DGradEXT textureGrad", "#define texture2DProjGradEXT textureProjGrad", "#define textureCubeGradEXT textureGrad" ].join("\n") + "\n" + prefixFragment; } const vertexGlsl = versionString + prefixVertex + vertexShader; const fragmentGlsl = versionString + prefixFragment + fragmentShader; const glVertexShader = WebGLShader(gl, gl.VERTEX_SHADER, vertexGlsl); const glFragmentShader = WebGLShader(gl, gl.FRAGMENT_SHADER, fragmentGlsl); gl.attachShader(program, glVertexShader); gl.attachShader(program, glFragmentShader); if (parameters.index0AttributeName !== void 0) { gl.bindAttribLocation(program, 0, parameters.index0AttributeName); } else if (parameters.morphTargets === true) { gl.bindAttribLocation(program, 0, "position"); } gl.linkProgram(program); function onFirstUse(self2) { if (renderer.debug.checkShaderErrors) { const programLog = gl.getProgramInfoLog(program).trim(); const vertexLog = gl.getShaderInfoLog(glVertexShader).trim(); const fragmentLog = gl.getShaderInfoLog(glFragmentShader).trim(); let runnable = true; let haveDiagnostics = true; if (gl.getProgramParameter(program, gl.LINK_STATUS) === false) { runnable = false; if (typeof renderer.debug.onShaderError === "function") { renderer.debug.onShaderError(gl, program, glVertexShader, glFragmentShader); } else { const vertexErrors = getShaderErrors(gl, glVertexShader, "vertex"); const fragmentErrors = getShaderErrors(gl, glFragmentShader, "fragment"); console.error( "THREE.WebGLProgram: Shader Error " + gl.getError() + " - VALIDATE_STATUS " + gl.getProgramParameter(program, gl.VALIDATE_STATUS) + "\n\nMaterial Name: " + self2.name + "\nMaterial Type: " + self2.type + "\n\nProgram Info Log: " + programLog + "\n" + vertexErrors + "\n" + fragmentErrors ); } } else if (programLog !== "") { console.warn("THREE.WebGLProgram: Program Info Log:", programLog); } else if (vertexLog === "" || fragmentLog === "") { haveDiagnostics = false; } if (haveDiagnostics) { self2.diagnostics = { runnable, programLog, vertexShader: { log: vertexLog, prefix: prefixVertex }, fragmentShader: { log: fragmentLog, prefix: prefixFragment } }; } } gl.deleteShader(glVertexShader); gl.deleteShader(glFragmentShader); cachedUniforms = new WebGLUniforms(gl, program); cachedAttributes = fetchAttributeLocations(gl, program); } __name(onFirstUse, "onFirstUse"); let cachedUniforms; this.getUniforms = function() { if (cachedUniforms === void 0) { onFirstUse(this); } return cachedUniforms; }; let cachedAttributes; this.getAttributes = function() { if (cachedAttributes === void 0) { onFirstUse(this); } return cachedAttributes; }; let programReady = parameters.rendererExtensionParallelShaderCompile === false; this.isReady = function() { if (programReady === false) { programReady = gl.getProgramParameter(program, COMPLETION_STATUS_KHR); } return programReady; }; this.destroy = function() { bindingStates.releaseStatesOfProgram(this); gl.deleteProgram(program); this.program = void 0; }; this.type = parameters.shaderType; this.name = parameters.shaderName; this.id = programIdCount++; this.cacheKey = cacheKey; this.usedTimes = 1; this.program = program; this.vertexShader = glVertexShader; this.fragmentShader = glFragmentShader; return this; } __name(WebGLProgram, "WebGLProgram"); let _id$1 = 0; class WebGLShaderCache { static { __name(this, "WebGLShaderCache"); } constructor() { this.shaderCache = /* @__PURE__ */ new Map(); this.materialCache = /* @__PURE__ */ new Map(); } update(material) { const vertexShader = material.vertexShader; const fragmentShader = material.fragmentShader; const vertexShaderStage = this._getShaderStage(vertexShader); const fragmentShaderStage = this._getShaderStage(fragmentShader); const materialShaders = this._getShaderCacheForMaterial(material); if (materialShaders.has(vertexShaderStage) === false) { materialShaders.add(vertexShaderStage); vertexShaderStage.usedTimes++; } if (materialShaders.has(fragmentShaderStage) === false) { materialShaders.add(fragmentShaderStage); fragmentShaderStage.usedTimes++; } return this; } remove(material) { const materialShaders = this.materialCache.get(material); for (const shaderStage of materialShaders) { shaderStage.usedTimes--; if (shaderStage.usedTimes === 0) this.shaderCache.delete(shaderStage.code); } this.materialCache.delete(material); return this; } getVertexShaderID(material) { return this._getShaderStage(material.vertexShader).id; } getFragmentShaderID(material) { return this._getShaderStage(material.fragmentShader).id; } dispose() { this.shaderCache.clear(); this.materialCache.clear(); } _getShaderCacheForMaterial(material) { const cache = this.materialCache; let set = cache.get(material); if (set === void 0) { set = /* @__PURE__ */ new Set(); cache.set(material, set); } return set; } _getShaderStage(code) { const cache = this.shaderCache; let stage = cache.get(code); if (stage === void 0) { stage = new WebGLShaderStage(code); cache.set(code, stage); } return stage; } } class WebGLShaderStage { static { __name(this, "WebGLShaderStage"); } constructor(code) { this.id = _id$1++; this.code = code; this.usedTimes = 0; } } function WebGLPrograms(renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping) { const _programLayers = new Layers(); const _customShaders = new WebGLShaderCache(); const _activeChannels = /* @__PURE__ */ new Set(); const programs = []; const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer; const SUPPORTS_VERTEX_TEXTURES = capabilities.vertexTextures; let precision = capabilities.precision; const shaderIDs = { MeshDepthMaterial: "depth", MeshDistanceMaterial: "distanceRGBA", MeshNormalMaterial: "normal", MeshBasicMaterial: "basic", MeshLambertMaterial: "lambert", MeshPhongMaterial: "phong", MeshToonMaterial: "toon", MeshStandardMaterial: "physical", MeshPhysicalMaterial: "physical", MeshMatcapMaterial: "matcap", LineBasicMaterial: "basic", LineDashedMaterial: "dashed", PointsMaterial: "points", ShadowMaterial: "shadow", SpriteMaterial: "sprite" }; function getChannel(value) { _activeChannels.add(value); if (value === 0) return "uv"; return `uv${value}`; } __name(getChannel, "getChannel"); function getParameters(material, lights, shadows, scene, object) { const fog = scene.fog; const geometry = object.geometry; const environment = material.isMeshStandardMaterial ? scene.environment : null; const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment); const envMapCubeUVHeight = !!envMap && envMap.mapping === CubeUVReflectionMapping ? envMap.image.height : null; const shaderID = shaderIDs[material.type]; if (material.precision !== null) { precision = capabilities.getMaxPrecision(material.precision); if (precision !== material.precision) { console.warn("THREE.WebGLProgram.getParameters:", material.precision, "not supported, using", precision, "instead."); } } const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = morphAttribute !== void 0 ? morphAttribute.length : 0; let morphTextureStride = 0; if (geometry.morphAttributes.position !== void 0) morphTextureStride = 1; if (geometry.morphAttributes.normal !== void 0) morphTextureStride = 2; if (geometry.morphAttributes.color !== void 0) morphTextureStride = 3; let vertexShader, fragmentShader; let customVertexShaderID, customFragmentShaderID; if (shaderID) { const shader = ShaderLib[shaderID]; vertexShader = shader.vertexShader; fragmentShader = shader.fragmentShader; } else { vertexShader = material.vertexShader; fragmentShader = material.fragmentShader; _customShaders.update(material); customVertexShaderID = _customShaders.getVertexShaderID(material); customFragmentShaderID = _customShaders.getFragmentShaderID(material); } const currentRenderTarget = renderer.getRenderTarget(); const reverseDepthBuffer = renderer.state.buffers.depth.getReversed(); const IS_INSTANCEDMESH = object.isInstancedMesh === true; const IS_BATCHEDMESH = object.isBatchedMesh === true; const HAS_MAP = !!material.map; const HAS_MATCAP = !!material.matcap; const HAS_ENVMAP = !!envMap; const HAS_AOMAP = !!material.aoMap; const HAS_LIGHTMAP = !!material.lightMap; const HAS_BUMPMAP = !!material.bumpMap; const HAS_NORMALMAP = !!material.normalMap; const HAS_DISPLACEMENTMAP = !!material.displacementMap; const HAS_EMISSIVEMAP = !!material.emissiveMap; const HAS_METALNESSMAP = !!material.metalnessMap; const HAS_ROUGHNESSMAP = !!material.roughnessMap; const HAS_ANISOTROPY = material.anisotropy > 0; const HAS_CLEARCOAT = material.clearcoat > 0; const HAS_DISPERSION = material.dispersion > 0; const HAS_IRIDESCENCE = material.iridescence > 0; const HAS_SHEEN = material.sheen > 0; const HAS_TRANSMISSION = material.transmission > 0; const HAS_ANISOTROPYMAP = HAS_ANISOTROPY && !!material.anisotropyMap; const HAS_CLEARCOATMAP = HAS_CLEARCOAT && !!material.clearcoatMap; const HAS_CLEARCOAT_NORMALMAP = HAS_CLEARCOAT && !!material.clearcoatNormalMap; const HAS_CLEARCOAT_ROUGHNESSMAP = HAS_CLEARCOAT && !!material.clearcoatRoughnessMap; const HAS_IRIDESCENCEMAP = HAS_IRIDESCENCE && !!material.iridescenceMap; const HAS_IRIDESCENCE_THICKNESSMAP = HAS_IRIDESCENCE && !!material.iridescenceThicknessMap; const HAS_SHEEN_COLORMAP = HAS_SHEEN && !!material.sheenColorMap; const HAS_SHEEN_ROUGHNESSMAP = HAS_SHEEN && !!material.sheenRoughnessMap; const HAS_SPECULARMAP = !!material.specularMap; const HAS_SPECULAR_COLORMAP = !!material.specularColorMap; const HAS_SPECULAR_INTENSITYMAP = !!material.specularIntensityMap; const HAS_TRANSMISSIONMAP = HAS_TRANSMISSION && !!material.transmissionMap; const HAS_THICKNESSMAP = HAS_TRANSMISSION && !!material.thicknessMap; const HAS_GRADIENTMAP = !!material.gradientMap; const HAS_ALPHAMAP = !!material.alphaMap; const HAS_ALPHATEST = material.alphaTest > 0; const HAS_ALPHAHASH = !!material.alphaHash; const HAS_EXTENSIONS = !!material.extensions; let toneMapping = NoToneMapping; if (material.toneMapped) { if (currentRenderTarget === null || currentRenderTarget.isXRRenderTarget === true) { toneMapping = renderer.toneMapping; } } const parameters = { shaderID, shaderType: material.type, shaderName: material.name, vertexShader, fragmentShader, defines: material.defines, customVertexShaderID, customFragmentShaderID, isRawShaderMaterial: material.isRawShaderMaterial === true, glslVersion: material.glslVersion, precision, batching: IS_BATCHEDMESH, batchingColor: IS_BATCHEDMESH && object._colorsTexture !== null, instancing: IS_INSTANCEDMESH, instancingColor: IS_INSTANCEDMESH && object.instanceColor !== null, instancingMorph: IS_INSTANCEDMESH && object.morphTexture !== null, supportsVertexTextures: SUPPORTS_VERTEX_TEXTURES, outputColorSpace: currentRenderTarget === null ? renderer.outputColorSpace : currentRenderTarget.isXRRenderTarget === true ? currentRenderTarget.texture.colorSpace : LinearSRGBColorSpace, alphaToCoverage: !!material.alphaToCoverage, map: HAS_MAP, matcap: HAS_MATCAP, envMap: HAS_ENVMAP, envMapMode: HAS_ENVMAP && envMap.mapping, envMapCubeUVHeight, aoMap: HAS_AOMAP, lightMap: HAS_LIGHTMAP, bumpMap: HAS_BUMPMAP, normalMap: HAS_NORMALMAP, displacementMap: SUPPORTS_VERTEX_TEXTURES && HAS_DISPLACEMENTMAP, emissiveMap: HAS_EMISSIVEMAP, normalMapObjectSpace: HAS_NORMALMAP && material.normalMapType === ObjectSpaceNormalMap, normalMapTangentSpace: HAS_NORMALMAP && material.normalMapType === TangentSpaceNormalMap, metalnessMap: HAS_METALNESSMAP, roughnessMap: HAS_ROUGHNESSMAP, anisotropy: HAS_ANISOTROPY, anisotropyMap: HAS_ANISOTROPYMAP, clearcoat: HAS_CLEARCOAT, clearcoatMap: HAS_CLEARCOATMAP, clearcoatNormalMap: HAS_CLEARCOAT_NORMALMAP, clearcoatRoughnessMap: HAS_CLEARCOAT_ROUGHNESSMAP, dispersion: HAS_DISPERSION, iridescence: HAS_IRIDESCENCE, iridescenceMap: HAS_IRIDESCENCEMAP, iridescenceThicknessMap: HAS_IRIDESCENCE_THICKNESSMAP, sheen: HAS_SHEEN, sheenColorMap: HAS_SHEEN_COLORMAP, sheenRoughnessMap: HAS_SHEEN_ROUGHNESSMAP, specularMap: HAS_SPECULARMAP, specularColorMap: HAS_SPECULAR_COLORMAP, specularIntensityMap: HAS_SPECULAR_INTENSITYMAP, transmission: HAS_TRANSMISSION, transmissionMap: HAS_TRANSMISSIONMAP, thicknessMap: HAS_THICKNESSMAP, gradientMap: HAS_GRADIENTMAP, opaque: material.transparent === false && material.blending === NormalBlending && material.alphaToCoverage === false, alphaMap: HAS_ALPHAMAP, alphaTest: HAS_ALPHATEST, alphaHash: HAS_ALPHAHASH, combine: material.combine, // mapUv: HAS_MAP && getChannel(material.map.channel), aoMapUv: HAS_AOMAP && getChannel(material.aoMap.channel), lightMapUv: HAS_LIGHTMAP && getChannel(material.lightMap.channel), bumpMapUv: HAS_BUMPMAP && getChannel(material.bumpMap.channel), normalMapUv: HAS_NORMALMAP && getChannel(material.normalMap.channel), displacementMapUv: HAS_DISPLACEMENTMAP && getChannel(material.displacementMap.channel), emissiveMapUv: HAS_EMISSIVEMAP && getChannel(material.emissiveMap.channel), metalnessMapUv: HAS_METALNESSMAP && getChannel(material.metalnessMap.channel), roughnessMapUv: HAS_ROUGHNESSMAP && getChannel(material.roughnessMap.channel), anisotropyMapUv: HAS_ANISOTROPYMAP && getChannel(material.anisotropyMap.channel), clearcoatMapUv: HAS_CLEARCOATMAP && getChannel(material.clearcoatMap.channel), clearcoatNormalMapUv: HAS_CLEARCOAT_NORMALMAP && getChannel(material.clearcoatNormalMap.channel), clearcoatRoughnessMapUv: HAS_CLEARCOAT_ROUGHNESSMAP && getChannel(material.clearcoatRoughnessMap.channel), iridescenceMapUv: HAS_IRIDESCENCEMAP && getChannel(material.iridescenceMap.channel), iridescenceThicknessMapUv: HAS_IRIDESCENCE_THICKNESSMAP && getChannel(material.iridescenceThicknessMap.channel), sheenColorMapUv: HAS_SHEEN_COLORMAP && getChannel(material.sheenColorMap.channel), sheenRoughnessMapUv: HAS_SHEEN_ROUGHNESSMAP && getChannel(material.sheenRoughnessMap.channel), specularMapUv: HAS_SPECULARMAP && getChannel(material.specularMap.channel), specularColorMapUv: HAS_SPECULAR_COLORMAP && getChannel(material.specularColorMap.channel), specularIntensityMapUv: HAS_SPECULAR_INTENSITYMAP && getChannel(material.specularIntensityMap.channel), transmissionMapUv: HAS_TRANSMISSIONMAP && getChannel(material.transmissionMap.channel), thicknessMapUv: HAS_THICKNESSMAP && getChannel(material.thicknessMap.channel), alphaMapUv: HAS_ALPHAMAP && getChannel(material.alphaMap.channel), // vertexTangents: !!geometry.attributes.tangent && (HAS_NORMALMAP || HAS_ANISOTROPY), vertexColors: material.vertexColors, vertexAlphas: material.vertexColors === true && !!geometry.attributes.color && geometry.attributes.color.itemSize === 4, pointsUvs: object.isPoints === true && !!geometry.attributes.uv && (HAS_MAP || HAS_ALPHAMAP), fog: !!fog, useFog: material.fog === true, fogExp2: !!fog && fog.isFogExp2, flatShading: material.flatShading === true, sizeAttenuation: material.sizeAttenuation === true, logarithmicDepthBuffer, reverseDepthBuffer, skinning: object.isSkinnedMesh === true, morphTargets: geometry.morphAttributes.position !== void 0, morphNormals: geometry.morphAttributes.normal !== void 0, morphColors: geometry.morphAttributes.color !== void 0, morphTargetsCount, morphTextureStride, numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numSpotLightMaps: lights.spotLightMap.length, numRectAreaLights: lights.rectArea.length, numHemiLights: lights.hemi.length, numDirLightShadows: lights.directionalShadowMap.length, numPointLightShadows: lights.pointShadowMap.length, numSpotLightShadows: lights.spotShadowMap.length, numSpotLightShadowsWithMaps: lights.numSpotLightShadowsWithMaps, numLightProbes: lights.numLightProbes, numClippingPlanes: clipping.numPlanes, numClipIntersection: clipping.numIntersection, dithering: material.dithering, shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0, shadowMapType: renderer.shadowMap.type, toneMapping, decodeVideoTexture: HAS_MAP && material.map.isVideoTexture === true && ColorManagement.getTransfer(material.map.colorSpace) === SRGBTransfer, decodeVideoTextureEmissive: HAS_EMISSIVEMAP && material.emissiveMap.isVideoTexture === true && ColorManagement.getTransfer(material.emissiveMap.colorSpace) === SRGBTransfer, premultipliedAlpha: material.premultipliedAlpha, doubleSided: material.side === DoubleSide, flipSided: material.side === BackSide, useDepthPacking: material.depthPacking >= 0, depthPacking: material.depthPacking || 0, index0AttributeName: material.index0AttributeName, extensionClipCullDistance: HAS_EXTENSIONS && material.extensions.clipCullDistance === true && extensions.has("WEBGL_clip_cull_distance"), extensionMultiDraw: (HAS_EXTENSIONS && material.extensions.multiDraw === true || IS_BATCHEDMESH) && extensions.has("WEBGL_multi_draw"), rendererExtensionParallelShaderCompile: extensions.has("KHR_parallel_shader_compile"), customProgramCacheKey: material.customProgramCacheKey() }; parameters.vertexUv1s = _activeChannels.has(1); parameters.vertexUv2s = _activeChannels.has(2); parameters.vertexUv3s = _activeChannels.has(3); _activeChannels.clear(); return parameters; } __name(getParameters, "getParameters"); function getProgramCacheKey(parameters) { const array = []; if (parameters.shaderID) { array.push(parameters.shaderID); } else { array.push(parameters.customVertexShaderID); array.push(parameters.customFragmentShaderID); } if (parameters.defines !== void 0) { for (const name in parameters.defines) { array.push(name); array.push(parameters.defines[name]); } } if (parameters.isRawShaderMaterial === false) { getProgramCacheKeyParameters(array, parameters); getProgramCacheKeyBooleans(array, parameters); array.push(renderer.outputColorSpace); } array.push(parameters.customProgramCacheKey); return array.join(); } __name(getProgramCacheKey, "getProgramCacheKey"); function getProgramCacheKeyParameters(array, parameters) { array.push(parameters.precision); array.push(parameters.outputColorSpace); array.push(parameters.envMapMode); array.push(parameters.envMapCubeUVHeight); array.push(parameters.mapUv); array.push(parameters.alphaMapUv); array.push(parameters.lightMapUv); array.push(parameters.aoMapUv); array.push(parameters.bumpMapUv); array.push(parameters.normalMapUv); array.push(parameters.displacementMapUv); array.push(parameters.emissiveMapUv); array.push(parameters.metalnessMapUv); array.push(parameters.roughnessMapUv); array.push(parameters.anisotropyMapUv); array.push(parameters.clearcoatMapUv); array.push(parameters.clearcoatNormalMapUv); array.push(parameters.clearcoatRoughnessMapUv); array.push(parameters.iridescenceMapUv); array.push(parameters.iridescenceThicknessMapUv); array.push(parameters.sheenColorMapUv); array.push(parameters.sheenRoughnessMapUv); array.push(parameters.specularMapUv); array.push(parameters.specularColorMapUv); array.push(parameters.specularIntensityMapUv); array.push(parameters.transmissionMapUv); array.push(parameters.thicknessMapUv); array.push(parameters.combine); array.push(parameters.fogExp2); array.push(parameters.sizeAttenuation); array.push(parameters.morphTargetsCount); array.push(parameters.morphAttributeCount); array.push(parameters.numDirLights); array.push(parameters.numPointLights); array.push(parameters.numSpotLights); array.push(parameters.numSpotLightMaps); array.push(parameters.numHemiLights); array.push(parameters.numRectAreaLights); array.push(parameters.numDirLightShadows); array.push(parameters.numPointLightShadows); array.push(parameters.numSpotLightShadows); array.push(parameters.numSpotLightShadowsWithMaps); array.push(parameters.numLightProbes); array.push(parameters.shadowMapType); array.push(parameters.toneMapping); array.push(parameters.numClippingPlanes); array.push(parameters.numClipIntersection); array.push(parameters.depthPacking); } __name(getProgramCacheKeyParameters, "getProgramCacheKeyParameters"); function getProgramCacheKeyBooleans(array, parameters) { _programLayers.disableAll(); if (parameters.supportsVertexTextures) _programLayers.enable(0); if (parameters.instancing) _programLayers.enable(1); if (parameters.instancingColor) _programLayers.enable(2); if (parameters.instancingMorph) _programLayers.enable(3); if (parameters.matcap) _programLayers.enable(4); if (parameters.envMap) _programLayers.enable(5); if (parameters.normalMapObjectSpace) _programLayers.enable(6); if (parameters.normalMapTangentSpace) _programLayers.enable(7); if (parameters.clearcoat) _programLayers.enable(8); if (parameters.iridescence) _programLayers.enable(9); if (parameters.alphaTest) _programLayers.enable(10); if (parameters.vertexColors) _programLayers.enable(11); if (parameters.vertexAlphas) _programLayers.enable(12); if (parameters.vertexUv1s) _programLayers.enable(13); if (parameters.vertexUv2s) _programLayers.enable(14); if (parameters.vertexUv3s) _programLayers.enable(15); if (parameters.vertexTangents) _programLayers.enable(16); if (parameters.anisotropy) _programLayers.enable(17); if (parameters.alphaHash) _programLayers.enable(18); if (parameters.batching) _programLayers.enable(19); if (parameters.dispersion) _programLayers.enable(20); if (parameters.batchingColor) _programLayers.enable(21); array.push(_programLayers.mask); _programLayers.disableAll(); if (parameters.fog) _programLayers.enable(0); if (parameters.useFog) _programLayers.enable(1); if (parameters.flatShading) _programLayers.enable(2); if (parameters.logarithmicDepthBuffer) _programLayers.enable(3); if (parameters.reverseDepthBuffer) _programLayers.enable(4); if (parameters.skinning) _programLayers.enable(5); if (parameters.morphTargets) _programLayers.enable(6); if (parameters.morphNormals) _programLayers.enable(7); if (parameters.morphColors) _programLayers.enable(8); if (parameters.premultipliedAlpha) _programLayers.enable(9); if (parameters.shadowMapEnabled) _programLayers.enable(10); if (parameters.doubleSided) _programLayers.enable(11); if (parameters.flipSided) _programLayers.enable(12); if (parameters.useDepthPacking) _programLayers.enable(13); if (parameters.dithering) _programLayers.enable(14); if (parameters.transmission) _programLayers.enable(15); if (parameters.sheen) _programLayers.enable(16); if (parameters.opaque) _programLayers.enable(17); if (parameters.pointsUvs) _programLayers.enable(18); if (parameters.decodeVideoTexture) _programLayers.enable(19); if (parameters.decodeVideoTextureEmissive) _programLayers.enable(20); if (parameters.alphaToCoverage) _programLayers.enable(21); array.push(_programLayers.mask); } __name(getProgramCacheKeyBooleans, "getProgramCacheKeyBooleans"); function getUniforms(material) { const shaderID = shaderIDs[material.type]; let uniforms; if (shaderID) { const shader = ShaderLib[shaderID]; uniforms = UniformsUtils.clone(shader.uniforms); } else { uniforms = material.uniforms; } return uniforms; } __name(getUniforms, "getUniforms"); function acquireProgram(parameters, cacheKey) { let program; for (let p = 0, pl = programs.length; p < pl; p++) { const preexistingProgram = programs[p]; if (preexistingProgram.cacheKey === cacheKey) { program = preexistingProgram; ++program.usedTimes; break; } } if (program === void 0) { program = new WebGLProgram(renderer, cacheKey, parameters, bindingStates); programs.push(program); } return program; } __name(acquireProgram, "acquireProgram"); function releaseProgram(program) { if (--program.usedTimes === 0) { const i = programs.indexOf(program); programs[i] = programs[programs.length - 1]; programs.pop(); program.destroy(); } } __name(releaseProgram, "releaseProgram"); function releaseShaderCache(material) { _customShaders.remove(material); } __name(releaseShaderCache, "releaseShaderCache"); function dispose() { _customShaders.dispose(); } __name(dispose, "dispose"); return { getParameters, getProgramCacheKey, getUniforms, acquireProgram, releaseProgram, releaseShaderCache, // Exposed for resource monitoring & error feedback via renderer.info: programs, dispose }; } __name(WebGLPrograms, "WebGLPrograms"); function WebGLProperties() { let properties = /* @__PURE__ */ new WeakMap(); function has(object) { return properties.has(object); } __name(has, "has"); function get(object) { let map = properties.get(object); if (map === void 0) { map = {}; properties.set(object, map); } return map; } __name(get, "get"); function remove(object) { properties.delete(object); } __name(remove, "remove"); function update(object, key, value) { properties.get(object)[key] = value; } __name(update, "update"); function dispose() { properties = /* @__PURE__ */ new WeakMap(); } __name(dispose, "dispose"); return { has, get, remove, update, dispose }; } __name(WebGLProperties, "WebGLProperties"); function painterSortStable(a, b) { if (a.groupOrder !== b.groupOrder) { return a.groupOrder - b.groupOrder; } else if (a.renderOrder !== b.renderOrder) { return a.renderOrder - b.renderOrder; } else if (a.material.id !== b.material.id) { return a.material.id - b.material.id; } else if (a.z !== b.z) { return a.z - b.z; } else { return a.id - b.id; } } __name(painterSortStable, "painterSortStable"); function reversePainterSortStable(a, b) { if (a.groupOrder !== b.groupOrder) { return a.groupOrder - b.groupOrder; } else if (a.renderOrder !== b.renderOrder) { return a.renderOrder - b.renderOrder; } else if (a.z !== b.z) { return b.z - a.z; } else { return a.id - b.id; } } __name(reversePainterSortStable, "reversePainterSortStable"); function WebGLRenderList() { const renderItems = []; let renderItemsIndex = 0; const opaque = []; const transmissive = []; const transparent = []; function init() { renderItemsIndex = 0; opaque.length = 0; transmissive.length = 0; transparent.length = 0; } __name(init, "init"); function getNextRenderItem(object, geometry, material, groupOrder, z, group) { let renderItem = renderItems[renderItemsIndex]; if (renderItem === void 0) { renderItem = { id: object.id, object, geometry, material, groupOrder, renderOrder: object.renderOrder, z, group }; renderItems[renderItemsIndex] = renderItem; } else { renderItem.id = object.id; renderItem.object = object; renderItem.geometry = geometry; renderItem.material = material; renderItem.groupOrder = groupOrder; renderItem.renderOrder = object.renderOrder; renderItem.z = z; renderItem.group = group; } renderItemsIndex++; return renderItem; } __name(getNextRenderItem, "getNextRenderItem"); function push(object, geometry, material, groupOrder, z, group) { const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group); if (material.transmission > 0) { transmissive.push(renderItem); } else if (material.transparent === true) { transparent.push(renderItem); } else { opaque.push(renderItem); } } __name(push, "push"); function unshift(object, geometry, material, groupOrder, z, group) { const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group); if (material.transmission > 0) { transmissive.unshift(renderItem); } else if (material.transparent === true) { transparent.unshift(renderItem); } else { opaque.unshift(renderItem); } } __name(unshift, "unshift"); function sort(customOpaqueSort, customTransparentSort) { if (opaque.length > 1) opaque.sort(customOpaqueSort || painterSortStable); if (transmissive.length > 1) transmissive.sort(customTransparentSort || reversePainterSortStable); if (transparent.length > 1) transparent.sort(customTransparentSort || reversePainterSortStable); } __name(sort, "sort"); function finish() { for (let i = renderItemsIndex, il = renderItems.length; i < il; i++) { const renderItem = renderItems[i]; if (renderItem.id === null) break; renderItem.id = null; renderItem.object = null; renderItem.geometry = null; renderItem.material = null; renderItem.group = null; } } __name(finish, "finish"); return { opaque, transmissive, transparent, init, push, unshift, finish, sort }; } __name(WebGLRenderList, "WebGLRenderList"); function WebGLRenderLists() { let lists = /* @__PURE__ */ new WeakMap(); function get(scene, renderCallDepth) { const listArray = lists.get(scene); let list; if (listArray === void 0) { list = new WebGLRenderList(); lists.set(scene, [list]); } else { if (renderCallDepth >= listArray.length) { list = new WebGLRenderList(); listArray.push(list); } else { list = listArray[renderCallDepth]; } } return list; } __name(get, "get"); function dispose() { lists = /* @__PURE__ */ new WeakMap(); } __name(dispose, "dispose"); return { get, dispose }; } __name(WebGLRenderLists, "WebGLRenderLists"); function UniformsCache() { const lights = {}; return { get: /* @__PURE__ */ __name(function(light) { if (lights[light.id] !== void 0) { return lights[light.id]; } let uniforms; switch (light.type) { case "DirectionalLight": uniforms = { direction: new Vector3(), color: new Color() }; break; case "SpotLight": uniforms = { position: new Vector3(), direction: new Vector3(), color: new Color(), distance: 0, coneCos: 0, penumbraCos: 0, decay: 0 }; break; case "PointLight": uniforms = { position: new Vector3(), color: new Color(), distance: 0, decay: 0 }; break; case "HemisphereLight": uniforms = { direction: new Vector3(), skyColor: new Color(), groundColor: new Color() }; break; case "RectAreaLight": uniforms = { color: new Color(), position: new Vector3(), halfWidth: new Vector3(), halfHeight: new Vector3() }; break; } lights[light.id] = uniforms; return uniforms; }, "get") }; } __name(UniformsCache, "UniformsCache"); function ShadowUniformsCache() { const lights = {}; return { get: /* @__PURE__ */ __name(function(light) { if (lights[light.id] !== void 0) { return lights[light.id]; } let uniforms; switch (light.type) { case "DirectionalLight": uniforms = { shadowIntensity: 1, shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case "SpotLight": uniforms = { shadowIntensity: 1, shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case "PointLight": uniforms = { shadowIntensity: 1, shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2(), shadowCameraNear: 1, shadowCameraFar: 1e3 }; break; } lights[light.id] = uniforms; return uniforms; }, "get") }; } __name(ShadowUniformsCache, "ShadowUniformsCache"); let nextVersion = 0; function shadowCastingAndTexturingLightsFirst(lightA, lightB) { return (lightB.castShadow ? 2 : 0) - (lightA.castShadow ? 2 : 0) + (lightB.map ? 1 : 0) - (lightA.map ? 1 : 0); } __name(shadowCastingAndTexturingLightsFirst, "shadowCastingAndTexturingLightsFirst"); function WebGLLights(extensions) { const cache = new UniformsCache(); const shadowCache = ShadowUniformsCache(); const state = { version: 0, hash: { directionalLength: -1, pointLength: -1, spotLength: -1, rectAreaLength: -1, hemiLength: -1, numDirectionalShadows: -1, numPointShadows: -1, numSpotShadows: -1, numSpotMaps: -1, numLightProbes: -1 }, ambient: [0, 0, 0], probe: [], directional: [], directionalShadow: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotLightMap: [], spotShadow: [], spotShadowMap: [], spotLightMatrix: [], rectArea: [], rectAreaLTC1: null, rectAreaLTC2: null, point: [], pointShadow: [], pointShadowMap: [], pointShadowMatrix: [], hemi: [], numSpotLightShadowsWithMaps: 0, numLightProbes: 0 }; for (let i = 0; i < 9; i++) state.probe.push(new Vector3()); const vector3 = new Vector3(); const matrix4 = new Matrix4(); const matrix42 = new Matrix4(); function setup(lights) { let r = 0, g = 0, b = 0; for (let i = 0; i < 9; i++) state.probe[i].set(0, 0, 0); let directionalLength = 0; let pointLength = 0; let spotLength = 0; let rectAreaLength = 0; let hemiLength = 0; let numDirectionalShadows = 0; let numPointShadows = 0; let numSpotShadows = 0; let numSpotMaps = 0; let numSpotShadowsWithMaps = 0; let numLightProbes = 0; lights.sort(shadowCastingAndTexturingLightsFirst); for (let i = 0, l = lights.length; i < l; i++) { const light = lights[i]; const color = light.color; const intensity = light.intensity; const distance = light.distance; const shadowMap = light.shadow && light.shadow.map ? light.shadow.map.texture : null; if (light.isAmbientLight) { r += color.r * intensity; g += color.g * intensity; b += color.b * intensity; } else if (light.isLightProbe) { for (let j = 0; j < 9; j++) { state.probe[j].addScaledVector(light.sh.coefficients[j], intensity); } numLightProbes++; } else if (light.isDirectionalLight) { const uniforms = cache.get(light); uniforms.color.copy(light.color).multiplyScalar(light.intensity); if (light.castShadow) { const shadow = light.shadow; const shadowUniforms = shadowCache.get(light); shadowUniforms.shadowIntensity = shadow.intensity; shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; state.directionalShadow[directionalLength] = shadowUniforms; state.directionalShadowMap[directionalLength] = shadowMap; state.directionalShadowMatrix[directionalLength] = light.shadow.matrix; numDirectionalShadows++; } state.directional[directionalLength] = uniforms; directionalLength++; } else if (light.isSpotLight) { const uniforms = cache.get(light); uniforms.position.setFromMatrixPosition(light.matrixWorld); uniforms.color.copy(color).multiplyScalar(intensity); uniforms.distance = distance; uniforms.coneCos = Math.cos(light.angle); uniforms.penumbraCos = Math.cos(light.angle * (1 - light.penumbra)); uniforms.decay = light.decay; state.spot[spotLength] = uniforms; const shadow = light.shadow; if (light.map) { state.spotLightMap[numSpotMaps] = light.map; numSpotMaps++; shadow.updateMatrices(light); if (light.castShadow) numSpotShadowsWithMaps++; } state.spotLightMatrix[spotLength] = shadow.matrix; if (light.castShadow) { const shadowUniforms = shadowCache.get(light); shadowUniforms.shadowIntensity = shadow.intensity; shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; state.spotShadow[spotLength] = shadowUniforms; state.spotShadowMap[spotLength] = shadowMap; numSpotShadows++; } spotLength++; } else if (light.isRectAreaLight) { const uniforms = cache.get(light); uniforms.color.copy(color).multiplyScalar(intensity); uniforms.halfWidth.set(light.width * 0.5, 0, 0); uniforms.halfHeight.set(0, light.height * 0.5, 0); state.rectArea[rectAreaLength] = uniforms; rectAreaLength++; } else if (light.isPointLight) { const uniforms = cache.get(light); uniforms.color.copy(light.color).multiplyScalar(light.intensity); uniforms.distance = light.distance; uniforms.decay = light.decay; if (light.castShadow) { const shadow = light.shadow; const shadowUniforms = shadowCache.get(light); shadowUniforms.shadowIntensity = shadow.intensity; shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; shadowUniforms.shadowCameraNear = shadow.camera.near; shadowUniforms.shadowCameraFar = shadow.camera.far; state.pointShadow[pointLength] = shadowUniforms; state.pointShadowMap[pointLength] = shadowMap; state.pointShadowMatrix[pointLength] = light.shadow.matrix; numPointShadows++; } state.point[pointLength] = uniforms; pointLength++; } else if (light.isHemisphereLight) { const uniforms = cache.get(light); uniforms.skyColor.copy(light.color).multiplyScalar(intensity); uniforms.groundColor.copy(light.groundColor).multiplyScalar(intensity); state.hemi[hemiLength] = uniforms; hemiLength++; } } if (rectAreaLength > 0) { if (extensions.has("OES_texture_float_linear") === true) { state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; } else { state.rectAreaLTC1 = UniformsLib.LTC_HALF_1; state.rectAreaLTC2 = UniformsLib.LTC_HALF_2; } } state.ambient[0] = r; state.ambient[1] = g; state.ambient[2] = b; const hash = state.hash; if (hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows || hash.numSpotMaps !== numSpotMaps || hash.numLightProbes !== numLightProbes) { state.directional.length = directionalLength; state.spot.length = spotLength; state.rectArea.length = rectAreaLength; state.point.length = pointLength; state.hemi.length = hemiLength; state.directionalShadow.length = numDirectionalShadows; state.directionalShadowMap.length = numDirectionalShadows; state.pointShadow.length = numPointShadows; state.pointShadowMap.length = numPointShadows; state.spotShadow.length = numSpotShadows; state.spotShadowMap.length = numSpotShadows; state.directionalShadowMatrix.length = numDirectionalShadows; state.pointShadowMatrix.length = numPointShadows; state.spotLightMatrix.length = numSpotShadows + numSpotMaps - numSpotShadowsWithMaps; state.spotLightMap.length = numSpotMaps; state.numSpotLightShadowsWithMaps = numSpotShadowsWithMaps; state.numLightProbes = numLightProbes; hash.directionalLength = directionalLength; hash.pointLength = pointLength; hash.spotLength = spotLength; hash.rectAreaLength = rectAreaLength; hash.hemiLength = hemiLength; hash.numDirectionalShadows = numDirectionalShadows; hash.numPointShadows = numPointShadows; hash.numSpotShadows = numSpotShadows; hash.numSpotMaps = numSpotMaps; hash.numLightProbes = numLightProbes; state.version = nextVersion++; } } __name(setup, "setup"); function setupView(lights, camera) { let directionalLength = 0; let pointLength = 0; let spotLength = 0; let rectAreaLength = 0; let hemiLength = 0; const viewMatrix = camera.matrixWorldInverse; for (let i = 0, l = lights.length; i < l; i++) { const light = lights[i]; if (light.isDirectionalLight) { const uniforms = state.directional[directionalLength]; uniforms.direction.setFromMatrixPosition(light.matrixWorld); vector3.setFromMatrixPosition(light.target.matrixWorld); uniforms.direction.sub(vector3); uniforms.direction.transformDirection(viewMatrix); directionalLength++; } else if (light.isSpotLight) { const uniforms = state.spot[spotLength]; uniforms.position.setFromMatrixPosition(light.matrixWorld); uniforms.position.applyMatrix4(viewMatrix); uniforms.direction.setFromMatrixPosition(light.matrixWorld); vector3.setFromMatrixPosition(light.target.matrixWorld); uniforms.direction.sub(vector3); uniforms.direction.transformDirection(viewMatrix); spotLength++; } else if (light.isRectAreaLight) { const uniforms = state.rectArea[rectAreaLength]; uniforms.position.setFromMatrixPosition(light.matrixWorld); uniforms.position.applyMatrix4(viewMatrix); matrix42.identity(); matrix4.copy(light.matrixWorld); matrix4.premultiply(viewMatrix); matrix42.extractRotation(matrix4); uniforms.halfWidth.set(light.width * 0.5, 0, 0); uniforms.halfHeight.set(0, light.height * 0.5, 0); uniforms.halfWidth.applyMatrix4(matrix42); uniforms.halfHeight.applyMatrix4(matrix42); rectAreaLength++; } else if (light.isPointLight) { const uniforms = state.point[pointLength]; uniforms.position.setFromMatrixPosition(light.matrixWorld); uniforms.position.applyMatrix4(viewMatrix); pointLength++; } else if (light.isHemisphereLight) { const uniforms = state.hemi[hemiLength]; uniforms.direction.setFromMatrixPosition(light.matrixWorld); uniforms.direction.transformDirection(viewMatrix); hemiLength++; } } } __name(setupView, "setupView"); return { setup, setupView, state }; } __name(WebGLLights, "WebGLLights"); function WebGLRenderState(extensions) { const lights = new WebGLLights(extensions); const lightsArray = []; const shadowsArray = []; function init(camera) { state.camera = camera; lightsArray.length = 0; shadowsArray.length = 0; } __name(init, "init"); function pushLight(light) { lightsArray.push(light); } __name(pushLight, "pushLight"); function pushShadow(shadowLight) { shadowsArray.push(shadowLight); } __name(pushShadow, "pushShadow"); function setupLights() { lights.setup(lightsArray); } __name(setupLights, "setupLights"); function setupLightsView(camera) { lights.setupView(lightsArray, camera); } __name(setupLightsView, "setupLightsView"); const state = { lightsArray, shadowsArray, camera: null, lights, transmissionRenderTarget: {} }; return { init, state, setupLights, setupLightsView, pushLight, pushShadow }; } __name(WebGLRenderState, "WebGLRenderState"); function WebGLRenderStates(extensions) { let renderStates = /* @__PURE__ */ new WeakMap(); function get(scene, renderCallDepth = 0) { const renderStateArray = renderStates.get(scene); let renderState; if (renderStateArray === void 0) { renderState = new WebGLRenderState(extensions); renderStates.set(scene, [renderState]); } else { if (renderCallDepth >= renderStateArray.length) { renderState = new WebGLRenderState(extensions); renderStateArray.push(renderState); } else { renderState = renderStateArray[renderCallDepth]; } } return renderState; } __name(get, "get"); function dispose() { renderStates = /* @__PURE__ */ new WeakMap(); } __name(dispose, "dispose"); return { get, dispose }; } __name(WebGLRenderStates, "WebGLRenderStates"); class MeshDepthMaterial extends Material { static { __name(this, "MeshDepthMaterial"); } static get type() { return "MeshDepthMaterial"; } constructor(parameters) { super(); this.isMeshDepthMaterial = true; this.depthPacking = BasicDepthPacking; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.setValues(parameters); } copy(source) { super.copy(source); this.depthPacking = source.depthPacking; this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; } } class MeshDistanceMaterial extends Material { static { __name(this, "MeshDistanceMaterial"); } static get type() { return "MeshDistanceMaterial"; } constructor(parameters) { super(); this.isMeshDistanceMaterial = true; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.setValues(parameters); } copy(source) { super.copy(source); this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; return this; } } const vertex = "void main() {\n gl_Position = vec4( position, 1.0 );\n}"; const fragment = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include \nvoid main() {\n const float samples = float( VSM_SAMPLES );\n float mean = 0.0;\n float squared_mean = 0.0;\n float uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n float uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n for ( float i = 0.0; i < samples; i ++ ) {\n float uvOffset = uvStart + i * uvStride;\n #ifdef HORIZONTAL_PASS\n vec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n mean += distribution.x;\n squared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n #else\n float depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n mean += depth;\n squared_mean += depth * depth;\n #endif\n }\n mean = mean / samples;\n squared_mean = squared_mean / samples;\n float std_dev = sqrt( squared_mean - mean * mean );\n gl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}"; function WebGLShadowMap(renderer, objects, capabilities) { let _frustum2 = new Frustum(); const _shadowMapSize = new Vector2(), _viewportSize = new Vector2(), _viewport = new Vector4(), _depthMaterial = new MeshDepthMaterial({ depthPacking: RGBADepthPacking }), _distanceMaterial = new MeshDistanceMaterial(), _materialCache = {}, _maxTextureSize = capabilities.maxTextureSize; const shadowSide = { [FrontSide]: BackSide, [BackSide]: FrontSide, [DoubleSide]: DoubleSide }; const shadowMaterialVertical = new ShaderMaterial({ defines: { VSM_SAMPLES: 8 }, uniforms: { shadow_pass: { value: null }, resolution: { value: new Vector2() }, radius: { value: 4 } }, vertexShader: vertex, fragmentShader: fragment }); const shadowMaterialHorizontal = shadowMaterialVertical.clone(); shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1; const fullScreenTri = new BufferGeometry(); fullScreenTri.setAttribute( "position", new BufferAttribute( new Float32Array([-1, -1, 0.5, 3, -1, 0.5, -1, 3, 0.5]), 3 ) ); const fullScreenMesh = new Mesh(fullScreenTri, shadowMaterialVertical); const scope = this; this.enabled = false; this.autoUpdate = true; this.needsUpdate = false; this.type = PCFShadowMap; let _previousType = this.type; this.render = function(lights, scene, camera) { if (scope.enabled === false) return; if (scope.autoUpdate === false && scope.needsUpdate === false) return; if (lights.length === 0) return; const currentRenderTarget = renderer.getRenderTarget(); const activeCubeFace = renderer.getActiveCubeFace(); const activeMipmapLevel = renderer.getActiveMipmapLevel(); const _state = renderer.state; _state.setBlending(NoBlending); _state.buffers.color.setClear(1, 1, 1, 1); _state.buffers.depth.setTest(true); _state.setScissorTest(false); const toVSM = _previousType !== VSMShadowMap && this.type === VSMShadowMap; const fromVSM = _previousType === VSMShadowMap && this.type !== VSMShadowMap; for (let i = 0, il = lights.length; i < il; i++) { const light = lights[i]; const shadow = light.shadow; if (shadow === void 0) { console.warn("THREE.WebGLShadowMap:", light, "has no shadow."); continue; } if (shadow.autoUpdate === false && shadow.needsUpdate === false) continue; _shadowMapSize.copy(shadow.mapSize); const shadowFrameExtents = shadow.getFrameExtents(); _shadowMapSize.multiply(shadowFrameExtents); _viewportSize.copy(shadow.mapSize); if (_shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize) { if (_shadowMapSize.x > _maxTextureSize) { _viewportSize.x = Math.floor(_maxTextureSize / shadowFrameExtents.x); _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x; shadow.mapSize.x = _viewportSize.x; } if (_shadowMapSize.y > _maxTextureSize) { _viewportSize.y = Math.floor(_maxTextureSize / shadowFrameExtents.y); _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y; shadow.mapSize.y = _viewportSize.y; } } if (shadow.map === null || toVSM === true || fromVSM === true) { const pars = this.type !== VSMShadowMap ? { minFilter: NearestFilter, magFilter: NearestFilter } : {}; if (shadow.map !== null) { shadow.map.dispose(); } shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars); shadow.map.texture.name = light.name + ".shadowMap"; shadow.camera.updateProjectionMatrix(); } renderer.setRenderTarget(shadow.map); renderer.clear(); const viewportCount = shadow.getViewportCount(); for (let vp = 0; vp < viewportCount; vp++) { const viewport = shadow.getViewport(vp); _viewport.set( _viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w ); _state.viewport(_viewport); shadow.updateMatrices(light, vp); _frustum2 = shadow.getFrustum(); renderObject(scene, camera, shadow.camera, light, this.type); } if (shadow.isPointLightShadow !== true && this.type === VSMShadowMap) { VSMPass(shadow, camera); } shadow.needsUpdate = false; } _previousType = this.type; scope.needsUpdate = false; renderer.setRenderTarget(currentRenderTarget, activeCubeFace, activeMipmapLevel); }; function VSMPass(shadow, camera) { const geometry = objects.update(fullScreenMesh); if (shadowMaterialVertical.defines.VSM_SAMPLES !== shadow.blurSamples) { shadowMaterialVertical.defines.VSM_SAMPLES = shadow.blurSamples; shadowMaterialHorizontal.defines.VSM_SAMPLES = shadow.blurSamples; shadowMaterialVertical.needsUpdate = true; shadowMaterialHorizontal.needsUpdate = true; } if (shadow.mapPass === null) { shadow.mapPass = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y); } shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture; shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize; shadowMaterialVertical.uniforms.radius.value = shadow.radius; renderer.setRenderTarget(shadow.mapPass); renderer.clear(); renderer.renderBufferDirect(camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null); shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture; shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize; shadowMaterialHorizontal.uniforms.radius.value = shadow.radius; renderer.setRenderTarget(shadow.map); renderer.clear(); renderer.renderBufferDirect(camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null); } __name(VSMPass, "VSMPass"); function getDepthMaterial(object, material, light, type) { let result = null; const customMaterial = light.isPointLight === true ? object.customDistanceMaterial : object.customDepthMaterial; if (customMaterial !== void 0) { result = customMaterial; } else { result = light.isPointLight === true ? _distanceMaterial : _depthMaterial; if (renderer.localClippingEnabled && material.clipShadows === true && Array.isArray(material.clippingPlanes) && material.clippingPlanes.length !== 0 || material.displacementMap && material.displacementScale !== 0 || material.alphaMap && material.alphaTest > 0 || material.map && material.alphaTest > 0) { const keyA = result.uuid, keyB = material.uuid; let materialsForVariant = _materialCache[keyA]; if (materialsForVariant === void 0) { materialsForVariant = {}; _materialCache[keyA] = materialsForVariant; } let cachedMaterial = materialsForVariant[keyB]; if (cachedMaterial === void 0) { cachedMaterial = result.clone(); materialsForVariant[keyB] = cachedMaterial; material.addEventListener("dispose", onMaterialDispose); } result = cachedMaterial; } } result.visible = material.visible; result.wireframe = material.wireframe; if (type === VSMShadowMap) { result.side = material.shadowSide !== null ? material.shadowSide : material.side; } else { result.side = material.shadowSide !== null ? material.shadowSide : shadowSide[material.side]; } result.alphaMap = material.alphaMap; result.alphaTest = material.alphaTest; result.map = material.map; result.clipShadows = material.clipShadows; result.clippingPlanes = material.clippingPlanes; result.clipIntersection = material.clipIntersection; result.displacementMap = material.displacementMap; result.displacementScale = material.displacementScale; result.displacementBias = material.displacementBias; result.wireframeLinewidth = material.wireframeLinewidth; result.linewidth = material.linewidth; if (light.isPointLight === true && result.isMeshDistanceMaterial === true) { const materialProperties = renderer.properties.get(result); materialProperties.light = light; } return result; } __name(getDepthMaterial, "getDepthMaterial"); function renderObject(object, camera, shadowCamera, light, type) { if (object.visible === false) return; const visible = object.layers.test(camera.layers); if (visible && (object.isMesh || object.isLine || object.isPoints)) { if ((object.castShadow || object.receiveShadow && type === VSMShadowMap) && (!object.frustumCulled || _frustum2.intersectsObject(object))) { object.modelViewMatrix.multiplyMatrices(shadowCamera.matrixWorldInverse, object.matrixWorld); const geometry = objects.update(object); const material = object.material; if (Array.isArray(material)) { const groups = geometry.groups; for (let k = 0, kl = groups.length; k < kl; k++) { const group = groups[k]; const groupMaterial = material[group.materialIndex]; if (groupMaterial && groupMaterial.visible) { const depthMaterial = getDepthMaterial(object, groupMaterial, light, type); object.onBeforeShadow(renderer, object, camera, shadowCamera, geometry, depthMaterial, group); renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, group); object.onAfterShadow(renderer, object, camera, shadowCamera, geometry, depthMaterial, group); } } } else if (material.visible) { const depthMaterial = getDepthMaterial(object, material, light, type); object.onBeforeShadow(renderer, object, camera, shadowCamera, geometry, depthMaterial, null); renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, null); object.onAfterShadow(renderer, object, camera, shadowCamera, geometry, depthMaterial, null); } } } const children = object.children; for (let i = 0, l = children.length; i < l; i++) { renderObject(children[i], camera, shadowCamera, light, type); } } __name(renderObject, "renderObject"); function onMaterialDispose(event) { const material = event.target; material.removeEventListener("dispose", onMaterialDispose); for (const id2 in _materialCache) { const cache = _materialCache[id2]; const uuid = event.target.uuid; if (uuid in cache) { const shadowMaterial = cache[uuid]; shadowMaterial.dispose(); delete cache[uuid]; } } } __name(onMaterialDispose, "onMaterialDispose"); } __name(WebGLShadowMap, "WebGLShadowMap"); const reversedFuncs = { [NeverDepth]: AlwaysDepth, [LessDepth]: GreaterDepth, [EqualDepth]: NotEqualDepth, [LessEqualDepth]: GreaterEqualDepth, [AlwaysDepth]: NeverDepth, [GreaterDepth]: LessDepth, [NotEqualDepth]: EqualDepth, [GreaterEqualDepth]: LessEqualDepth }; function WebGLState(gl, extensions) { function ColorBuffer() { let locked = false; const color = new Vector4(); let currentColorMask = null; const currentColorClear = new Vector4(0, 0, 0, 0); return { setMask: /* @__PURE__ */ __name(function(colorMask) { if (currentColorMask !== colorMask && !locked) { gl.colorMask(colorMask, colorMask, colorMask, colorMask); currentColorMask = colorMask; } }, "setMask"), setLocked: /* @__PURE__ */ __name(function(lock) { locked = lock; }, "setLocked"), setClear: /* @__PURE__ */ __name(function(r, g, b, a, premultipliedAlpha) { if (premultipliedAlpha === true) { r *= a; g *= a; b *= a; } color.set(r, g, b, a); if (currentColorClear.equals(color) === false) { gl.clearColor(r, g, b, a); currentColorClear.copy(color); } }, "setClear"), reset: /* @__PURE__ */ __name(function() { locked = false; currentColorMask = null; currentColorClear.set(-1, 0, 0, 0); }, "reset") }; } __name(ColorBuffer, "ColorBuffer"); function DepthBuffer() { let locked = false; let reversed = false; let currentDepthMask = null; let currentDepthFunc = null; let currentDepthClear = null; return { setReversed: /* @__PURE__ */ __name(function(value) { if (reversed !== value) { const ext2 = extensions.get("EXT_clip_control"); if (reversed) { ext2.clipControlEXT(ext2.LOWER_LEFT_EXT, ext2.ZERO_TO_ONE_EXT); } else { ext2.clipControlEXT(ext2.LOWER_LEFT_EXT, ext2.NEGATIVE_ONE_TO_ONE_EXT); } const oldDepth = currentDepthClear; currentDepthClear = null; this.setClear(oldDepth); } reversed = value; }, "setReversed"), getReversed: /* @__PURE__ */ __name(function() { return reversed; }, "getReversed"), setTest: /* @__PURE__ */ __name(function(depthTest) { if (depthTest) { enable(gl.DEPTH_TEST); } else { disable(gl.DEPTH_TEST); } }, "setTest"), setMask: /* @__PURE__ */ __name(function(depthMask) { if (currentDepthMask !== depthMask && !locked) { gl.depthMask(depthMask); currentDepthMask = depthMask; } }, "setMask"), setFunc: /* @__PURE__ */ __name(function(depthFunc) { if (reversed) depthFunc = reversedFuncs[depthFunc]; if (currentDepthFunc !== depthFunc) { switch (depthFunc) { case NeverDepth: gl.depthFunc(gl.NEVER); break; case AlwaysDepth: gl.depthFunc(gl.ALWAYS); break; case LessDepth: gl.depthFunc(gl.LESS); break; case LessEqualDepth: gl.depthFunc(gl.LEQUAL); break; case EqualDepth: gl.depthFunc(gl.EQUAL); break; case GreaterEqualDepth: gl.depthFunc(gl.GEQUAL); break; case GreaterDepth: gl.depthFunc(gl.GREATER); break; case NotEqualDepth: gl.depthFunc(gl.NOTEQUAL); break; default: gl.depthFunc(gl.LEQUAL); } currentDepthFunc = depthFunc; } }, "setFunc"), setLocked: /* @__PURE__ */ __name(function(lock) { locked = lock; }, "setLocked"), setClear: /* @__PURE__ */ __name(function(depth) { if (currentDepthClear !== depth) { if (reversed) { depth = 1 - depth; } gl.clearDepth(depth); currentDepthClear = depth; } }, "setClear"), reset: /* @__PURE__ */ __name(function() { locked = false; currentDepthMask = null; currentDepthFunc = null; currentDepthClear = null; reversed = false; }, "reset") }; } __name(DepthBuffer, "DepthBuffer"); function StencilBuffer() { let locked = false; let currentStencilMask = null; let currentStencilFunc = null; let currentStencilRef = null; let currentStencilFuncMask = null; let currentStencilFail = null; let currentStencilZFail = null; let currentStencilZPass = null; let currentStencilClear = null; return { setTest: /* @__PURE__ */ __name(function(stencilTest) { if (!locked) { if (stencilTest) { enable(gl.STENCIL_TEST); } else { disable(gl.STENCIL_TEST); } } }, "setTest"), setMask: /* @__PURE__ */ __name(function(stencilMask) { if (currentStencilMask !== stencilMask && !locked) { gl.stencilMask(stencilMask); currentStencilMask = stencilMask; } }, "setMask"), setFunc: /* @__PURE__ */ __name(function(stencilFunc, stencilRef, stencilMask) { if (currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask) { gl.stencilFunc(stencilFunc, stencilRef, stencilMask); currentStencilFunc = stencilFunc; currentStencilRef = stencilRef; currentStencilFuncMask = stencilMask; } }, "setFunc"), setOp: /* @__PURE__ */ __name(function(stencilFail, stencilZFail, stencilZPass) { if (currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass) { gl.stencilOp(stencilFail, stencilZFail, stencilZPass); currentStencilFail = stencilFail; currentStencilZFail = stencilZFail; currentStencilZPass = stencilZPass; } }, "setOp"), setLocked: /* @__PURE__ */ __name(function(lock) { locked = lock; }, "setLocked"), setClear: /* @__PURE__ */ __name(function(stencil) { if (currentStencilClear !== stencil) { gl.clearStencil(stencil); currentStencilClear = stencil; } }, "setClear"), reset: /* @__PURE__ */ __name(function() { locked = false; currentStencilMask = null; currentStencilFunc = null; currentStencilRef = null; currentStencilFuncMask = null; currentStencilFail = null; currentStencilZFail = null; currentStencilZPass = null; currentStencilClear = null; }, "reset") }; } __name(StencilBuffer, "StencilBuffer"); const colorBuffer = new ColorBuffer(); const depthBuffer = new DepthBuffer(); const stencilBuffer = new StencilBuffer(); const uboBindings = /* @__PURE__ */ new WeakMap(); const uboProgramMap = /* @__PURE__ */ new WeakMap(); let enabledCapabilities = {}; let currentBoundFramebuffers = {}; let currentDrawbuffers = /* @__PURE__ */ new WeakMap(); let defaultDrawbuffers = []; let currentProgram = null; let currentBlendingEnabled = false; let currentBlending = null; let currentBlendEquation = null; let currentBlendSrc = null; let currentBlendDst = null; let currentBlendEquationAlpha = null; let currentBlendSrcAlpha = null; let currentBlendDstAlpha = null; let currentBlendColor = new Color(0, 0, 0); let currentBlendAlpha = 0; let currentPremultipledAlpha = false; let currentFlipSided = null; let currentCullFace = null; let currentLineWidth = null; let currentPolygonOffsetFactor = null; let currentPolygonOffsetUnits = null; const maxTextures = gl.getParameter(gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS); let lineWidthAvailable = false; let version = 0; const glVersion = gl.getParameter(gl.VERSION); if (glVersion.indexOf("WebGL") !== -1) { version = parseFloat(/^WebGL (\d)/.exec(glVersion)[1]); lineWidthAvailable = version >= 1; } else if (glVersion.indexOf("OpenGL ES") !== -1) { version = parseFloat(/^OpenGL ES (\d)/.exec(glVersion)[1]); lineWidthAvailable = version >= 2; } let currentTextureSlot = null; let currentBoundTextures = {}; const scissorParam = gl.getParameter(gl.SCISSOR_BOX); const viewportParam = gl.getParameter(gl.VIEWPORT); const currentScissor = new Vector4().fromArray(scissorParam); const currentViewport = new Vector4().fromArray(viewportParam); function createTexture(type, target, count, dimensions) { const data = new Uint8Array(4); const texture = gl.createTexture(); gl.bindTexture(type, texture); gl.texParameteri(type, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(type, gl.TEXTURE_MAG_FILTER, gl.NEAREST); for (let i = 0; i < count; i++) { if (type === gl.TEXTURE_3D || type === gl.TEXTURE_2D_ARRAY) { gl.texImage3D(target, 0, gl.RGBA, 1, 1, dimensions, 0, gl.RGBA, gl.UNSIGNED_BYTE, data); } else { gl.texImage2D(target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data); } } return texture; } __name(createTexture, "createTexture"); const emptyTextures = {}; emptyTextures[gl.TEXTURE_2D] = createTexture(gl.TEXTURE_2D, gl.TEXTURE_2D, 1); emptyTextures[gl.TEXTURE_CUBE_MAP] = createTexture(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6); emptyTextures[gl.TEXTURE_2D_ARRAY] = createTexture(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_2D_ARRAY, 1, 1); emptyTextures[gl.TEXTURE_3D] = createTexture(gl.TEXTURE_3D, gl.TEXTURE_3D, 1, 1); colorBuffer.setClear(0, 0, 0, 1); depthBuffer.setClear(1); stencilBuffer.setClear(0); enable(gl.DEPTH_TEST); depthBuffer.setFunc(LessEqualDepth); setFlipSided(false); setCullFace(CullFaceBack); enable(gl.CULL_FACE); setBlending(NoBlending); function enable(id2) { if (enabledCapabilities[id2] !== true) { gl.enable(id2); enabledCapabilities[id2] = true; } } __name(enable, "enable"); function disable(id2) { if (enabledCapabilities[id2] !== false) { gl.disable(id2); enabledCapabilities[id2] = false; } } __name(disable, "disable"); function bindFramebuffer(target, framebuffer) { if (currentBoundFramebuffers[target] !== framebuffer) { gl.bindFramebuffer(target, framebuffer); currentBoundFramebuffers[target] = framebuffer; if (target === gl.DRAW_FRAMEBUFFER) { currentBoundFramebuffers[gl.FRAMEBUFFER] = framebuffer; } if (target === gl.FRAMEBUFFER) { currentBoundFramebuffers[gl.DRAW_FRAMEBUFFER] = framebuffer; } return true; } return false; } __name(bindFramebuffer, "bindFramebuffer"); function drawBuffers(renderTarget, framebuffer) { let drawBuffers2 = defaultDrawbuffers; let needsUpdate = false; if (renderTarget) { drawBuffers2 = currentDrawbuffers.get(framebuffer); if (drawBuffers2 === void 0) { drawBuffers2 = []; currentDrawbuffers.set(framebuffer, drawBuffers2); } const textures = renderTarget.textures; if (drawBuffers2.length !== textures.length || drawBuffers2[0] !== gl.COLOR_ATTACHMENT0) { for (let i = 0, il = textures.length; i < il; i++) { drawBuffers2[i] = gl.COLOR_ATTACHMENT0 + i; } drawBuffers2.length = textures.length; needsUpdate = true; } } else { if (drawBuffers2[0] !== gl.BACK) { drawBuffers2[0] = gl.BACK; needsUpdate = true; } } if (needsUpdate) { gl.drawBuffers(drawBuffers2); } } __name(drawBuffers, "drawBuffers"); function useProgram(program) { if (currentProgram !== program) { gl.useProgram(program); currentProgram = program; return true; } return false; } __name(useProgram, "useProgram"); const equationToGL = { [AddEquation]: gl.FUNC_ADD, [SubtractEquation]: gl.FUNC_SUBTRACT, [ReverseSubtractEquation]: gl.FUNC_REVERSE_SUBTRACT }; equationToGL[MinEquation] = gl.MIN; equationToGL[MaxEquation] = gl.MAX; const factorToGL = { [ZeroFactor]: gl.ZERO, [OneFactor]: gl.ONE, [SrcColorFactor]: gl.SRC_COLOR, [SrcAlphaFactor]: gl.SRC_ALPHA, [SrcAlphaSaturateFactor]: gl.SRC_ALPHA_SATURATE, [DstColorFactor]: gl.DST_COLOR, [DstAlphaFactor]: gl.DST_ALPHA, [OneMinusSrcColorFactor]: gl.ONE_MINUS_SRC_COLOR, [OneMinusSrcAlphaFactor]: gl.ONE_MINUS_SRC_ALPHA, [OneMinusDstColorFactor]: gl.ONE_MINUS_DST_COLOR, [OneMinusDstAlphaFactor]: gl.ONE_MINUS_DST_ALPHA, [ConstantColorFactor]: gl.CONSTANT_COLOR, [OneMinusConstantColorFactor]: gl.ONE_MINUS_CONSTANT_COLOR, [ConstantAlphaFactor]: gl.CONSTANT_ALPHA, [OneMinusConstantAlphaFactor]: gl.ONE_MINUS_CONSTANT_ALPHA }; function setBlending(blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, blendColor, blendAlpha, premultipliedAlpha) { if (blending === NoBlending) { if (currentBlendingEnabled === true) { disable(gl.BLEND); currentBlendingEnabled = false; } return; } if (currentBlendingEnabled === false) { enable(gl.BLEND); currentBlendingEnabled = true; } if (blending !== CustomBlending) { if (blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha) { if (currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation) { gl.blendEquation(gl.FUNC_ADD); currentBlendEquation = AddEquation; currentBlendEquationAlpha = AddEquation; } if (premultipliedAlpha) { switch (blending) { case NormalBlending: gl.blendFuncSeparate(gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA); break; case AdditiveBlending: gl.blendFunc(gl.ONE, gl.ONE); break; case SubtractiveBlending: gl.blendFuncSeparate(gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE); break; case MultiplyBlending: gl.blendFuncSeparate(gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA); break; default: console.error("THREE.WebGLState: Invalid blending: ", blending); break; } } else { switch (blending) { case NormalBlending: gl.blendFuncSeparate(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA); break; case AdditiveBlending: gl.blendFunc(gl.SRC_ALPHA, gl.ONE); break; case SubtractiveBlending: gl.blendFuncSeparate(gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE); break; case MultiplyBlending: gl.blendFunc(gl.ZERO, gl.SRC_COLOR); break; default: console.error("THREE.WebGLState: Invalid blending: ", blending); break; } } currentBlendSrc = null; currentBlendDst = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; currentBlendColor.set(0, 0, 0); currentBlendAlpha = 0; currentBlending = blending; currentPremultipledAlpha = premultipliedAlpha; } return; } blendEquationAlpha = blendEquationAlpha || blendEquation; blendSrcAlpha = blendSrcAlpha || blendSrc; blendDstAlpha = blendDstAlpha || blendDst; if (blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha) { gl.blendEquationSeparate(equationToGL[blendEquation], equationToGL[blendEquationAlpha]); currentBlendEquation = blendEquation; currentBlendEquationAlpha = blendEquationAlpha; } if (blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha) { gl.blendFuncSeparate(factorToGL[blendSrc], factorToGL[blendDst], factorToGL[blendSrcAlpha], factorToGL[blendDstAlpha]); currentBlendSrc = blendSrc; currentBlendDst = blendDst; currentBlendSrcAlpha = blendSrcAlpha; currentBlendDstAlpha = blendDstAlpha; } if (blendColor.equals(currentBlendColor) === false || blendAlpha !== currentBlendAlpha) { gl.blendColor(blendColor.r, blendColor.g, blendColor.b, blendAlpha); currentBlendColor.copy(blendColor); currentBlendAlpha = blendAlpha; } currentBlending = blending; currentPremultipledAlpha = false; } __name(setBlending, "setBlending"); function setMaterial(material, frontFaceCW) { material.side === DoubleSide ? disable(gl.CULL_FACE) : enable(gl.CULL_FACE); let flipSided = material.side === BackSide; if (frontFaceCW) flipSided = !flipSided; setFlipSided(flipSided); material.blending === NormalBlending && material.transparent === false ? setBlending(NoBlending) : setBlending(material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.blendColor, material.blendAlpha, material.premultipliedAlpha); depthBuffer.setFunc(material.depthFunc); depthBuffer.setTest(material.depthTest); depthBuffer.setMask(material.depthWrite); colorBuffer.setMask(material.colorWrite); const stencilWrite = material.stencilWrite; stencilBuffer.setTest(stencilWrite); if (stencilWrite) { stencilBuffer.setMask(material.stencilWriteMask); stencilBuffer.setFunc(material.stencilFunc, material.stencilRef, material.stencilFuncMask); stencilBuffer.setOp(material.stencilFail, material.stencilZFail, material.stencilZPass); } setPolygonOffset(material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits); material.alphaToCoverage === true ? enable(gl.SAMPLE_ALPHA_TO_COVERAGE) : disable(gl.SAMPLE_ALPHA_TO_COVERAGE); } __name(setMaterial, "setMaterial"); function setFlipSided(flipSided) { if (currentFlipSided !== flipSided) { if (flipSided) { gl.frontFace(gl.CW); } else { gl.frontFace(gl.CCW); } currentFlipSided = flipSided; } } __name(setFlipSided, "setFlipSided"); function setCullFace(cullFace) { if (cullFace !== CullFaceNone) { enable(gl.CULL_FACE); if (cullFace !== currentCullFace) { if (cullFace === CullFaceBack) { gl.cullFace(gl.BACK); } else if (cullFace === CullFaceFront) { gl.cullFace(gl.FRONT); } else { gl.cullFace(gl.FRONT_AND_BACK); } } } else { disable(gl.CULL_FACE); } currentCullFace = cullFace; } __name(setCullFace, "setCullFace"); function setLineWidth(width) { if (width !== currentLineWidth) { if (lineWidthAvailable) gl.lineWidth(width); currentLineWidth = width; } } __name(setLineWidth, "setLineWidth"); function setPolygonOffset(polygonOffset, factor, units) { if (polygonOffset) { enable(gl.POLYGON_OFFSET_FILL); if (currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units) { gl.polygonOffset(factor, units); currentPolygonOffsetFactor = factor; currentPolygonOffsetUnits = units; } } else { disable(gl.POLYGON_OFFSET_FILL); } } __name(setPolygonOffset, "setPolygonOffset"); function setScissorTest(scissorTest) { if (scissorTest) { enable(gl.SCISSOR_TEST); } else { disable(gl.SCISSOR_TEST); } } __name(setScissorTest, "setScissorTest"); function activeTexture(webglSlot) { if (webglSlot === void 0) webglSlot = gl.TEXTURE0 + maxTextures - 1; if (currentTextureSlot !== webglSlot) { gl.activeTexture(webglSlot); currentTextureSlot = webglSlot; } } __name(activeTexture, "activeTexture"); function bindTexture(webglType, webglTexture, webglSlot) { if (webglSlot === void 0) { if (currentTextureSlot === null) { webglSlot = gl.TEXTURE0 + maxTextures - 1; } else { webglSlot = currentTextureSlot; } } let boundTexture = currentBoundTextures[webglSlot]; if (boundTexture === void 0) { boundTexture = { type: void 0, texture: void 0 }; currentBoundTextures[webglSlot] = boundTexture; } if (boundTexture.type !== webglType || boundTexture.texture !== webglTexture) { if (currentTextureSlot !== webglSlot) { gl.activeTexture(webglSlot); currentTextureSlot = webglSlot; } gl.bindTexture(webglType, webglTexture || emptyTextures[webglType]); boundTexture.type = webglType; boundTexture.texture = webglTexture; } } __name(bindTexture, "bindTexture"); function unbindTexture() { const boundTexture = currentBoundTextures[currentTextureSlot]; if (boundTexture !== void 0 && boundTexture.type !== void 0) { gl.bindTexture(boundTexture.type, null); boundTexture.type = void 0; boundTexture.texture = void 0; } } __name(unbindTexture, "unbindTexture"); function compressedTexImage2D() { try { gl.compressedTexImage2D.apply(gl, arguments); } catch (error) { console.error("THREE.WebGLState:", error); } } __name(compressedTexImage2D, "compressedTexImage2D"); function compressedTexImage3D() { try { gl.compressedTexImage3D.apply(gl, arguments); } catch (error) { console.error("THREE.WebGLState:", error); } } __name(compressedTexImage3D, "compressedTexImage3D"); function texSubImage2D() { try { gl.texSubImage2D.apply(gl, arguments); } catch (error) { console.error("THREE.WebGLState:", error); } } __name(texSubImage2D, "texSubImage2D"); function texSubImage3D() { try { gl.texSubImage3D.apply(gl, arguments); } catch (error) { console.error("THREE.WebGLState:", error); } } __name(texSubImage3D, "texSubImage3D"); function compressedTexSubImage2D() { try { gl.compressedTexSubImage2D.apply(gl, arguments); } catch (error) { console.error("THREE.WebGLState:", error); } } __name(compressedTexSubImage2D, "compressedTexSubImage2D"); function compressedTexSubImage3D() { try { gl.compressedTexSubImage3D.apply(gl, arguments); } catch (error) { console.error("THREE.WebGLState:", error); } } __name(compressedTexSubImage3D, "compressedTexSubImage3D"); function texStorage2D() { try { gl.texStorage2D.apply(gl, arguments); } catch (error) { console.error("THREE.WebGLState:", error); } } __name(texStorage2D, "texStorage2D"); function texStorage3D() { try { gl.texStorage3D.apply(gl, arguments); } catch (error) { console.error("THREE.WebGLState:", error); } } __name(texStorage3D, "texStorage3D"); function texImage2D() { try { gl.texImage2D.apply(gl, arguments); } catch (error) { console.error("THREE.WebGLState:", error); } } __name(texImage2D, "texImage2D"); function texImage3D() { try { gl.texImage3D.apply(gl, arguments); } catch (error) { console.error("THREE.WebGLState:", error); } } __name(texImage3D, "texImage3D"); function scissor(scissor2) { if (currentScissor.equals(scissor2) === false) { gl.scissor(scissor2.x, scissor2.y, scissor2.z, scissor2.w); currentScissor.copy(scissor2); } } __name(scissor, "scissor"); function viewport(viewport2) { if (currentViewport.equals(viewport2) === false) { gl.viewport(viewport2.x, viewport2.y, viewport2.z, viewport2.w); currentViewport.copy(viewport2); } } __name(viewport, "viewport"); function updateUBOMapping(uniformsGroup, program) { let mapping = uboProgramMap.get(program); if (mapping === void 0) { mapping = /* @__PURE__ */ new WeakMap(); uboProgramMap.set(program, mapping); } let blockIndex = mapping.get(uniformsGroup); if (blockIndex === void 0) { blockIndex = gl.getUniformBlockIndex(program, uniformsGroup.name); mapping.set(uniformsGroup, blockIndex); } } __name(updateUBOMapping, "updateUBOMapping"); function uniformBlockBinding(uniformsGroup, program) { const mapping = uboProgramMap.get(program); const blockIndex = mapping.get(uniformsGroup); if (uboBindings.get(program) !== blockIndex) { gl.uniformBlockBinding(program, blockIndex, uniformsGroup.__bindingPointIndex); uboBindings.set(program, blockIndex); } } __name(uniformBlockBinding, "uniformBlockBinding"); function reset() { gl.disable(gl.BLEND); gl.disable(gl.CULL_FACE); gl.disable(gl.DEPTH_TEST); gl.disable(gl.POLYGON_OFFSET_FILL); gl.disable(gl.SCISSOR_TEST); gl.disable(gl.STENCIL_TEST); gl.disable(gl.SAMPLE_ALPHA_TO_COVERAGE); gl.blendEquation(gl.FUNC_ADD); gl.blendFunc(gl.ONE, gl.ZERO); gl.blendFuncSeparate(gl.ONE, gl.ZERO, gl.ONE, gl.ZERO); gl.blendColor(0, 0, 0, 0); gl.colorMask(true, true, true, true); gl.clearColor(0, 0, 0, 0); gl.depthMask(true); gl.depthFunc(gl.LESS); depthBuffer.setReversed(false); gl.clearDepth(1); gl.stencilMask(4294967295); gl.stencilFunc(gl.ALWAYS, 0, 4294967295); gl.stencilOp(gl.KEEP, gl.KEEP, gl.KEEP); gl.clearStencil(0); gl.cullFace(gl.BACK); gl.frontFace(gl.CCW); gl.polygonOffset(0, 0); gl.activeTexture(gl.TEXTURE0); gl.bindFramebuffer(gl.FRAMEBUFFER, null); gl.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null); gl.bindFramebuffer(gl.READ_FRAMEBUFFER, null); gl.useProgram(null); gl.lineWidth(1); gl.scissor(0, 0, gl.canvas.width, gl.canvas.height); gl.viewport(0, 0, gl.canvas.width, gl.canvas.height); enabledCapabilities = {}; currentTextureSlot = null; currentBoundTextures = {}; currentBoundFramebuffers = {}; currentDrawbuffers = /* @__PURE__ */ new WeakMap(); defaultDrawbuffers = []; currentProgram = null; currentBlendingEnabled = false; currentBlending = null; currentBlendEquation = null; currentBlendSrc = null; currentBlendDst = null; currentBlendEquationAlpha = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; currentBlendColor = new Color(0, 0, 0); currentBlendAlpha = 0; currentPremultipledAlpha = false; currentFlipSided = null; currentCullFace = null; currentLineWidth = null; currentPolygonOffsetFactor = null; currentPolygonOffsetUnits = null; currentScissor.set(0, 0, gl.canvas.width, gl.canvas.height); currentViewport.set(0, 0, gl.canvas.width, gl.canvas.height); colorBuffer.reset(); depthBuffer.reset(); stencilBuffer.reset(); } __name(reset, "reset"); return { buffers: { color: colorBuffer, depth: depthBuffer, stencil: stencilBuffer }, enable, disable, bindFramebuffer, drawBuffers, useProgram, setBlending, setMaterial, setFlipSided, setCullFace, setLineWidth, setPolygonOffset, setScissorTest, activeTexture, bindTexture, unbindTexture, compressedTexImage2D, compressedTexImage3D, texImage2D, texImage3D, updateUBOMapping, uniformBlockBinding, texStorage2D, texStorage3D, texSubImage2D, texSubImage3D, compressedTexSubImage2D, compressedTexSubImage3D, scissor, viewport, reset }; } __name(WebGLState, "WebGLState"); function contain(texture, aspect2) { const imageAspect = texture.image && texture.image.width ? texture.image.width / texture.image.height : 1; if (imageAspect > aspect2) { texture.repeat.x = 1; texture.repeat.y = imageAspect / aspect2; texture.offset.x = 0; texture.offset.y = (1 - texture.repeat.y) / 2; } else { texture.repeat.x = aspect2 / imageAspect; texture.repeat.y = 1; texture.offset.x = (1 - texture.repeat.x) / 2; texture.offset.y = 0; } return texture; } __name(contain, "contain"); function cover(texture, aspect2) { const imageAspect = texture.image && texture.image.width ? texture.image.width / texture.image.height : 1; if (imageAspect > aspect2) { texture.repeat.x = aspect2 / imageAspect; texture.repeat.y = 1; texture.offset.x = (1 - texture.repeat.x) / 2; texture.offset.y = 0; } else { texture.repeat.x = 1; texture.repeat.y = imageAspect / aspect2; texture.offset.x = 0; texture.offset.y = (1 - texture.repeat.y) / 2; } return texture; } __name(cover, "cover"); function fill(texture) { texture.repeat.x = 1; texture.repeat.y = 1; texture.offset.x = 0; texture.offset.y = 0; return texture; } __name(fill, "fill"); function getByteLength(width, height, format, type) { const typeByteLength = getTextureTypeByteLength(type); switch (format) { case AlphaFormat: return width * height; case LuminanceFormat: return width * height; case LuminanceAlphaFormat: return width * height * 2; case RedFormat: return width * height / typeByteLength.components * typeByteLength.byteLength; case RedIntegerFormat: return width * height / typeByteLength.components * typeByteLength.byteLength; case RGFormat: return width * height * 2 / typeByteLength.components * typeByteLength.byteLength; case RGIntegerFormat: return width * height * 2 / typeByteLength.components * typeByteLength.byteLength; case RGBFormat: return width * height * 3 / typeByteLength.components * typeByteLength.byteLength; case RGBAFormat: return width * height * 4 / typeByteLength.components * typeByteLength.byteLength; case RGBAIntegerFormat: return width * height * 4 / typeByteLength.components * typeByteLength.byteLength; case RGB_S3TC_DXT1_Format: case RGBA_S3TC_DXT1_Format: return Math.floor((width + 3) / 4) * Math.floor((height + 3) / 4) * 8; case RGBA_S3TC_DXT3_Format: case RGBA_S3TC_DXT5_Format: return Math.floor((width + 3) / 4) * Math.floor((height + 3) / 4) * 16; case RGB_PVRTC_2BPPV1_Format: case RGBA_PVRTC_2BPPV1_Format: return Math.max(width, 16) * Math.max(height, 8) / 4; case RGB_PVRTC_4BPPV1_Format: case RGBA_PVRTC_4BPPV1_Format: return Math.max(width, 8) * Math.max(height, 8) / 2; case RGB_ETC1_Format: case RGB_ETC2_Format: return Math.floor((width + 3) / 4) * Math.floor((height + 3) / 4) * 8; case RGBA_ETC2_EAC_Format: return Math.floor((width + 3) / 4) * Math.floor((height + 3) / 4) * 16; case RGBA_ASTC_4x4_Format: return Math.floor((width + 3) / 4) * Math.floor((height + 3) / 4) * 16; case RGBA_ASTC_5x4_Format: return Math.floor((width + 4) / 5) * Math.floor((height + 3) / 4) * 16; case RGBA_ASTC_5x5_Format: return Math.floor((width + 4) / 5) * Math.floor((height + 4) / 5) * 16; case RGBA_ASTC_6x5_Format: return Math.floor((width + 5) / 6) * Math.floor((height + 4) / 5) * 16; case RGBA_ASTC_6x6_Format: return Math.floor((width + 5) / 6) * Math.floor((height + 5) / 6) * 16; case RGBA_ASTC_8x5_Format: return Math.floor((width + 7) / 8) * Math.floor((height + 4) / 5) * 16; case RGBA_ASTC_8x6_Format: return Math.floor((width + 7) / 8) * Math.floor((height + 5) / 6) * 16; case RGBA_ASTC_8x8_Format: return Math.floor((width + 7) / 8) * Math.floor((height + 7) / 8) * 16; case RGBA_ASTC_10x5_Format: return Math.floor((width + 9) / 10) * Math.floor((height + 4) / 5) * 16; case RGBA_ASTC_10x6_Format: return Math.floor((width + 9) / 10) * Math.floor((height + 5) / 6) * 16; case RGBA_ASTC_10x8_Format: return Math.floor((width + 9) / 10) * Math.floor((height + 7) / 8) * 16; case RGBA_ASTC_10x10_Format: return Math.floor((width + 9) / 10) * Math.floor((height + 9) / 10) * 16; case RGBA_ASTC_12x10_Format: return Math.floor((width + 11) / 12) * Math.floor((height + 9) / 10) * 16; case RGBA_ASTC_12x12_Format: return Math.floor((width + 11) / 12) * Math.floor((height + 11) / 12) * 16; case RGBA_BPTC_Format: case RGB_BPTC_SIGNED_Format: case RGB_BPTC_UNSIGNED_Format: return Math.ceil(width / 4) * Math.ceil(height / 4) * 16; case RED_RGTC1_Format: case SIGNED_RED_RGTC1_Format: return Math.ceil(width / 4) * Math.ceil(height / 4) * 8; case RED_GREEN_RGTC2_Format: case SIGNED_RED_GREEN_RGTC2_Format: return Math.ceil(width / 4) * Math.ceil(height / 4) * 16; } throw new Error( `Unable to determine texture byte length for ${format} format.` ); } __name(getByteLength, "getByteLength"); function getTextureTypeByteLength(type) { switch (type) { case UnsignedByteType: case ByteType: return { byteLength: 1, components: 1 }; case UnsignedShortType: case ShortType: case HalfFloatType: return { byteLength: 2, components: 1 }; case UnsignedShort4444Type: case UnsignedShort5551Type: return { byteLength: 2, components: 4 }; case UnsignedIntType: case IntType: case FloatType: return { byteLength: 4, components: 1 }; case UnsignedInt5999Type: return { byteLength: 4, components: 3 }; } throw new Error(`Unknown texture type ${type}.`); } __name(getTextureTypeByteLength, "getTextureTypeByteLength"); const TextureUtils = { contain, cover, fill, getByteLength }; function WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info) { const multisampledRTTExt = extensions.has("WEBGL_multisampled_render_to_texture") ? extensions.get("WEBGL_multisampled_render_to_texture") : null; const supportsInvalidateFramebuffer = typeof navigator === "undefined" ? false : /OculusBrowser/g.test(navigator.userAgent); const _imageDimensions = new Vector2(); const _videoTextures = /* @__PURE__ */ new WeakMap(); let _canvas2; const _sources = /* @__PURE__ */ new WeakMap(); let useOffscreenCanvas = false; try { useOffscreenCanvas = typeof OffscreenCanvas !== "undefined" && new OffscreenCanvas(1, 1).getContext("2d") !== null; } catch (err2) { } function createCanvas(width, height) { return useOffscreenCanvas ? ( // eslint-disable-next-line compat/compat new OffscreenCanvas(width, height) ) : createElementNS("canvas"); } __name(createCanvas, "createCanvas"); function resizeImage(image, needsNewCanvas, maxSize) { let scale = 1; const dimensions = getDimensions(image); if (dimensions.width > maxSize || dimensions.height > maxSize) { scale = maxSize / Math.max(dimensions.width, dimensions.height); } if (scale < 1) { if (typeof HTMLImageElement !== "undefined" && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== "undefined" && image instanceof HTMLCanvasElement || typeof ImageBitmap !== "undefined" && image instanceof ImageBitmap || typeof VideoFrame !== "undefined" && image instanceof VideoFrame) { const width = Math.floor(scale * dimensions.width); const height = Math.floor(scale * dimensions.height); if (_canvas2 === void 0) _canvas2 = createCanvas(width, height); const canvas = needsNewCanvas ? createCanvas(width, height) : _canvas2; canvas.width = width; canvas.height = height; const context = canvas.getContext("2d"); context.drawImage(image, 0, 0, width, height); console.warn("THREE.WebGLRenderer: Texture has been resized from (" + dimensions.width + "x" + dimensions.height + ") to (" + width + "x" + height + ")."); return canvas; } else { if ("data" in image) { console.warn("THREE.WebGLRenderer: Image in DataTexture is too big (" + dimensions.width + "x" + dimensions.height + ")."); } return image; } } return image; } __name(resizeImage, "resizeImage"); function textureNeedsGenerateMipmaps(texture) { return texture.generateMipmaps; } __name(textureNeedsGenerateMipmaps, "textureNeedsGenerateMipmaps"); function generateMipmap(target) { _gl.generateMipmap(target); } __name(generateMipmap, "generateMipmap"); function getTargetType(texture) { if (texture.isWebGLCubeRenderTarget) return _gl.TEXTURE_CUBE_MAP; if (texture.isWebGL3DRenderTarget) return _gl.TEXTURE_3D; if (texture.isWebGLArrayRenderTarget || texture.isCompressedArrayTexture) return _gl.TEXTURE_2D_ARRAY; return _gl.TEXTURE_2D; } __name(getTargetType, "getTargetType"); function getInternalFormat(internalFormatName, glFormat, glType, colorSpace, forceLinearTransfer = false) { if (internalFormatName !== null) { if (_gl[internalFormatName] !== void 0) return _gl[internalFormatName]; console.warn("THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format '" + internalFormatName + "'"); } let internalFormat = glFormat; if (glFormat === _gl.RED) { if (glType === _gl.FLOAT) internalFormat = _gl.R32F; if (glType === _gl.HALF_FLOAT) internalFormat = _gl.R16F; if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.R8; } if (glFormat === _gl.RED_INTEGER) { if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.R8UI; if (glType === _gl.UNSIGNED_SHORT) internalFormat = _gl.R16UI; if (glType === _gl.UNSIGNED_INT) internalFormat = _gl.R32UI; if (glType === _gl.BYTE) internalFormat = _gl.R8I; if (glType === _gl.SHORT) internalFormat = _gl.R16I; if (glType === _gl.INT) internalFormat = _gl.R32I; } if (glFormat === _gl.RG) { if (glType === _gl.FLOAT) internalFormat = _gl.RG32F; if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RG16F; if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RG8; } if (glFormat === _gl.RG_INTEGER) { if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RG8UI; if (glType === _gl.UNSIGNED_SHORT) internalFormat = _gl.RG16UI; if (glType === _gl.UNSIGNED_INT) internalFormat = _gl.RG32UI; if (glType === _gl.BYTE) internalFormat = _gl.RG8I; if (glType === _gl.SHORT) internalFormat = _gl.RG16I; if (glType === _gl.INT) internalFormat = _gl.RG32I; } if (glFormat === _gl.RGB_INTEGER) { if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGB8UI; if (glType === _gl.UNSIGNED_SHORT) internalFormat = _gl.RGB16UI; if (glType === _gl.UNSIGNED_INT) internalFormat = _gl.RGB32UI; if (glType === _gl.BYTE) internalFormat = _gl.RGB8I; if (glType === _gl.SHORT) internalFormat = _gl.RGB16I; if (glType === _gl.INT) internalFormat = _gl.RGB32I; } if (glFormat === _gl.RGBA_INTEGER) { if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGBA8UI; if (glType === _gl.UNSIGNED_SHORT) internalFormat = _gl.RGBA16UI; if (glType === _gl.UNSIGNED_INT) internalFormat = _gl.RGBA32UI; if (glType === _gl.BYTE) internalFormat = _gl.RGBA8I; if (glType === _gl.SHORT) internalFormat = _gl.RGBA16I; if (glType === _gl.INT) internalFormat = _gl.RGBA32I; } if (glFormat === _gl.RGB) { if (glType === _gl.UNSIGNED_INT_5_9_9_9_REV) internalFormat = _gl.RGB9_E5; } if (glFormat === _gl.RGBA) { const transfer = forceLinearTransfer ? LinearTransfer : ColorManagement.getTransfer(colorSpace); if (glType === _gl.FLOAT) internalFormat = _gl.RGBA32F; if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGBA16F; if (glType === _gl.UNSIGNED_BYTE) internalFormat = transfer === SRGBTransfer ? _gl.SRGB8_ALPHA8 : _gl.RGBA8; if (glType === _gl.UNSIGNED_SHORT_4_4_4_4) internalFormat = _gl.RGBA4; if (glType === _gl.UNSIGNED_SHORT_5_5_5_1) internalFormat = _gl.RGB5_A1; } if (internalFormat === _gl.R16F || internalFormat === _gl.R32F || internalFormat === _gl.RG16F || internalFormat === _gl.RG32F || internalFormat === _gl.RGBA16F || internalFormat === _gl.RGBA32F) { extensions.get("EXT_color_buffer_float"); } return internalFormat; } __name(getInternalFormat, "getInternalFormat"); function getInternalDepthFormat(useStencil, depthType) { let glInternalFormat; if (useStencil) { if (depthType === null || depthType === UnsignedIntType || depthType === UnsignedInt248Type) { glInternalFormat = _gl.DEPTH24_STENCIL8; } else if (depthType === FloatType) { glInternalFormat = _gl.DEPTH32F_STENCIL8; } else if (depthType === UnsignedShortType) { glInternalFormat = _gl.DEPTH24_STENCIL8; console.warn("DepthTexture: 16 bit depth attachment is not supported with stencil. Using 24-bit attachment."); } } else { if (depthType === null || depthType === UnsignedIntType || depthType === UnsignedInt248Type) { glInternalFormat = _gl.DEPTH_COMPONENT24; } else if (depthType === FloatType) { glInternalFormat = _gl.DEPTH_COMPONENT32F; } else if (depthType === UnsignedShortType) { glInternalFormat = _gl.DEPTH_COMPONENT16; } } return glInternalFormat; } __name(getInternalDepthFormat, "getInternalDepthFormat"); function getMipLevels(texture, image) { if (textureNeedsGenerateMipmaps(texture) === true || texture.isFramebufferTexture && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) { return Math.log2(Math.max(image.width, image.height)) + 1; } else if (texture.mipmaps !== void 0 && texture.mipmaps.length > 0) { return texture.mipmaps.length; } else if (texture.isCompressedTexture && Array.isArray(texture.image)) { return image.mipmaps.length; } else { return 1; } } __name(getMipLevels, "getMipLevels"); function onTextureDispose(event) { const texture = event.target; texture.removeEventListener("dispose", onTextureDispose); deallocateTexture(texture); if (texture.isVideoTexture) { _videoTextures.delete(texture); } } __name(onTextureDispose, "onTextureDispose"); function onRenderTargetDispose(event) { const renderTarget = event.target; renderTarget.removeEventListener("dispose", onRenderTargetDispose); deallocateRenderTarget(renderTarget); } __name(onRenderTargetDispose, "onRenderTargetDispose"); function deallocateTexture(texture) { const textureProperties = properties.get(texture); if (textureProperties.__webglInit === void 0) return; const source = texture.source; const webglTextures = _sources.get(source); if (webglTextures) { const webglTexture = webglTextures[textureProperties.__cacheKey]; webglTexture.usedTimes--; if (webglTexture.usedTimes === 0) { deleteTexture(texture); } if (Object.keys(webglTextures).length === 0) { _sources.delete(source); } } properties.remove(texture); } __name(deallocateTexture, "deallocateTexture"); function deleteTexture(texture) { const textureProperties = properties.get(texture); _gl.deleteTexture(textureProperties.__webglTexture); const source = texture.source; const webglTextures = _sources.get(source); delete webglTextures[textureProperties.__cacheKey]; info.memory.textures--; } __name(deleteTexture, "deleteTexture"); function deallocateRenderTarget(renderTarget) { const renderTargetProperties = properties.get(renderTarget); if (renderTarget.depthTexture) { renderTarget.depthTexture.dispose(); properties.remove(renderTarget.depthTexture); } if (renderTarget.isWebGLCubeRenderTarget) { for (let i = 0; i < 6; i++) { if (Array.isArray(renderTargetProperties.__webglFramebuffer[i])) { for (let level = 0; level < renderTargetProperties.__webglFramebuffer[i].length; level++) _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i][level]); } else { _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i]); } if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer[i]); } } else { if (Array.isArray(renderTargetProperties.__webglFramebuffer)) { for (let level = 0; level < renderTargetProperties.__webglFramebuffer.length; level++) _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[level]); } else { _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer); } if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer); if (renderTargetProperties.__webglMultisampledFramebuffer) _gl.deleteFramebuffer(renderTargetProperties.__webglMultisampledFramebuffer); if (renderTargetProperties.__webglColorRenderbuffer) { for (let i = 0; i < renderTargetProperties.__webglColorRenderbuffer.length; i++) { if (renderTargetProperties.__webglColorRenderbuffer[i]) _gl.deleteRenderbuffer(renderTargetProperties.__webglColorRenderbuffer[i]); } } if (renderTargetProperties.__webglDepthRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthRenderbuffer); } const textures = renderTarget.textures; for (let i = 0, il = textures.length; i < il; i++) { const attachmentProperties = properties.get(textures[i]); if (attachmentProperties.__webglTexture) { _gl.deleteTexture(attachmentProperties.__webglTexture); info.memory.textures--; } properties.remove(textures[i]); } properties.remove(renderTarget); } __name(deallocateRenderTarget, "deallocateRenderTarget"); let textureUnits = 0; function resetTextureUnits() { textureUnits = 0; } __name(resetTextureUnits, "resetTextureUnits"); function allocateTextureUnit() { const textureUnit = textureUnits; if (textureUnit >= capabilities.maxTextures) { console.warn("THREE.WebGLTextures: Trying to use " + textureUnit + " texture units while this GPU supports only " + capabilities.maxTextures); } textureUnits += 1; return textureUnit; } __name(allocateTextureUnit, "allocateTextureUnit"); function getTextureCacheKey(texture) { const array = []; array.push(texture.wrapS); array.push(texture.wrapT); array.push(texture.wrapR || 0); array.push(texture.magFilter); array.push(texture.minFilter); array.push(texture.anisotropy); array.push(texture.internalFormat); array.push(texture.format); array.push(texture.type); array.push(texture.generateMipmaps); array.push(texture.premultiplyAlpha); array.push(texture.flipY); array.push(texture.unpackAlignment); array.push(texture.colorSpace); return array.join(); } __name(getTextureCacheKey, "getTextureCacheKey"); function setTexture2D(texture, slot) { const textureProperties = properties.get(texture); if (texture.isVideoTexture) updateVideoTexture(texture); if (texture.isRenderTargetTexture === false && texture.version > 0 && textureProperties.__version !== texture.version) { const image = texture.image; if (image === null) { console.warn("THREE.WebGLRenderer: Texture marked for update but no image data found."); } else if (image.complete === false) { console.warn("THREE.WebGLRenderer: Texture marked for update but image is incomplete"); } else { uploadTexture(textureProperties, texture, slot); return; } } state.bindTexture(_gl.TEXTURE_2D, textureProperties.__webglTexture, _gl.TEXTURE0 + slot); } __name(setTexture2D, "setTexture2D"); function setTexture2DArray(texture, slot) { const textureProperties = properties.get(texture); if (texture.version > 0 && textureProperties.__version !== texture.version) { uploadTexture(textureProperties, texture, slot); return; } state.bindTexture(_gl.TEXTURE_2D_ARRAY, textureProperties.__webglTexture, _gl.TEXTURE0 + slot); } __name(setTexture2DArray, "setTexture2DArray"); function setTexture3D(texture, slot) { const textureProperties = properties.get(texture); if (texture.version > 0 && textureProperties.__version !== texture.version) { uploadTexture(textureProperties, texture, slot); return; } state.bindTexture(_gl.TEXTURE_3D, textureProperties.__webglTexture, _gl.TEXTURE0 + slot); } __name(setTexture3D, "setTexture3D"); function setTextureCube(texture, slot) { const textureProperties = properties.get(texture); if (texture.version > 0 && textureProperties.__version !== texture.version) { uploadCubeTexture(textureProperties, texture, slot); return; } state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture, _gl.TEXTURE0 + slot); } __name(setTextureCube, "setTextureCube"); const wrappingToGL = { [RepeatWrapping]: _gl.REPEAT, [ClampToEdgeWrapping]: _gl.CLAMP_TO_EDGE, [MirroredRepeatWrapping]: _gl.MIRRORED_REPEAT }; const filterToGL = { [NearestFilter]: _gl.NEAREST, [NearestMipmapNearestFilter]: _gl.NEAREST_MIPMAP_NEAREST, [NearestMipmapLinearFilter]: _gl.NEAREST_MIPMAP_LINEAR, [LinearFilter]: _gl.LINEAR, [LinearMipmapNearestFilter]: _gl.LINEAR_MIPMAP_NEAREST, [LinearMipmapLinearFilter]: _gl.LINEAR_MIPMAP_LINEAR }; const compareToGL = { [NeverCompare]: _gl.NEVER, [AlwaysCompare]: _gl.ALWAYS, [LessCompare]: _gl.LESS, [LessEqualCompare]: _gl.LEQUAL, [EqualCompare]: _gl.EQUAL, [GreaterEqualCompare]: _gl.GEQUAL, [GreaterCompare]: _gl.GREATER, [NotEqualCompare]: _gl.NOTEQUAL }; function setTextureParameters(textureType, texture) { if (texture.type === FloatType && extensions.has("OES_texture_float_linear") === false && (texture.magFilter === LinearFilter || texture.magFilter === LinearMipmapNearestFilter || texture.magFilter === NearestMipmapLinearFilter || texture.magFilter === LinearMipmapLinearFilter || texture.minFilter === LinearFilter || texture.minFilter === LinearMipmapNearestFilter || texture.minFilter === NearestMipmapLinearFilter || texture.minFilter === LinearMipmapLinearFilter)) { console.warn("THREE.WebGLRenderer: Unable to use linear filtering with floating point textures. OES_texture_float_linear not supported on this device."); } _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, wrappingToGL[texture.wrapS]); _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, wrappingToGL[texture.wrapT]); if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) { _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, wrappingToGL[texture.wrapR]); } _gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterToGL[texture.magFilter]); _gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterToGL[texture.minFilter]); if (texture.compareFunction) { _gl.texParameteri(textureType, _gl.TEXTURE_COMPARE_MODE, _gl.COMPARE_REF_TO_TEXTURE); _gl.texParameteri(textureType, _gl.TEXTURE_COMPARE_FUNC, compareToGL[texture.compareFunction]); } if (extensions.has("EXT_texture_filter_anisotropic") === true) { if (texture.magFilter === NearestFilter) return; if (texture.minFilter !== NearestMipmapLinearFilter && texture.minFilter !== LinearMipmapLinearFilter) return; if (texture.type === FloatType && extensions.has("OES_texture_float_linear") === false) return; if (texture.anisotropy > 1 || properties.get(texture).__currentAnisotropy) { const extension = extensions.get("EXT_texture_filter_anisotropic"); _gl.texParameterf(textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min(texture.anisotropy, capabilities.getMaxAnisotropy())); properties.get(texture).__currentAnisotropy = texture.anisotropy; } } } __name(setTextureParameters, "setTextureParameters"); function initTexture(textureProperties, texture) { let forceUpload = false; if (textureProperties.__webglInit === void 0) { textureProperties.__webglInit = true; texture.addEventListener("dispose", onTextureDispose); } const source = texture.source; let webglTextures = _sources.get(source); if (webglTextures === void 0) { webglTextures = {}; _sources.set(source, webglTextures); } const textureCacheKey = getTextureCacheKey(texture); if (textureCacheKey !== textureProperties.__cacheKey) { if (webglTextures[textureCacheKey] === void 0) { webglTextures[textureCacheKey] = { texture: _gl.createTexture(), usedTimes: 0 }; info.memory.textures++; forceUpload = true; } webglTextures[textureCacheKey].usedTimes++; const webglTexture = webglTextures[textureProperties.__cacheKey]; if (webglTexture !== void 0) { webglTextures[textureProperties.__cacheKey].usedTimes--; if (webglTexture.usedTimes === 0) { deleteTexture(texture); } } textureProperties.__cacheKey = textureCacheKey; textureProperties.__webglTexture = webglTextures[textureCacheKey].texture; } return forceUpload; } __name(initTexture, "initTexture"); function uploadTexture(textureProperties, texture, slot) { let textureType = _gl.TEXTURE_2D; if (texture.isDataArrayTexture || texture.isCompressedArrayTexture) textureType = _gl.TEXTURE_2D_ARRAY; if (texture.isData3DTexture) textureType = _gl.TEXTURE_3D; const forceUpload = initTexture(textureProperties, texture); const source = texture.source; state.bindTexture(textureType, textureProperties.__webglTexture, _gl.TEXTURE0 + slot); const sourceProperties = properties.get(source); if (source.version !== sourceProperties.__version || forceUpload === true) { state.activeTexture(_gl.TEXTURE0 + slot); const workingPrimaries = ColorManagement.getPrimaries(ColorManagement.workingColorSpace); const texturePrimaries = texture.colorSpace === NoColorSpace ? null : ColorManagement.getPrimaries(texture.colorSpace); const unpackConversion = texture.colorSpace === NoColorSpace || workingPrimaries === texturePrimaries ? _gl.NONE : _gl.BROWSER_DEFAULT_WEBGL; _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY); _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha); _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment); _gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, unpackConversion); let image = resizeImage(texture.image, false, capabilities.maxTextureSize); image = verifyColorSpace(texture, image); const glFormat = utils.convert(texture.format, texture.colorSpace); const glType = utils.convert(texture.type); let glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.colorSpace, texture.isVideoTexture); setTextureParameters(textureType, texture); let mipmap; const mipmaps = texture.mipmaps; const useTexStorage = texture.isVideoTexture !== true; const allocateMemory = sourceProperties.__version === void 0 || forceUpload === true; const dataReady = source.dataReady; const levels = getMipLevels(texture, image); if (texture.isDepthTexture) { glInternalFormat = getInternalDepthFormat(texture.format === DepthStencilFormat, texture.type); if (allocateMemory) { if (useTexStorage) { state.texStorage2D(_gl.TEXTURE_2D, 1, glInternalFormat, image.width, image.height); } else { state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null); } } } else if (texture.isDataTexture) { if (mipmaps.length > 0) { if (useTexStorage && allocateMemory) { state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, mipmaps[0].width, mipmaps[0].height); } for (let i = 0, il = mipmaps.length; i < il; i++) { mipmap = mipmaps[i]; if (useTexStorage) { if (dataReady) { state.texSubImage2D(_gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data); } } else { state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data); } } texture.generateMipmaps = false; } else { if (useTexStorage) { if (allocateMemory) { state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, image.width, image.height); } if (dataReady) { state.texSubImage2D(_gl.TEXTURE_2D, 0, 0, 0, image.width, image.height, glFormat, glType, image.data); } } else { state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data); } } } else if (texture.isCompressedTexture) { if (texture.isCompressedArrayTexture) { if (useTexStorage && allocateMemory) { state.texStorage3D(_gl.TEXTURE_2D_ARRAY, levels, glInternalFormat, mipmaps[0].width, mipmaps[0].height, image.depth); } for (let i = 0, il = mipmaps.length; i < il; i++) { mipmap = mipmaps[i]; if (texture.format !== RGBAFormat) { if (glFormat !== null) { if (useTexStorage) { if (dataReady) { if (texture.layerUpdates.size > 0) { const layerByteLength = getByteLength(mipmap.width, mipmap.height, texture.format, texture.type); for (const layerIndex of texture.layerUpdates) { const layerData = mipmap.data.subarray( layerIndex * layerByteLength / mipmap.data.BYTES_PER_ELEMENT, (layerIndex + 1) * layerByteLength / mipmap.data.BYTES_PER_ELEMENT ); state.compressedTexSubImage3D(_gl.TEXTURE_2D_ARRAY, i, 0, 0, layerIndex, mipmap.width, mipmap.height, 1, glFormat, layerData); } texture.clearLayerUpdates(); } else { state.compressedTexSubImage3D(_gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, mipmap.data); } } } else { state.compressedTexImage3D(_gl.TEXTURE_2D_ARRAY, i, glInternalFormat, mipmap.width, mipmap.height, image.depth, 0, mipmap.data, 0, 0); } } else { console.warn("THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()"); } } else { if (useTexStorage) { if (dataReady) { state.texSubImage3D(_gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, glType, mipmap.data); } } else { state.texImage3D(_gl.TEXTURE_2D_ARRAY, i, glInternalFormat, mipmap.width, mipmap.height, image.depth, 0, glFormat, glType, mipmap.data); } } } } else { if (useTexStorage && allocateMemory) { state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, mipmaps[0].width, mipmaps[0].height); } for (let i = 0, il = mipmaps.length; i < il; i++) { mipmap = mipmaps[i]; if (texture.format !== RGBAFormat) { if (glFormat !== null) { if (useTexStorage) { if (dataReady) { state.compressedTexSubImage2D(_gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data); } } else { state.compressedTexImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data); } } else { console.warn("THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()"); } } else { if (useTexStorage) { if (dataReady) { state.texSubImage2D(_gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data); } } else { state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data); } } } } } else if (texture.isDataArrayTexture) { if (useTexStorage) { if (allocateMemory) { state.texStorage3D(_gl.TEXTURE_2D_ARRAY, levels, glInternalFormat, image.width, image.height, image.depth); } if (dataReady) { if (texture.layerUpdates.size > 0) { const layerByteLength = getByteLength(image.width, image.height, texture.format, texture.type); for (const layerIndex of texture.layerUpdates) { const layerData = image.data.subarray( layerIndex * layerByteLength / image.data.BYTES_PER_ELEMENT, (layerIndex + 1) * layerByteLength / image.data.BYTES_PER_ELEMENT ); state.texSubImage3D(_gl.TEXTURE_2D_ARRAY, 0, 0, 0, layerIndex, image.width, image.height, 1, glFormat, glType, layerData); } texture.clearLayerUpdates(); } else { state.texSubImage3D(_gl.TEXTURE_2D_ARRAY, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data); } } } else { state.texImage3D(_gl.TEXTURE_2D_ARRAY, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data); } } else if (texture.isData3DTexture) { if (useTexStorage) { if (allocateMemory) { state.texStorage3D(_gl.TEXTURE_3D, levels, glInternalFormat, image.width, image.height, image.depth); } if (dataReady) { state.texSubImage3D(_gl.TEXTURE_3D, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data); } } else { state.texImage3D(_gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data); } } else if (texture.isFramebufferTexture) { if (allocateMemory) { if (useTexStorage) { state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, image.width, image.height); } else { let width = image.width, height = image.height; for (let i = 0; i < levels; i++) { state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, width, height, 0, glFormat, glType, null); width >>= 1; height >>= 1; } } } } else { if (mipmaps.length > 0) { if (useTexStorage && allocateMemory) { const dimensions = getDimensions(mipmaps[0]); state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, dimensions.width, dimensions.height); } for (let i = 0, il = mipmaps.length; i < il; i++) { mipmap = mipmaps[i]; if (useTexStorage) { if (dataReady) { state.texSubImage2D(_gl.TEXTURE_2D, i, 0, 0, glFormat, glType, mipmap); } } else { state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap); } } texture.generateMipmaps = false; } else { if (useTexStorage) { if (allocateMemory) { const dimensions = getDimensions(image); state.texStorage2D(_gl.TEXTURE_2D, levels, glInternalFormat, dimensions.width, dimensions.height); } if (dataReady) { state.texSubImage2D(_gl.TEXTURE_2D, 0, 0, 0, glFormat, glType, image); } } else { state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image); } } } if (textureNeedsGenerateMipmaps(texture)) { generateMipmap(textureType); } sourceProperties.__version = source.version; if (texture.onUpdate) texture.onUpdate(texture); } textureProperties.__version = texture.version; } __name(uploadTexture, "uploadTexture"); function uploadCubeTexture(textureProperties, texture, slot) { if (texture.image.length !== 6) return; const forceUpload = initTexture(textureProperties, texture); const source = texture.source; state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture, _gl.TEXTURE0 + slot); const sourceProperties = properties.get(source); if (source.version !== sourceProperties.__version || forceUpload === true) { state.activeTexture(_gl.TEXTURE0 + slot); const workingPrimaries = ColorManagement.getPrimaries(ColorManagement.workingColorSpace); const texturePrimaries = texture.colorSpace === NoColorSpace ? null : ColorManagement.getPrimaries(texture.colorSpace); const unpackConversion = texture.colorSpace === NoColorSpace || workingPrimaries === texturePrimaries ? _gl.NONE : _gl.BROWSER_DEFAULT_WEBGL; _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY); _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha); _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment); _gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, unpackConversion); const isCompressed = texture.isCompressedTexture || texture.image[0].isCompressedTexture; const isDataTexture = texture.image[0] && texture.image[0].isDataTexture; const cubeImage = []; for (let i = 0; i < 6; i++) { if (!isCompressed && !isDataTexture) { cubeImage[i] = resizeImage(texture.image[i], true, capabilities.maxCubemapSize); } else { cubeImage[i] = isDataTexture ? texture.image[i].image : texture.image[i]; } cubeImage[i] = verifyColorSpace(texture, cubeImage[i]); } const image = cubeImage[0], glFormat = utils.convert(texture.format, texture.colorSpace), glType = utils.convert(texture.type), glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.colorSpace); const useTexStorage = texture.isVideoTexture !== true; const allocateMemory = sourceProperties.__version === void 0 || forceUpload === true; const dataReady = source.dataReady; let levels = getMipLevels(texture, image); setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture); let mipmaps; if (isCompressed) { if (useTexStorage && allocateMemory) { state.texStorage2D(_gl.TEXTURE_CUBE_MAP, levels, glInternalFormat, image.width, image.height); } for (let i = 0; i < 6; i++) { mipmaps = cubeImage[i].mipmaps; for (let j = 0; j < mipmaps.length; j++) { const mipmap = mipmaps[j]; if (texture.format !== RGBAFormat) { if (glFormat !== null) { if (useTexStorage) { if (dataReady) { state.compressedTexSubImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data); } } else { state.compressedTexImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data); } } else { console.warn("THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()"); } } else { if (useTexStorage) { if (dataReady) { state.texSubImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data); } } else { state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data); } } } } } else { mipmaps = texture.mipmaps; if (useTexStorage && allocateMemory) { if (mipmaps.length > 0) levels++; const dimensions = getDimensions(cubeImage[0]); state.texStorage2D(_gl.TEXTURE_CUBE_MAP, levels, glInternalFormat, dimensions.width, dimensions.height); } for (let i = 0; i < 6; i++) { if (isDataTexture) { if (useTexStorage) { if (dataReady) { state.texSubImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, cubeImage[i].width, cubeImage[i].height, glFormat, glType, cubeImage[i].data); } } else { state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[i].width, cubeImage[i].height, 0, glFormat, glType, cubeImage[i].data); } for (let j = 0; j < mipmaps.length; j++) { const mipmap = mipmaps[j]; const mipmapImage = mipmap.image[i].image; if (useTexStorage) { if (dataReady) { state.texSubImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, 0, 0, mipmapImage.width, mipmapImage.height, glFormat, glType, mipmapImage.data); } } else { state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data); } } } else { if (useTexStorage) { if (dataReady) { state.texSubImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, glFormat, glType, cubeImage[i]); } } else { state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[i]); } for (let j = 0; j < mipmaps.length; j++) { const mipmap = mipmaps[j]; if (useTexStorage) { if (dataReady) { state.texSubImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, 0, 0, glFormat, glType, mipmap.image[i]); } } else { state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[i]); } } } } } if (textureNeedsGenerateMipmaps(texture)) { generateMipmap(_gl.TEXTURE_CUBE_MAP); } sourceProperties.__version = source.version; if (texture.onUpdate) texture.onUpdate(texture); } textureProperties.__version = texture.version; } __name(uploadCubeTexture, "uploadCubeTexture"); function setupFrameBufferTexture(framebuffer, renderTarget, texture, attachment, textureTarget, level) { const glFormat = utils.convert(texture.format, texture.colorSpace); const glType = utils.convert(texture.type); const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.colorSpace); const renderTargetProperties = properties.get(renderTarget); const textureProperties = properties.get(texture); textureProperties.__renderTarget = renderTarget; if (!renderTargetProperties.__hasExternalTextures) { const width = Math.max(1, renderTarget.width >> level); const height = Math.max(1, renderTarget.height >> level); if (textureTarget === _gl.TEXTURE_3D || textureTarget === _gl.TEXTURE_2D_ARRAY) { state.texImage3D(textureTarget, level, glInternalFormat, width, height, renderTarget.depth, 0, glFormat, glType, null); } else { state.texImage2D(textureTarget, level, glInternalFormat, width, height, 0, glFormat, glType, null); } } state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); if (useMultisampledRTT(renderTarget)) { multisampledRTTExt.framebufferTexture2DMultisampleEXT(_gl.FRAMEBUFFER, attachment, textureTarget, textureProperties.__webglTexture, 0, getRenderTargetSamples(renderTarget)); } else if (textureTarget === _gl.TEXTURE_2D || textureTarget >= _gl.TEXTURE_CUBE_MAP_POSITIVE_X && textureTarget <= _gl.TEXTURE_CUBE_MAP_NEGATIVE_Z) { _gl.framebufferTexture2D(_gl.FRAMEBUFFER, attachment, textureTarget, textureProperties.__webglTexture, level); } state.bindFramebuffer(_gl.FRAMEBUFFER, null); } __name(setupFrameBufferTexture, "setupFrameBufferTexture"); function setupRenderBufferStorage(renderbuffer, renderTarget, isMultisample) { _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderbuffer); if (renderTarget.depthBuffer) { const depthTexture = renderTarget.depthTexture; const depthType = depthTexture && depthTexture.isDepthTexture ? depthTexture.type : null; const glInternalFormat = getInternalDepthFormat(renderTarget.stencilBuffer, depthType); const glAttachmentType = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; const samples = getRenderTargetSamples(renderTarget); const isUseMultisampledRTT = useMultisampledRTT(renderTarget); if (isUseMultisampledRTT) { multisampledRTTExt.renderbufferStorageMultisampleEXT(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); } else if (isMultisample) { _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); } else { _gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height); } _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, glAttachmentType, _gl.RENDERBUFFER, renderbuffer); } else { const textures = renderTarget.textures; for (let i = 0; i < textures.length; i++) { const texture = textures[i]; const glFormat = utils.convert(texture.format, texture.colorSpace); const glType = utils.convert(texture.type); const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.colorSpace); const samples = getRenderTargetSamples(renderTarget); if (isMultisample && useMultisampledRTT(renderTarget) === false) { _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); } else if (useMultisampledRTT(renderTarget)) { multisampledRTTExt.renderbufferStorageMultisampleEXT(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); } else { _gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height); } } } _gl.bindRenderbuffer(_gl.RENDERBUFFER, null); } __name(setupRenderBufferStorage, "setupRenderBufferStorage"); function setupDepthTexture(framebuffer, renderTarget) { const isCube = renderTarget && renderTarget.isWebGLCubeRenderTarget; if (isCube) throw new Error("Depth Texture with cube render targets is not supported"); state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); if (!(renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture)) { throw new Error("renderTarget.depthTexture must be an instance of THREE.DepthTexture"); } const textureProperties = properties.get(renderTarget.depthTexture); textureProperties.__renderTarget = renderTarget; if (!textureProperties.__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height) { renderTarget.depthTexture.image.width = renderTarget.width; renderTarget.depthTexture.image.height = renderTarget.height; renderTarget.depthTexture.needsUpdate = true; } setTexture2D(renderTarget.depthTexture, 0); const webglDepthTexture = textureProperties.__webglTexture; const samples = getRenderTargetSamples(renderTarget); if (renderTarget.depthTexture.format === DepthFormat) { if (useMultisampledRTT(renderTarget)) { multisampledRTTExt.framebufferTexture2DMultisampleEXT(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0, samples); } else { _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0); } } else if (renderTarget.depthTexture.format === DepthStencilFormat) { if (useMultisampledRTT(renderTarget)) { multisampledRTTExt.framebufferTexture2DMultisampleEXT(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0, samples); } else { _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0); } } else { throw new Error("Unknown depthTexture format"); } } __name(setupDepthTexture, "setupDepthTexture"); function setupDepthRenderbuffer(renderTarget) { const renderTargetProperties = properties.get(renderTarget); const isCube = renderTarget.isWebGLCubeRenderTarget === true; if (renderTargetProperties.__boundDepthTexture !== renderTarget.depthTexture) { const depthTexture = renderTarget.depthTexture; if (renderTargetProperties.__depthDisposeCallback) { renderTargetProperties.__depthDisposeCallback(); } if (depthTexture) { const disposeEvent = /* @__PURE__ */ __name(() => { delete renderTargetProperties.__boundDepthTexture; delete renderTargetProperties.__depthDisposeCallback; depthTexture.removeEventListener("dispose", disposeEvent); }, "disposeEvent"); depthTexture.addEventListener("dispose", disposeEvent); renderTargetProperties.__depthDisposeCallback = disposeEvent; } renderTargetProperties.__boundDepthTexture = depthTexture; } if (renderTarget.depthTexture && !renderTargetProperties.__autoAllocateDepthBuffer) { if (isCube) throw new Error("target.depthTexture not supported in Cube render targets"); setupDepthTexture(renderTargetProperties.__webglFramebuffer, renderTarget); } else { if (isCube) { renderTargetProperties.__webglDepthbuffer = []; for (let i = 0; i < 6; i++) { state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[i]); if (renderTargetProperties.__webglDepthbuffer[i] === void 0) { renderTargetProperties.__webglDepthbuffer[i] = _gl.createRenderbuffer(); setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer[i], renderTarget, false); } else { const glAttachmentType = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; const renderbuffer = renderTargetProperties.__webglDepthbuffer[i]; _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderbuffer); _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, glAttachmentType, _gl.RENDERBUFFER, renderbuffer); } } } else { state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer); if (renderTargetProperties.__webglDepthbuffer === void 0) { renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer, renderTarget, false); } else { const glAttachmentType = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; const renderbuffer = renderTargetProperties.__webglDepthbuffer; _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderbuffer); _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, glAttachmentType, _gl.RENDERBUFFER, renderbuffer); } } } state.bindFramebuffer(_gl.FRAMEBUFFER, null); } __name(setupDepthRenderbuffer, "setupDepthRenderbuffer"); function rebindTextures(renderTarget, colorTexture, depthTexture) { const renderTargetProperties = properties.get(renderTarget); if (colorTexture !== void 0) { setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, renderTarget.texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, 0); } if (depthTexture !== void 0) { setupDepthRenderbuffer(renderTarget); } } __name(rebindTextures, "rebindTextures"); function setupRenderTarget(renderTarget) { const texture = renderTarget.texture; const renderTargetProperties = properties.get(renderTarget); const textureProperties = properties.get(texture); renderTarget.addEventListener("dispose", onRenderTargetDispose); const textures = renderTarget.textures; const isCube = renderTarget.isWebGLCubeRenderTarget === true; const isMultipleRenderTargets = textures.length > 1; if (!isMultipleRenderTargets) { if (textureProperties.__webglTexture === void 0) { textureProperties.__webglTexture = _gl.createTexture(); } textureProperties.__version = texture.version; info.memory.textures++; } if (isCube) { renderTargetProperties.__webglFramebuffer = []; for (let i = 0; i < 6; i++) { if (texture.mipmaps && texture.mipmaps.length > 0) { renderTargetProperties.__webglFramebuffer[i] = []; for (let level = 0; level < texture.mipmaps.length; level++) { renderTargetProperties.__webglFramebuffer[i][level] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer[i] = _gl.createFramebuffer(); } } } else { if (texture.mipmaps && texture.mipmaps.length > 0) { renderTargetProperties.__webglFramebuffer = []; for (let level = 0; level < texture.mipmaps.length; level++) { renderTargetProperties.__webglFramebuffer[level] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); } if (isMultipleRenderTargets) { for (let i = 0, il = textures.length; i < il; i++) { const attachmentProperties = properties.get(textures[i]); if (attachmentProperties.__webglTexture === void 0) { attachmentProperties.__webglTexture = _gl.createTexture(); info.memory.textures++; } } } if (renderTarget.samples > 0 && useMultisampledRTT(renderTarget) === false) { renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer(); renderTargetProperties.__webglColorRenderbuffer = []; state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); for (let i = 0; i < textures.length; i++) { const texture2 = textures[i]; renderTargetProperties.__webglColorRenderbuffer[i] = _gl.createRenderbuffer(); _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[i]); const glFormat = utils.convert(texture2.format, texture2.colorSpace); const glType = utils.convert(texture2.type); const glInternalFormat = getInternalFormat(texture2.internalFormat, glFormat, glType, texture2.colorSpace, renderTarget.isXRRenderTarget === true); const samples = getRenderTargetSamples(renderTarget); _gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height); _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[i]); } _gl.bindRenderbuffer(_gl.RENDERBUFFER, null); if (renderTarget.depthBuffer) { renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage(renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true); } state.bindFramebuffer(_gl.FRAMEBUFFER, null); } } if (isCube) { state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture); setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture); for (let i = 0; i < 6; i++) { if (texture.mipmaps && texture.mipmaps.length > 0) { for (let level = 0; level < texture.mipmaps.length; level++) { setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[i][level], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, level); } } else { setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[i], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0); } } if (textureNeedsGenerateMipmaps(texture)) { generateMipmap(_gl.TEXTURE_CUBE_MAP); } state.unbindTexture(); } else if (isMultipleRenderTargets) { for (let i = 0, il = textures.length; i < il; i++) { const attachment = textures[i]; const attachmentProperties = properties.get(attachment); state.bindTexture(_gl.TEXTURE_2D, attachmentProperties.__webglTexture); setTextureParameters(_gl.TEXTURE_2D, attachment); setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, attachment, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D, 0); if (textureNeedsGenerateMipmaps(attachment)) { generateMipmap(_gl.TEXTURE_2D); } } state.unbindTexture(); } else { let glTextureType = _gl.TEXTURE_2D; if (renderTarget.isWebGL3DRenderTarget || renderTarget.isWebGLArrayRenderTarget) { glTextureType = renderTarget.isWebGL3DRenderTarget ? _gl.TEXTURE_3D : _gl.TEXTURE_2D_ARRAY; } state.bindTexture(glTextureType, textureProperties.__webglTexture); setTextureParameters(glTextureType, texture); if (texture.mipmaps && texture.mipmaps.length > 0) { for (let level = 0; level < texture.mipmaps.length; level++) { setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[level], renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType, level); } } else { setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType, 0); } if (textureNeedsGenerateMipmaps(texture)) { generateMipmap(glTextureType); } state.unbindTexture(); } if (renderTarget.depthBuffer) { setupDepthRenderbuffer(renderTarget); } } __name(setupRenderTarget, "setupRenderTarget"); function updateRenderTargetMipmap(renderTarget) { const textures = renderTarget.textures; for (let i = 0, il = textures.length; i < il; i++) { const texture = textures[i]; if (textureNeedsGenerateMipmaps(texture)) { const targetType = getTargetType(renderTarget); const webglTexture = properties.get(texture).__webglTexture; state.bindTexture(targetType, webglTexture); generateMipmap(targetType); state.unbindTexture(); } } } __name(updateRenderTargetMipmap, "updateRenderTargetMipmap"); const invalidationArrayRead = []; const invalidationArrayDraw = []; function updateMultisampleRenderTarget(renderTarget) { if (renderTarget.samples > 0) { if (useMultisampledRTT(renderTarget) === false) { const textures = renderTarget.textures; const width = renderTarget.width; const height = renderTarget.height; let mask = _gl.COLOR_BUFFER_BIT; const depthStyle = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; const renderTargetProperties = properties.get(renderTarget); const isMultipleRenderTargets = textures.length > 1; if (isMultipleRenderTargets) { for (let i = 0; i < textures.length; i++) { state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.RENDERBUFFER, null); state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer); _gl.framebufferTexture2D(_gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D, null, 0); } } state.bindFramebuffer(_gl.READ_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer); for (let i = 0; i < textures.length; i++) { if (renderTarget.resolveDepthBuffer) { if (renderTarget.depthBuffer) mask |= _gl.DEPTH_BUFFER_BIT; if (renderTarget.stencilBuffer && renderTarget.resolveStencilBuffer) mask |= _gl.STENCIL_BUFFER_BIT; } if (isMultipleRenderTargets) { _gl.framebufferRenderbuffer(_gl.READ_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[i]); const webglTexture = properties.get(textures[i]).__webglTexture; _gl.framebufferTexture2D(_gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, webglTexture, 0); } _gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, mask, _gl.NEAREST); if (supportsInvalidateFramebuffer === true) { invalidationArrayRead.length = 0; invalidationArrayDraw.length = 0; invalidationArrayRead.push(_gl.COLOR_ATTACHMENT0 + i); if (renderTarget.depthBuffer && renderTarget.resolveDepthBuffer === false) { invalidationArrayRead.push(depthStyle); invalidationArrayDraw.push(depthStyle); _gl.invalidateFramebuffer(_gl.DRAW_FRAMEBUFFER, invalidationArrayDraw); } _gl.invalidateFramebuffer(_gl.READ_FRAMEBUFFER, invalidationArrayRead); } } state.bindFramebuffer(_gl.READ_FRAMEBUFFER, null); state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, null); if (isMultipleRenderTargets) { for (let i = 0; i < textures.length; i++) { state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); _gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[i]); const webglTexture = properties.get(textures[i]).__webglTexture; state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer); _gl.framebufferTexture2D(_gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D, webglTexture, 0); } } state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer); } else { if (renderTarget.depthBuffer && renderTarget.resolveDepthBuffer === false && supportsInvalidateFramebuffer) { const depthStyle = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; _gl.invalidateFramebuffer(_gl.DRAW_FRAMEBUFFER, [depthStyle]); } } } } __name(updateMultisampleRenderTarget, "updateMultisampleRenderTarget"); function getRenderTargetSamples(renderTarget) { return Math.min(capabilities.maxSamples, renderTarget.samples); } __name(getRenderTargetSamples, "getRenderTargetSamples"); function useMultisampledRTT(renderTarget) { const renderTargetProperties = properties.get(renderTarget); return renderTarget.samples > 0 && extensions.has("WEBGL_multisampled_render_to_texture") === true && renderTargetProperties.__useRenderToTexture !== false; } __name(useMultisampledRTT, "useMultisampledRTT"); function updateVideoTexture(texture) { const frame = info.render.frame; if (_videoTextures.get(texture) !== frame) { _videoTextures.set(texture, frame); texture.update(); } } __name(updateVideoTexture, "updateVideoTexture"); function verifyColorSpace(texture, image) { const colorSpace = texture.colorSpace; const format = texture.format; const type = texture.type; if (texture.isCompressedTexture === true || texture.isVideoTexture === true) return image; if (colorSpace !== LinearSRGBColorSpace && colorSpace !== NoColorSpace) { if (ColorManagement.getTransfer(colorSpace) === SRGBTransfer) { if (format !== RGBAFormat || type !== UnsignedByteType) { console.warn("THREE.WebGLTextures: sRGB encoded textures have to use RGBAFormat and UnsignedByteType."); } } else { console.error("THREE.WebGLTextures: Unsupported texture color space:", colorSpace); } } return image; } __name(verifyColorSpace, "verifyColorSpace"); function getDimensions(image) { if (typeof HTMLImageElement !== "undefined" && image instanceof HTMLImageElement) { _imageDimensions.width = image.naturalWidth || image.width; _imageDimensions.height = image.naturalHeight || image.height; } else if (typeof VideoFrame !== "undefined" && image instanceof VideoFrame) { _imageDimensions.width = image.displayWidth; _imageDimensions.height = image.displayHeight; } else { _imageDimensions.width = image.width; _imageDimensions.height = image.height; } return _imageDimensions; } __name(getDimensions, "getDimensions"); this.allocateTextureUnit = allocateTextureUnit; this.resetTextureUnits = resetTextureUnits; this.setTexture2D = setTexture2D; this.setTexture2DArray = setTexture2DArray; this.setTexture3D = setTexture3D; this.setTextureCube = setTextureCube; this.rebindTextures = rebindTextures; this.setupRenderTarget = setupRenderTarget; this.updateRenderTargetMipmap = updateRenderTargetMipmap; this.updateMultisampleRenderTarget = updateMultisampleRenderTarget; this.setupDepthRenderbuffer = setupDepthRenderbuffer; this.setupFrameBufferTexture = setupFrameBufferTexture; this.useMultisampledRTT = useMultisampledRTT; } __name(WebGLTextures, "WebGLTextures"); function WebGLUtils(gl, extensions) { function convert(p, colorSpace = NoColorSpace) { let extension; const transfer = ColorManagement.getTransfer(colorSpace); if (p === UnsignedByteType) return gl.UNSIGNED_BYTE; if (p === UnsignedShort4444Type) return gl.UNSIGNED_SHORT_4_4_4_4; if (p === UnsignedShort5551Type) return gl.UNSIGNED_SHORT_5_5_5_1; if (p === UnsignedInt5999Type) return gl.UNSIGNED_INT_5_9_9_9_REV; if (p === ByteType) return gl.BYTE; if (p === ShortType) return gl.SHORT; if (p === UnsignedShortType) return gl.UNSIGNED_SHORT; if (p === IntType) return gl.INT; if (p === UnsignedIntType) return gl.UNSIGNED_INT; if (p === FloatType) return gl.FLOAT; if (p === HalfFloatType) return gl.HALF_FLOAT; if (p === AlphaFormat) return gl.ALPHA; if (p === RGBFormat) return gl.RGB; if (p === RGBAFormat) return gl.RGBA; if (p === LuminanceFormat) return gl.LUMINANCE; if (p === LuminanceAlphaFormat) return gl.LUMINANCE_ALPHA; if (p === DepthFormat) return gl.DEPTH_COMPONENT; if (p === DepthStencilFormat) return gl.DEPTH_STENCIL; if (p === RedFormat) return gl.RED; if (p === RedIntegerFormat) return gl.RED_INTEGER; if (p === RGFormat) return gl.RG; if (p === RGIntegerFormat) return gl.RG_INTEGER; if (p === RGBAIntegerFormat) return gl.RGBA_INTEGER; if (p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format) { if (transfer === SRGBTransfer) { extension = extensions.get("WEBGL_compressed_texture_s3tc_srgb"); if (extension !== null) { if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_SRGB_S3TC_DXT1_EXT; if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT; if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT; if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT; } else { return null; } } else { extension = extensions.get("WEBGL_compressed_texture_s3tc"); if (extension !== null) { if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; } else { return null; } } } if (p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format) { extension = extensions.get("WEBGL_compressed_texture_pvrtc"); if (extension !== null) { if (p === RGB_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; if (p === RGB_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; if (p === RGBA_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; if (p === RGBA_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; } else { return null; } } if (p === RGB_ETC1_Format || p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format) { extension = extensions.get("WEBGL_compressed_texture_etc"); if (extension !== null) { if (p === RGB_ETC1_Format || p === RGB_ETC2_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ETC2 : extension.COMPRESSED_RGB8_ETC2; if (p === RGBA_ETC2_EAC_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ETC2_EAC : extension.COMPRESSED_RGBA8_ETC2_EAC; } else { return null; } } if (p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format) { extension = extensions.get("WEBGL_compressed_texture_astc"); if (extension !== null) { if (p === RGBA_ASTC_4x4_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR : extension.COMPRESSED_RGBA_ASTC_4x4_KHR; if (p === RGBA_ASTC_5x4_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR : extension.COMPRESSED_RGBA_ASTC_5x4_KHR; if (p === RGBA_ASTC_5x5_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR : extension.COMPRESSED_RGBA_ASTC_5x5_KHR; if (p === RGBA_ASTC_6x5_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR : extension.COMPRESSED_RGBA_ASTC_6x5_KHR; if (p === RGBA_ASTC_6x6_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR : extension.COMPRESSED_RGBA_ASTC_6x6_KHR; if (p === RGBA_ASTC_8x5_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR : extension.COMPRESSED_RGBA_ASTC_8x5_KHR; if (p === RGBA_ASTC_8x6_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR : extension.COMPRESSED_RGBA_ASTC_8x6_KHR; if (p === RGBA_ASTC_8x8_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR : extension.COMPRESSED_RGBA_ASTC_8x8_KHR; if (p === RGBA_ASTC_10x5_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR : extension.COMPRESSED_RGBA_ASTC_10x5_KHR; if (p === RGBA_ASTC_10x6_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR : extension.COMPRESSED_RGBA_ASTC_10x6_KHR; if (p === RGBA_ASTC_10x8_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR : extension.COMPRESSED_RGBA_ASTC_10x8_KHR; if (p === RGBA_ASTC_10x10_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR : extension.COMPRESSED_RGBA_ASTC_10x10_KHR; if (p === RGBA_ASTC_12x10_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR : extension.COMPRESSED_RGBA_ASTC_12x10_KHR; if (p === RGBA_ASTC_12x12_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR : extension.COMPRESSED_RGBA_ASTC_12x12_KHR; } else { return null; } } if (p === RGBA_BPTC_Format || p === RGB_BPTC_SIGNED_Format || p === RGB_BPTC_UNSIGNED_Format) { extension = extensions.get("EXT_texture_compression_bptc"); if (extension !== null) { if (p === RGBA_BPTC_Format) return transfer === SRGBTransfer ? extension.COMPRESSED_SRGB_ALPHA_BPTC_UNORM_EXT : extension.COMPRESSED_RGBA_BPTC_UNORM_EXT; if (p === RGB_BPTC_SIGNED_Format) return extension.COMPRESSED_RGB_BPTC_SIGNED_FLOAT_EXT; if (p === RGB_BPTC_UNSIGNED_Format) return extension.COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_EXT; } else { return null; } } if (p === RED_RGTC1_Format || p === SIGNED_RED_RGTC1_Format || p === RED_GREEN_RGTC2_Format || p === SIGNED_RED_GREEN_RGTC2_Format) { extension = extensions.get("EXT_texture_compression_rgtc"); if (extension !== null) { if (p === RGBA_BPTC_Format) return extension.COMPRESSED_RED_RGTC1_EXT; if (p === SIGNED_RED_RGTC1_Format) return extension.COMPRESSED_SIGNED_RED_RGTC1_EXT; if (p === RED_GREEN_RGTC2_Format) return extension.COMPRESSED_RED_GREEN_RGTC2_EXT; if (p === SIGNED_RED_GREEN_RGTC2_Format) return extension.COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT; } else { return null; } } if (p === UnsignedInt248Type) return gl.UNSIGNED_INT_24_8; return gl[p] !== void 0 ? gl[p] : null; } __name(convert, "convert"); return { convert }; } __name(WebGLUtils, "WebGLUtils"); class ArrayCamera extends PerspectiveCamera { static { __name(this, "ArrayCamera"); } constructor(array = []) { super(); this.isArrayCamera = true; this.cameras = array; } } class Group extends Object3D { static { __name(this, "Group"); } constructor() { super(); this.isGroup = true; this.type = "Group"; } } const _moveEvent = { type: "move" }; class WebXRController { static { __name(this, "WebXRController"); } constructor() { this._targetRay = null; this._grip = null; this._hand = null; } getHandSpace() { if (this._hand === null) { this._hand = new Group(); this._hand.matrixAutoUpdate = false; this._hand.visible = false; this._hand.joints = {}; this._hand.inputState = { pinching: false }; } return this._hand; } getTargetRaySpace() { if (this._targetRay === null) { this._targetRay = new Group(); this._targetRay.matrixAutoUpdate = false; this._targetRay.visible = false; this._targetRay.hasLinearVelocity = false; this._targetRay.linearVelocity = new Vector3(); this._targetRay.hasAngularVelocity = false; this._targetRay.angularVelocity = new Vector3(); } return this._targetRay; } getGripSpace() { if (this._grip === null) { this._grip = new Group(); this._grip.matrixAutoUpdate = false; this._grip.visible = false; this._grip.hasLinearVelocity = false; this._grip.linearVelocity = new Vector3(); this._grip.hasAngularVelocity = false; this._grip.angularVelocity = new Vector3(); } return this._grip; } dispatchEvent(event) { if (this._targetRay !== null) { this._targetRay.dispatchEvent(event); } if (this._grip !== null) { this._grip.dispatchEvent(event); } if (this._hand !== null) { this._hand.dispatchEvent(event); } return this; } connect(inputSource) { if (inputSource && inputSource.hand) { const hand = this._hand; if (hand) { for (const inputjoint of inputSource.hand.values()) { this._getHandJoint(hand, inputjoint); } } } this.dispatchEvent({ type: "connected", data: inputSource }); return this; } disconnect(inputSource) { this.dispatchEvent({ type: "disconnected", data: inputSource }); if (this._targetRay !== null) { this._targetRay.visible = false; } if (this._grip !== null) { this._grip.visible = false; } if (this._hand !== null) { this._hand.visible = false; } return this; } update(inputSource, frame, referenceSpace) { let inputPose = null; let gripPose = null; let handPose = null; const targetRay = this._targetRay; const grip = this._grip; const hand = this._hand; if (inputSource && frame.session.visibilityState !== "visible-blurred") { if (hand && inputSource.hand) { handPose = true; for (const inputjoint of inputSource.hand.values()) { const jointPose = frame.getJointPose(inputjoint, referenceSpace); const joint = this._getHandJoint(hand, inputjoint); if (jointPose !== null) { joint.matrix.fromArray(jointPose.transform.matrix); joint.matrix.decompose(joint.position, joint.rotation, joint.scale); joint.matrixWorldNeedsUpdate = true; joint.jointRadius = jointPose.radius; } joint.visible = jointPose !== null; } const indexTip = hand.joints["index-finger-tip"]; const thumbTip = hand.joints["thumb-tip"]; const distance = indexTip.position.distanceTo(thumbTip.position); const distanceToPinch = 0.02; const threshold = 5e-3; if (hand.inputState.pinching && distance > distanceToPinch + threshold) { hand.inputState.pinching = false; this.dispatchEvent({ type: "pinchend", handedness: inputSource.handedness, target: this }); } else if (!hand.inputState.pinching && distance <= distanceToPinch - threshold) { hand.inputState.pinching = true; this.dispatchEvent({ type: "pinchstart", handedness: inputSource.handedness, target: this }); } } else { if (grip !== null && inputSource.gripSpace) { gripPose = frame.getPose(inputSource.gripSpace, referenceSpace); if (gripPose !== null) { grip.matrix.fromArray(gripPose.transform.matrix); grip.matrix.decompose(grip.position, grip.rotation, grip.scale); grip.matrixWorldNeedsUpdate = true; if (gripPose.linearVelocity) { grip.hasLinearVelocity = true; grip.linearVelocity.copy(gripPose.linearVelocity); } else { grip.hasLinearVelocity = false; } if (gripPose.angularVelocity) { grip.hasAngularVelocity = true; grip.angularVelocity.copy(gripPose.angularVelocity); } else { grip.hasAngularVelocity = false; } } } } if (targetRay !== null) { inputPose = frame.getPose(inputSource.targetRaySpace, referenceSpace); if (inputPose === null && gripPose !== null) { inputPose = gripPose; } if (inputPose !== null) { targetRay.matrix.fromArray(inputPose.transform.matrix); targetRay.matrix.decompose(targetRay.position, targetRay.rotation, targetRay.scale); targetRay.matrixWorldNeedsUpdate = true; if (inputPose.linearVelocity) { targetRay.hasLinearVelocity = true; targetRay.linearVelocity.copy(inputPose.linearVelocity); } else { targetRay.hasLinearVelocity = false; } if (inputPose.angularVelocity) { targetRay.hasAngularVelocity = true; targetRay.angularVelocity.copy(inputPose.angularVelocity); } else { targetRay.hasAngularVelocity = false; } this.dispatchEvent(_moveEvent); } } } if (targetRay !== null) { targetRay.visible = inputPose !== null; } if (grip !== null) { grip.visible = gripPose !== null; } if (hand !== null) { hand.visible = handPose !== null; } return this; } // private method _getHandJoint(hand, inputjoint) { if (hand.joints[inputjoint.jointName] === void 0) { const joint = new Group(); joint.matrixAutoUpdate = false; joint.visible = false; hand.joints[inputjoint.jointName] = joint; hand.add(joint); } return hand.joints[inputjoint.jointName]; } } const _occlusion_vertex = ` void main() { gl_Position = vec4( position, 1.0 ); }`; const _occlusion_fragment = ` uniform sampler2DArray depthColor; uniform float depthWidth; uniform float depthHeight; void main() { vec2 coord = vec2( gl_FragCoord.x / depthWidth, gl_FragCoord.y / depthHeight ); if ( coord.x >= 1.0 ) { gl_FragDepth = texture( depthColor, vec3( coord.x - 1.0, coord.y, 1 ) ).r; } else { gl_FragDepth = texture( depthColor, vec3( coord.x, coord.y, 0 ) ).r; } }`; class WebXRDepthSensing { static { __name(this, "WebXRDepthSensing"); } constructor() { this.texture = null; this.mesh = null; this.depthNear = 0; this.depthFar = 0; } init(renderer, depthData, renderState) { if (this.texture === null) { const texture = new Texture(); const texProps = renderer.properties.get(texture); texProps.__webglTexture = depthData.texture; if (depthData.depthNear != renderState.depthNear || depthData.depthFar != renderState.depthFar) { this.depthNear = depthData.depthNear; this.depthFar = depthData.depthFar; } this.texture = texture; } } getMesh(cameraXR) { if (this.texture !== null) { if (this.mesh === null) { const viewport = cameraXR.cameras[0].viewport; const material = new ShaderMaterial({ vertexShader: _occlusion_vertex, fragmentShader: _occlusion_fragment, uniforms: { depthColor: { value: this.texture }, depthWidth: { value: viewport.z }, depthHeight: { value: viewport.w } } }); this.mesh = new Mesh(new PlaneGeometry(20, 20), material); } } return this.mesh; } reset() { this.texture = null; this.mesh = null; } getDepthTexture() { return this.texture; } } class WebXRManager extends EventDispatcher { static { __name(this, "WebXRManager"); } constructor(renderer, gl) { super(); const scope = this; let session = null; let framebufferScaleFactor = 1; let referenceSpace = null; let referenceSpaceType = "local-floor"; let foveation = 1; let customReferenceSpace = null; let pose = null; let glBinding = null; let glProjLayer = null; let glBaseLayer = null; let xrFrame = null; const depthSensing = new WebXRDepthSensing(); const attributes = gl.getContextAttributes(); let initialRenderTarget = null; let newRenderTarget = null; const controllers = []; const controllerInputSources = []; const currentSize = new Vector2(); let currentPixelRatio = null; const cameraL = new PerspectiveCamera(); cameraL.viewport = new Vector4(); const cameraR = new PerspectiveCamera(); cameraR.viewport = new Vector4(); const cameras = [cameraL, cameraR]; const cameraXR = new ArrayCamera(); let _currentDepthNear = null; let _currentDepthFar = null; this.cameraAutoUpdate = true; this.enabled = false; this.isPresenting = false; this.getController = function(index) { let controller = controllers[index]; if (controller === void 0) { controller = new WebXRController(); controllers[index] = controller; } return controller.getTargetRaySpace(); }; this.getControllerGrip = function(index) { let controller = controllers[index]; if (controller === void 0) { controller = new WebXRController(); controllers[index] = controller; } return controller.getGripSpace(); }; this.getHand = function(index) { let controller = controllers[index]; if (controller === void 0) { controller = new WebXRController(); controllers[index] = controller; } return controller.getHandSpace(); }; function onSessionEvent(event) { const controllerIndex = controllerInputSources.indexOf(event.inputSource); if (controllerIndex === -1) { return; } const controller = controllers[controllerIndex]; if (controller !== void 0) { controller.update(event.inputSource, event.frame, customReferenceSpace || referenceSpace); controller.dispatchEvent({ type: event.type, data: event.inputSource }); } } __name(onSessionEvent, "onSessionEvent"); function onSessionEnd() { session.removeEventListener("select", onSessionEvent); session.removeEventListener("selectstart", onSessionEvent); session.removeEventListener("selectend", onSessionEvent); session.removeEventListener("squeeze", onSessionEvent); session.removeEventListener("squeezestart", onSessionEvent); session.removeEventListener("squeezeend", onSessionEvent); session.removeEventListener("end", onSessionEnd); session.removeEventListener("inputsourceschange", onInputSourcesChange); for (let i = 0; i < controllers.length; i++) { const inputSource = controllerInputSources[i]; if (inputSource === null) continue; controllerInputSources[i] = null; controllers[i].disconnect(inputSource); } _currentDepthNear = null; _currentDepthFar = null; depthSensing.reset(); renderer.setRenderTarget(initialRenderTarget); glBaseLayer = null; glProjLayer = null; glBinding = null; session = null; newRenderTarget = null; animation.stop(); scope.isPresenting = false; renderer.setPixelRatio(currentPixelRatio); renderer.setSize(currentSize.width, currentSize.height, false); scope.dispatchEvent({ type: "sessionend" }); } __name(onSessionEnd, "onSessionEnd"); this.setFramebufferScaleFactor = function(value) { framebufferScaleFactor = value; if (scope.isPresenting === true) { console.warn("THREE.WebXRManager: Cannot change framebuffer scale while presenting."); } }; this.setReferenceSpaceType = function(value) { referenceSpaceType = value; if (scope.isPresenting === true) { console.warn("THREE.WebXRManager: Cannot change reference space type while presenting."); } }; this.getReferenceSpace = function() { return customReferenceSpace || referenceSpace; }; this.setReferenceSpace = function(space) { customReferenceSpace = space; }; this.getBaseLayer = function() { return glProjLayer !== null ? glProjLayer : glBaseLayer; }; this.getBinding = function() { return glBinding; }; this.getFrame = function() { return xrFrame; }; this.getSession = function() { return session; }; this.setSession = async function(value) { session = value; if (session !== null) { initialRenderTarget = renderer.getRenderTarget(); session.addEventListener("select", onSessionEvent); session.addEventListener("selectstart", onSessionEvent); session.addEventListener("selectend", onSessionEvent); session.addEventListener("squeeze", onSessionEvent); session.addEventListener("squeezestart", onSessionEvent); session.addEventListener("squeezeend", onSessionEvent); session.addEventListener("end", onSessionEnd); session.addEventListener("inputsourceschange", onInputSourcesChange); if (attributes.xrCompatible !== true) { await gl.makeXRCompatible(); } currentPixelRatio = renderer.getPixelRatio(); renderer.getSize(currentSize); if (session.renderState.layers === void 0) { const layerInit = { antialias: attributes.antialias, alpha: true, depth: attributes.depth, stencil: attributes.stencil, framebufferScaleFactor }; glBaseLayer = new XRWebGLLayer(session, gl, layerInit); session.updateRenderState({ baseLayer: glBaseLayer }); renderer.setPixelRatio(1); renderer.setSize(glBaseLayer.framebufferWidth, glBaseLayer.framebufferHeight, false); newRenderTarget = new WebGLRenderTarget( glBaseLayer.framebufferWidth, glBaseLayer.framebufferHeight, { format: RGBAFormat, type: UnsignedByteType, colorSpace: renderer.outputColorSpace, stencilBuffer: attributes.stencil } ); } else { let depthFormat = null; let depthType = null; let glDepthFormat = null; if (attributes.depth) { glDepthFormat = attributes.stencil ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24; depthFormat = attributes.stencil ? DepthStencilFormat : DepthFormat; depthType = attributes.stencil ? UnsignedInt248Type : UnsignedIntType; } const projectionlayerInit = { colorFormat: gl.RGBA8, depthFormat: glDepthFormat, scaleFactor: framebufferScaleFactor }; glBinding = new XRWebGLBinding(session, gl); glProjLayer = glBinding.createProjectionLayer(projectionlayerInit); session.updateRenderState({ layers: [glProjLayer] }); renderer.setPixelRatio(1); renderer.setSize(glProjLayer.textureWidth, glProjLayer.textureHeight, false); newRenderTarget = new WebGLRenderTarget( glProjLayer.textureWidth, glProjLayer.textureHeight, { format: RGBAFormat, type: UnsignedByteType, depthTexture: new DepthTexture(glProjLayer.textureWidth, glProjLayer.textureHeight, depthType, void 0, void 0, void 0, void 0, void 0, void 0, depthFormat), stencilBuffer: attributes.stencil, colorSpace: renderer.outputColorSpace, samples: attributes.antialias ? 4 : 0, resolveDepthBuffer: glProjLayer.ignoreDepthValues === false } ); } newRenderTarget.isXRRenderTarget = true; this.setFoveation(foveation); customReferenceSpace = null; referenceSpace = await session.requestReferenceSpace(referenceSpaceType); animation.setContext(session); animation.start(); scope.isPresenting = true; scope.dispatchEvent({ type: "sessionstart" }); } }; this.getEnvironmentBlendMode = function() { if (session !== null) { return session.environmentBlendMode; } }; this.getDepthTexture = function() { return depthSensing.getDepthTexture(); }; function onInputSourcesChange(event) { for (let i = 0; i < event.removed.length; i++) { const inputSource = event.removed[i]; const index = controllerInputSources.indexOf(inputSource); if (index >= 0) { controllerInputSources[index] = null; controllers[index].disconnect(inputSource); } } for (let i = 0; i < event.added.length; i++) { const inputSource = event.added[i]; let controllerIndex = controllerInputSources.indexOf(inputSource); if (controllerIndex === -1) { for (let i2 = 0; i2 < controllers.length; i2++) { if (i2 >= controllerInputSources.length) { controllerInputSources.push(inputSource); controllerIndex = i2; break; } else if (controllerInputSources[i2] === null) { controllerInputSources[i2] = inputSource; controllerIndex = i2; break; } } if (controllerIndex === -1) break; } const controller = controllers[controllerIndex]; if (controller) { controller.connect(inputSource); } } } __name(onInputSourcesChange, "onInputSourcesChange"); const cameraLPos = new Vector3(); const cameraRPos = new Vector3(); function setProjectionFromUnion(camera, cameraL2, cameraR2) { cameraLPos.setFromMatrixPosition(cameraL2.matrixWorld); cameraRPos.setFromMatrixPosition(cameraR2.matrixWorld); const ipd = cameraLPos.distanceTo(cameraRPos); const projL = cameraL2.projectionMatrix.elements; const projR = cameraR2.projectionMatrix.elements; const near = projL[14] / (projL[10] - 1); const far = projL[14] / (projL[10] + 1); const topFov = (projL[9] + 1) / projL[5]; const bottomFov = (projL[9] - 1) / projL[5]; const leftFov = (projL[8] - 1) / projL[0]; const rightFov = (projR[8] + 1) / projR[0]; const left = near * leftFov; const right = near * rightFov; const zOffset = ipd / (-leftFov + rightFov); const xOffset = zOffset * -leftFov; cameraL2.matrixWorld.decompose(camera.position, camera.quaternion, camera.scale); camera.translateX(xOffset); camera.translateZ(zOffset); camera.matrixWorld.compose(camera.position, camera.quaternion, camera.scale); camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); if (projL[10] === -1) { camera.projectionMatrix.copy(cameraL2.projectionMatrix); camera.projectionMatrixInverse.copy(cameraL2.projectionMatrixInverse); } else { const near2 = near + zOffset; const far2 = far + zOffset; const left2 = left - xOffset; const right2 = right + (ipd - xOffset); const top2 = topFov * far / far2 * near2; const bottom2 = bottomFov * far / far2 * near2; camera.projectionMatrix.makePerspective(left2, right2, top2, bottom2, near2, far2); camera.projectionMatrixInverse.copy(camera.projectionMatrix).invert(); } } __name(setProjectionFromUnion, "setProjectionFromUnion"); function updateCamera(camera, parent) { if (parent === null) { camera.matrixWorld.copy(camera.matrix); } else { camera.matrixWorld.multiplyMatrices(parent.matrixWorld, camera.matrix); } camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); } __name(updateCamera, "updateCamera"); this.updateCamera = function(camera) { if (session === null) return; let depthNear = camera.near; let depthFar = camera.far; if (depthSensing.texture !== null) { if (depthSensing.depthNear > 0) depthNear = depthSensing.depthNear; if (depthSensing.depthFar > 0) depthFar = depthSensing.depthFar; } cameraXR.near = cameraR.near = cameraL.near = depthNear; cameraXR.far = cameraR.far = cameraL.far = depthFar; if (_currentDepthNear !== cameraXR.near || _currentDepthFar !== cameraXR.far) { session.updateRenderState({ depthNear: cameraXR.near, depthFar: cameraXR.far }); _currentDepthNear = cameraXR.near; _currentDepthFar = cameraXR.far; } cameraL.layers.mask = camera.layers.mask | 2; cameraR.layers.mask = camera.layers.mask | 4; cameraXR.layers.mask = cameraL.layers.mask | cameraR.layers.mask; const parent = camera.parent; const cameras2 = cameraXR.cameras; updateCamera(cameraXR, parent); for (let i = 0; i < cameras2.length; i++) { updateCamera(cameras2[i], parent); } if (cameras2.length === 2) { setProjectionFromUnion(cameraXR, cameraL, cameraR); } else { cameraXR.projectionMatrix.copy(cameraL.projectionMatrix); } updateUserCamera(camera, cameraXR, parent); }; function updateUserCamera(camera, cameraXR2, parent) { if (parent === null) { camera.matrix.copy(cameraXR2.matrixWorld); } else { camera.matrix.copy(parent.matrixWorld); camera.matrix.invert(); camera.matrix.multiply(cameraXR2.matrixWorld); } camera.matrix.decompose(camera.position, camera.quaternion, camera.scale); camera.updateMatrixWorld(true); camera.projectionMatrix.copy(cameraXR2.projectionMatrix); camera.projectionMatrixInverse.copy(cameraXR2.projectionMatrixInverse); if (camera.isPerspectiveCamera) { camera.fov = RAD2DEG * 2 * Math.atan(1 / camera.projectionMatrix.elements[5]); camera.zoom = 1; } } __name(updateUserCamera, "updateUserCamera"); this.getCamera = function() { return cameraXR; }; this.getFoveation = function() { if (glProjLayer === null && glBaseLayer === null) { return void 0; } return foveation; }; this.setFoveation = function(value) { foveation = value; if (glProjLayer !== null) { glProjLayer.fixedFoveation = value; } if (glBaseLayer !== null && glBaseLayer.fixedFoveation !== void 0) { glBaseLayer.fixedFoveation = value; } }; this.hasDepthSensing = function() { return depthSensing.texture !== null; }; this.getDepthSensingMesh = function() { return depthSensing.getMesh(cameraXR); }; let onAnimationFrameCallback = null; function onAnimationFrame(time, frame) { pose = frame.getViewerPose(customReferenceSpace || referenceSpace); xrFrame = frame; if (pose !== null) { const views = pose.views; if (glBaseLayer !== null) { renderer.setRenderTargetFramebuffer(newRenderTarget, glBaseLayer.framebuffer); renderer.setRenderTarget(newRenderTarget); } let cameraXRNeedsUpdate = false; if (views.length !== cameraXR.cameras.length) { cameraXR.cameras.length = 0; cameraXRNeedsUpdate = true; } for (let i = 0; i < views.length; i++) { const view = views[i]; let viewport = null; if (glBaseLayer !== null) { viewport = glBaseLayer.getViewport(view); } else { const glSubImage = glBinding.getViewSubImage(glProjLayer, view); viewport = glSubImage.viewport; if (i === 0) { renderer.setRenderTargetTextures( newRenderTarget, glSubImage.colorTexture, glProjLayer.ignoreDepthValues ? void 0 : glSubImage.depthStencilTexture ); renderer.setRenderTarget(newRenderTarget); } } let camera = cameras[i]; if (camera === void 0) { camera = new PerspectiveCamera(); camera.layers.enable(i); camera.viewport = new Vector4(); cameras[i] = camera; } camera.matrix.fromArray(view.transform.matrix); camera.matrix.decompose(camera.position, camera.quaternion, camera.scale); camera.projectionMatrix.fromArray(view.projectionMatrix); camera.projectionMatrixInverse.copy(camera.projectionMatrix).invert(); camera.viewport.set(viewport.x, viewport.y, viewport.width, viewport.height); if (i === 0) { cameraXR.matrix.copy(camera.matrix); cameraXR.matrix.decompose(cameraXR.position, cameraXR.quaternion, cameraXR.scale); } if (cameraXRNeedsUpdate === true) { cameraXR.cameras.push(camera); } } const enabledFeatures = session.enabledFeatures; if (enabledFeatures && enabledFeatures.includes("depth-sensing")) { const depthData = glBinding.getDepthInformation(views[0]); if (depthData && depthData.isValid && depthData.texture) { depthSensing.init(renderer, depthData, session.renderState); } } } for (let i = 0; i < controllers.length; i++) { const inputSource = controllerInputSources[i]; const controller = controllers[i]; if (inputSource !== null && controller !== void 0) { controller.update(inputSource, frame, customReferenceSpace || referenceSpace); } } if (onAnimationFrameCallback) onAnimationFrameCallback(time, frame); if (frame.detectedPlanes) { scope.dispatchEvent({ type: "planesdetected", data: frame }); } xrFrame = null; } __name(onAnimationFrame, "onAnimationFrame"); const animation = new WebGLAnimation(); animation.setAnimationLoop(onAnimationFrame); this.setAnimationLoop = function(callback) { onAnimationFrameCallback = callback; }; this.dispose = function() { }; } } const _e1 = /* @__PURE__ */ new Euler(); const _m1 = /* @__PURE__ */ new Matrix4(); function WebGLMaterials(renderer, properties) { function refreshTransformUniform(map, uniform) { if (map.matrixAutoUpdate === true) { map.updateMatrix(); } uniform.value.copy(map.matrix); } __name(refreshTransformUniform, "refreshTransformUniform"); function refreshFogUniforms(uniforms, fog) { fog.color.getRGB(uniforms.fogColor.value, getUnlitUniformColorSpace(renderer)); if (fog.isFog) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if (fog.isFogExp2) { uniforms.fogDensity.value = fog.density; } } __name(refreshFogUniforms, "refreshFogUniforms"); function refreshMaterialUniforms(uniforms, material, pixelRatio, height, transmissionRenderTarget) { if (material.isMeshBasicMaterial) { refreshUniformsCommon(uniforms, material); } else if (material.isMeshLambertMaterial) { refreshUniformsCommon(uniforms, material); } else if (material.isMeshToonMaterial) { refreshUniformsCommon(uniforms, material); refreshUniformsToon(uniforms, material); } else if (material.isMeshPhongMaterial) { refreshUniformsCommon(uniforms, material); refreshUniformsPhong(uniforms, material); } else if (material.isMeshStandardMaterial) { refreshUniformsCommon(uniforms, material); refreshUniformsStandard(uniforms, material); if (material.isMeshPhysicalMaterial) { refreshUniformsPhysical(uniforms, material, transmissionRenderTarget); } } else if (material.isMeshMatcapMaterial) { refreshUniformsCommon(uniforms, material); refreshUniformsMatcap(uniforms, material); } else if (material.isMeshDepthMaterial) { refreshUniformsCommon(uniforms, material); } else if (material.isMeshDistanceMaterial) { refreshUniformsCommon(uniforms, material); refreshUniformsDistance(uniforms, material); } else if (material.isMeshNormalMaterial) { refreshUniformsCommon(uniforms, material); } else if (material.isLineBasicMaterial) { refreshUniformsLine(uniforms, material); if (material.isLineDashedMaterial) { refreshUniformsDash(uniforms, material); } } else if (material.isPointsMaterial) { refreshUniformsPoints(uniforms, material, pixelRatio, height); } else if (material.isSpriteMaterial) { refreshUniformsSprites(uniforms, material); } else if (material.isShadowMaterial) { uniforms.color.value.copy(material.color); uniforms.opacity.value = material.opacity; } else if (material.isShaderMaterial) { material.uniformsNeedUpdate = false; } } __name(refreshMaterialUniforms, "refreshMaterialUniforms"); function refreshUniformsCommon(uniforms, material) { uniforms.opacity.value = material.opacity; if (material.color) { uniforms.diffuse.value.copy(material.color); } if (material.emissive) { uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity); } if (material.map) { uniforms.map.value = material.map; refreshTransformUniform(material.map, uniforms.mapTransform); } if (material.alphaMap) { uniforms.alphaMap.value = material.alphaMap; refreshTransformUniform(material.alphaMap, uniforms.alphaMapTransform); } if (material.bumpMap) { uniforms.bumpMap.value = material.bumpMap; refreshTransformUniform(material.bumpMap, uniforms.bumpMapTransform); uniforms.bumpScale.value = material.bumpScale; if (material.side === BackSide) { uniforms.bumpScale.value *= -1; } } if (material.normalMap) { uniforms.normalMap.value = material.normalMap; refreshTransformUniform(material.normalMap, uniforms.normalMapTransform); uniforms.normalScale.value.copy(material.normalScale); if (material.side === BackSide) { uniforms.normalScale.value.negate(); } } if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap; refreshTransformUniform(material.displacementMap, uniforms.displacementMapTransform); uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } if (material.emissiveMap) { uniforms.emissiveMap.value = material.emissiveMap; refreshTransformUniform(material.emissiveMap, uniforms.emissiveMapTransform); } if (material.specularMap) { uniforms.specularMap.value = material.specularMap; refreshTransformUniform(material.specularMap, uniforms.specularMapTransform); } if (material.alphaTest > 0) { uniforms.alphaTest.value = material.alphaTest; } const materialProperties = properties.get(material); const envMap = materialProperties.envMap; const envMapRotation = materialProperties.envMapRotation; if (envMap) { uniforms.envMap.value = envMap; _e1.copy(envMapRotation); _e1.x *= -1; _e1.y *= -1; _e1.z *= -1; if (envMap.isCubeTexture && envMap.isRenderTargetTexture === false) { _e1.y *= -1; _e1.z *= -1; } uniforms.envMapRotation.value.setFromMatrix4(_m1.makeRotationFromEuler(_e1)); uniforms.flipEnvMap.value = envMap.isCubeTexture && envMap.isRenderTargetTexture === false ? -1 : 1; uniforms.reflectivity.value = material.reflectivity; uniforms.ior.value = material.ior; uniforms.refractionRatio.value = material.refractionRatio; } if (material.lightMap) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; refreshTransformUniform(material.lightMap, uniforms.lightMapTransform); } if (material.aoMap) { uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; refreshTransformUniform(material.aoMap, uniforms.aoMapTransform); } } __name(refreshUniformsCommon, "refreshUniformsCommon"); function refreshUniformsLine(uniforms, material) { uniforms.diffuse.value.copy(material.color); uniforms.opacity.value = material.opacity; if (material.map) { uniforms.map.value = material.map; refreshTransformUniform(material.map, uniforms.mapTransform); } } __name(refreshUniformsLine, "refreshUniformsLine"); function refreshUniformsDash(uniforms, material) { uniforms.dashSize.value = material.dashSize; uniforms.totalSize.value = material.dashSize + material.gapSize; uniforms.scale.value = material.scale; } __name(refreshUniformsDash, "refreshUniformsDash"); function refreshUniformsPoints(uniforms, material, pixelRatio, height) { uniforms.diffuse.value.copy(material.color); uniforms.opacity.value = material.opacity; uniforms.size.value = material.size * pixelRatio; uniforms.scale.value = height * 0.5; if (material.map) { uniforms.map.value = material.map; refreshTransformUniform(material.map, uniforms.uvTransform); } if (material.alphaMap) { uniforms.alphaMap.value = material.alphaMap; refreshTransformUniform(material.alphaMap, uniforms.alphaMapTransform); } if (material.alphaTest > 0) { uniforms.alphaTest.value = material.alphaTest; } } __name(refreshUniformsPoints, "refreshUniformsPoints"); function refreshUniformsSprites(uniforms, material) { uniforms.diffuse.value.copy(material.color); uniforms.opacity.value = material.opacity; uniforms.rotation.value = material.rotation; if (material.map) { uniforms.map.value = material.map; refreshTransformUniform(material.map, uniforms.mapTransform); } if (material.alphaMap) { uniforms.alphaMap.value = material.alphaMap; refreshTransformUniform(material.alphaMap, uniforms.alphaMapTransform); } if (material.alphaTest > 0) { uniforms.alphaTest.value = material.alphaTest; } } __name(refreshUniformsSprites, "refreshUniformsSprites"); function refreshUniformsPhong(uniforms, material) { uniforms.specular.value.copy(material.specular); uniforms.shininess.value = Math.max(material.shininess, 1e-4); } __name(refreshUniformsPhong, "refreshUniformsPhong"); function refreshUniformsToon(uniforms, material) { if (material.gradientMap) { uniforms.gradientMap.value = material.gradientMap; } } __name(refreshUniformsToon, "refreshUniformsToon"); function refreshUniformsStandard(uniforms, material) { uniforms.metalness.value = material.metalness; if (material.metalnessMap) { uniforms.metalnessMap.value = material.metalnessMap; refreshTransformUniform(material.metalnessMap, uniforms.metalnessMapTransform); } uniforms.roughness.value = material.roughness; if (material.roughnessMap) { uniforms.roughnessMap.value = material.roughnessMap; refreshTransformUniform(material.roughnessMap, uniforms.roughnessMapTransform); } if (material.envMap) { uniforms.envMapIntensity.value = material.envMapIntensity; } } __name(refreshUniformsStandard, "refreshUniformsStandard"); function refreshUniformsPhysical(uniforms, material, transmissionRenderTarget) { uniforms.ior.value = material.ior; if (material.sheen > 0) { uniforms.sheenColor.value.copy(material.sheenColor).multiplyScalar(material.sheen); uniforms.sheenRoughness.value = material.sheenRoughness; if (material.sheenColorMap) { uniforms.sheenColorMap.value = material.sheenColorMap; refreshTransformUniform(material.sheenColorMap, uniforms.sheenColorMapTransform); } if (material.sheenRoughnessMap) { uniforms.sheenRoughnessMap.value = material.sheenRoughnessMap; refreshTransformUniform(material.sheenRoughnessMap, uniforms.sheenRoughnessMapTransform); } } if (material.clearcoat > 0) { uniforms.clearcoat.value = material.clearcoat; uniforms.clearcoatRoughness.value = material.clearcoatRoughness; if (material.clearcoatMap) { uniforms.clearcoatMap.value = material.clearcoatMap; refreshTransformUniform(material.clearcoatMap, uniforms.clearcoatMapTransform); } if (material.clearcoatRoughnessMap) { uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap; refreshTransformUniform(material.clearcoatRoughnessMap, uniforms.clearcoatRoughnessMapTransform); } if (material.clearcoatNormalMap) { uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap; refreshTransformUniform(material.clearcoatNormalMap, uniforms.clearcoatNormalMapTransform); uniforms.clearcoatNormalScale.value.copy(material.clearcoatNormalScale); if (material.side === BackSide) { uniforms.clearcoatNormalScale.value.negate(); } } } if (material.dispersion > 0) { uniforms.dispersion.value = material.dispersion; } if (material.iridescence > 0) { uniforms.iridescence.value = material.iridescence; uniforms.iridescenceIOR.value = material.iridescenceIOR; uniforms.iridescenceThicknessMinimum.value = material.iridescenceThicknessRange[0]; uniforms.iridescenceThicknessMaximum.value = material.iridescenceThicknessRange[1]; if (material.iridescenceMap) { uniforms.iridescenceMap.value = material.iridescenceMap; refreshTransformUniform(material.iridescenceMap, uniforms.iridescenceMapTransform); } if (material.iridescenceThicknessMap) { uniforms.iridescenceThicknessMap.value = material.iridescenceThicknessMap; refreshTransformUniform(material.iridescenceThicknessMap, uniforms.iridescenceThicknessMapTransform); } } if (material.transmission > 0) { uniforms.transmission.value = material.transmission; uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture; uniforms.transmissionSamplerSize.value.set(transmissionRenderTarget.width, transmissionRenderTarget.height); if (material.transmissionMap) { uniforms.transmissionMap.value = material.transmissionMap; refreshTransformUniform(material.transmissionMap, uniforms.transmissionMapTransform); } uniforms.thickness.value = material.thickness; if (material.thicknessMap) { uniforms.thicknessMap.value = material.thicknessMap; refreshTransformUniform(material.thicknessMap, uniforms.thicknessMapTransform); } uniforms.attenuationDistance.value = material.attenuationDistance; uniforms.attenuationColor.value.copy(material.attenuationColor); } if (material.anisotropy > 0) { uniforms.anisotropyVector.value.set(material.anisotropy * Math.cos(material.anisotropyRotation), material.anisotropy * Math.sin(material.anisotropyRotation)); if (material.anisotropyMap) { uniforms.anisotropyMap.value = material.anisotropyMap; refreshTransformUniform(material.anisotropyMap, uniforms.anisotropyMapTransform); } } uniforms.specularIntensity.value = material.specularIntensity; uniforms.specularColor.value.copy(material.specularColor); if (material.specularColorMap) { uniforms.specularColorMap.value = material.specularColorMap; refreshTransformUniform(material.specularColorMap, uniforms.specularColorMapTransform); } if (material.specularIntensityMap) { uniforms.specularIntensityMap.value = material.specularIntensityMap; refreshTransformUniform(material.specularIntensityMap, uniforms.specularIntensityMapTransform); } } __name(refreshUniformsPhysical, "refreshUniformsPhysical"); function refreshUniformsMatcap(uniforms, material) { if (material.matcap) { uniforms.matcap.value = material.matcap; } } __name(refreshUniformsMatcap, "refreshUniformsMatcap"); function refreshUniformsDistance(uniforms, material) { const light = properties.get(material).light; uniforms.referencePosition.value.setFromMatrixPosition(light.matrixWorld); uniforms.nearDistance.value = light.shadow.camera.near; uniforms.farDistance.value = light.shadow.camera.far; } __name(refreshUniformsDistance, "refreshUniformsDistance"); return { refreshFogUniforms, refreshMaterialUniforms }; } __name(WebGLMaterials, "WebGLMaterials"); function WebGLUniformsGroups(gl, info, capabilities, state) { let buffers = {}; let updateList = {}; let allocatedBindingPoints = []; const maxBindingPoints = gl.getParameter(gl.MAX_UNIFORM_BUFFER_BINDINGS); function bind(uniformsGroup, program) { const webglProgram = program.program; state.uniformBlockBinding(uniformsGroup, webglProgram); } __name(bind, "bind"); function update(uniformsGroup, program) { let buffer = buffers[uniformsGroup.id]; if (buffer === void 0) { prepareUniformsGroup(uniformsGroup); buffer = createBuffer(uniformsGroup); buffers[uniformsGroup.id] = buffer; uniformsGroup.addEventListener("dispose", onUniformsGroupsDispose); } const webglProgram = program.program; state.updateUBOMapping(uniformsGroup, webglProgram); const frame = info.render.frame; if (updateList[uniformsGroup.id] !== frame) { updateBufferData(uniformsGroup); updateList[uniformsGroup.id] = frame; } } __name(update, "update"); function createBuffer(uniformsGroup) { const bindingPointIndex = allocateBindingPointIndex(); uniformsGroup.__bindingPointIndex = bindingPointIndex; const buffer = gl.createBuffer(); const size = uniformsGroup.__size; const usage = uniformsGroup.usage; gl.bindBuffer(gl.UNIFORM_BUFFER, buffer); gl.bufferData(gl.UNIFORM_BUFFER, size, usage); gl.bindBuffer(gl.UNIFORM_BUFFER, null); gl.bindBufferBase(gl.UNIFORM_BUFFER, bindingPointIndex, buffer); return buffer; } __name(createBuffer, "createBuffer"); function allocateBindingPointIndex() { for (let i = 0; i < maxBindingPoints; i++) { if (allocatedBindingPoints.indexOf(i) === -1) { allocatedBindingPoints.push(i); return i; } } console.error("THREE.WebGLRenderer: Maximum number of simultaneously usable uniforms groups reached."); return 0; } __name(allocateBindingPointIndex, "allocateBindingPointIndex"); function updateBufferData(uniformsGroup) { const buffer = buffers[uniformsGroup.id]; const uniforms = uniformsGroup.uniforms; const cache = uniformsGroup.__cache; gl.bindBuffer(gl.UNIFORM_BUFFER, buffer); for (let i = 0, il = uniforms.length; i < il; i++) { const uniformArray = Array.isArray(uniforms[i]) ? uniforms[i] : [uniforms[i]]; for (let j = 0, jl = uniformArray.length; j < jl; j++) { const uniform = uniformArray[j]; if (hasUniformChanged(uniform, i, j, cache) === true) { const offset = uniform.__offset; const values = Array.isArray(uniform.value) ? uniform.value : [uniform.value]; let arrayOffset = 0; for (let k = 0; k < values.length; k++) { const value = values[k]; const info2 = getUniformSize(value); if (typeof value === "number" || typeof value === "boolean") { uniform.__data[0] = value; gl.bufferSubData(gl.UNIFORM_BUFFER, offset + arrayOffset, uniform.__data); } else if (value.isMatrix3) { uniform.__data[0] = value.elements[0]; uniform.__data[1] = value.elements[1]; uniform.__data[2] = value.elements[2]; uniform.__data[3] = 0; uniform.__data[4] = value.elements[3]; uniform.__data[5] = value.elements[4]; uniform.__data[6] = value.elements[5]; uniform.__data[7] = 0; uniform.__data[8] = value.elements[6]; uniform.__data[9] = value.elements[7]; uniform.__data[10] = value.elements[8]; uniform.__data[11] = 0; } else { value.toArray(uniform.__data, arrayOffset); arrayOffset += info2.storage / Float32Array.BYTES_PER_ELEMENT; } } gl.bufferSubData(gl.UNIFORM_BUFFER, offset, uniform.__data); } } } gl.bindBuffer(gl.UNIFORM_BUFFER, null); } __name(updateBufferData, "updateBufferData"); function hasUniformChanged(uniform, index, indexArray, cache) { const value = uniform.value; const indexString = index + "_" + indexArray; if (cache[indexString] === void 0) { if (typeof value === "number" || typeof value === "boolean") { cache[indexString] = value; } else { cache[indexString] = value.clone(); } return true; } else { const cachedObject = cache[indexString]; if (typeof value === "number" || typeof value === "boolean") { if (cachedObject !== value) { cache[indexString] = value; return true; } } else { if (cachedObject.equals(value) === false) { cachedObject.copy(value); return true; } } } return false; } __name(hasUniformChanged, "hasUniformChanged"); function prepareUniformsGroup(uniformsGroup) { const uniforms = uniformsGroup.uniforms; let offset = 0; const chunkSize = 16; for (let i = 0, l = uniforms.length; i < l; i++) { const uniformArray = Array.isArray(uniforms[i]) ? uniforms[i] : [uniforms[i]]; for (let j = 0, jl = uniformArray.length; j < jl; j++) { const uniform = uniformArray[j]; const values = Array.isArray(uniform.value) ? uniform.value : [uniform.value]; for (let k = 0, kl = values.length; k < kl; k++) { const value = values[k]; const info2 = getUniformSize(value); const chunkOffset2 = offset % chunkSize; const chunkPadding = chunkOffset2 % info2.boundary; const chunkStart = chunkOffset2 + chunkPadding; offset += chunkPadding; if (chunkStart !== 0 && chunkSize - chunkStart < info2.storage) { offset += chunkSize - chunkStart; } uniform.__data = new Float32Array(info2.storage / Float32Array.BYTES_PER_ELEMENT); uniform.__offset = offset; offset += info2.storage; } } } const chunkOffset = offset % chunkSize; if (chunkOffset > 0) offset += chunkSize - chunkOffset; uniformsGroup.__size = offset; uniformsGroup.__cache = {}; return this; } __name(prepareUniformsGroup, "prepareUniformsGroup"); function getUniformSize(value) { const info2 = { boundary: 0, // bytes storage: 0 // bytes }; if (typeof value === "number" || typeof value === "boolean") { info2.boundary = 4; info2.storage = 4; } else if (value.isVector2) { info2.boundary = 8; info2.storage = 8; } else if (value.isVector3 || value.isColor) { info2.boundary = 16; info2.storage = 12; } else if (value.isVector4) { info2.boundary = 16; info2.storage = 16; } else if (value.isMatrix3) { info2.boundary = 48; info2.storage = 48; } else if (value.isMatrix4) { info2.boundary = 64; info2.storage = 64; } else if (value.isTexture) { console.warn("THREE.WebGLRenderer: Texture samplers can not be part of an uniforms group."); } else { console.warn("THREE.WebGLRenderer: Unsupported uniform value type.", value); } return info2; } __name(getUniformSize, "getUniformSize"); function onUniformsGroupsDispose(event) { const uniformsGroup = event.target; uniformsGroup.removeEventListener("dispose", onUniformsGroupsDispose); const index = allocatedBindingPoints.indexOf(uniformsGroup.__bindingPointIndex); allocatedBindingPoints.splice(index, 1); gl.deleteBuffer(buffers[uniformsGroup.id]); delete buffers[uniformsGroup.id]; delete updateList[uniformsGroup.id]; } __name(onUniformsGroupsDispose, "onUniformsGroupsDispose"); function dispose() { for (const id2 in buffers) { gl.deleteBuffer(buffers[id2]); } allocatedBindingPoints = []; buffers = {}; updateList = {}; } __name(dispose, "dispose"); return { bind, update, dispose }; } __name(WebGLUniformsGroups, "WebGLUniformsGroups"); class WebGLRenderer { static { __name(this, "WebGLRenderer"); } constructor(parameters = {}) { const { canvas = createCanvasElement(), context = null, depth = true, stencil = false, alpha = false, antialias = false, premultipliedAlpha = true, preserveDrawingBuffer = false, powerPreference = "default", failIfMajorPerformanceCaveat = false, reverseDepthBuffer = false } = parameters; this.isWebGLRenderer = true; let _alpha; if (context !== null) { if (typeof WebGLRenderingContext !== "undefined" && context instanceof WebGLRenderingContext) { throw new Error("THREE.WebGLRenderer: WebGL 1 is not supported since r163."); } _alpha = context.getContextAttributes().alpha; } else { _alpha = alpha; } const uintClearColor = new Uint32Array(4); const intClearColor = new Int32Array(4); let currentRenderList = null; let currentRenderState = null; const renderListStack = []; const renderStateStack = []; this.domElement = canvas; this.debug = { /** * Enables error checking and reporting when shader programs are being compiled * @type {boolean} */ checkShaderErrors: true, /** * Callback for custom error reporting. * @type {?Function} */ onShaderError: null }; this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; this.sortObjects = true; this.clippingPlanes = []; this.localClippingEnabled = false; this._outputColorSpace = SRGBColorSpace; this.toneMapping = NoToneMapping; this.toneMappingExposure = 1; const _this = this; let _isContextLost = false; let _currentActiveCubeFace = 0; let _currentActiveMipmapLevel = 0; let _currentRenderTarget = null; let _currentMaterialId = -1; let _currentCamera = null; const _currentViewport = new Vector4(); const _currentScissor = new Vector4(); let _currentScissorTest = null; const _currentClearColor = new Color(0); let _currentClearAlpha = 0; let _width = canvas.width; let _height = canvas.height; let _pixelRatio = 1; let _opaqueSort = null; let _transparentSort = null; const _viewport = new Vector4(0, 0, _width, _height); const _scissor = new Vector4(0, 0, _width, _height); let _scissorTest = false; const _frustum2 = new Frustum(); let _clippingEnabled = false; let _localClippingEnabled = false; const _currentProjectionMatrix = new Matrix4(); const _projScreenMatrix2 = new Matrix4(); const _vector32 = new Vector3(); const _vector4 = new Vector4(); const _emptyScene = { background: null, fog: null, environment: null, overrideMaterial: null, isScene: true }; let _renderBackground = false; function getTargetPixelRatio() { return _currentRenderTarget === null ? _pixelRatio : 1; } __name(getTargetPixelRatio, "getTargetPixelRatio"); let _gl = context; function getContext(contextName, contextAttributes) { return canvas.getContext(contextName, contextAttributes); } __name(getContext, "getContext"); try { const contextAttributes = { alpha: true, depth, stencil, antialias, premultipliedAlpha, preserveDrawingBuffer, powerPreference, failIfMajorPerformanceCaveat }; if ("setAttribute" in canvas) canvas.setAttribute("data-engine", `three.js r${REVISION}`); canvas.addEventListener("webglcontextlost", onContextLost, false); canvas.addEventListener("webglcontextrestored", onContextRestore, false); canvas.addEventListener("webglcontextcreationerror", onContextCreationError, false); if (_gl === null) { const contextName = "webgl2"; _gl = getContext(contextName, contextAttributes); if (_gl === null) { if (getContext(contextName)) { throw new Error("Error creating WebGL context with your selected attributes."); } else { throw new Error("Error creating WebGL context."); } } } } catch (error) { console.error("THREE.WebGLRenderer: " + error.message); throw error; } let extensions, capabilities, state, info; let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects; let programCache, materials, renderLists, renderStates, clipping, shadowMap; let background, morphtargets, bufferRenderer, indexedBufferRenderer; let utils, bindingStates, uniformsGroups; function initGLContext() { extensions = new WebGLExtensions(_gl); extensions.init(); utils = new WebGLUtils(_gl, extensions); capabilities = new WebGLCapabilities(_gl, extensions, parameters, utils); state = new WebGLState(_gl, extensions); if (capabilities.reverseDepthBuffer && reverseDepthBuffer) { state.buffers.depth.setReversed(true); } info = new WebGLInfo(_gl); properties = new WebGLProperties(); textures = new WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info); cubemaps = new WebGLCubeMaps(_this); cubeuvmaps = new WebGLCubeUVMaps(_this); attributes = new WebGLAttributes(_gl); bindingStates = new WebGLBindingStates(_gl, attributes); geometries = new WebGLGeometries(_gl, attributes, info, bindingStates); objects = new WebGLObjects(_gl, geometries, attributes, info); morphtargets = new WebGLMorphtargets(_gl, capabilities, textures); clipping = new WebGLClipping(properties); programCache = new WebGLPrograms(_this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping); materials = new WebGLMaterials(_this, properties); renderLists = new WebGLRenderLists(); renderStates = new WebGLRenderStates(extensions); background = new WebGLBackground(_this, cubemaps, cubeuvmaps, state, objects, _alpha, premultipliedAlpha); shadowMap = new WebGLShadowMap(_this, objects, capabilities); uniformsGroups = new WebGLUniformsGroups(_gl, info, capabilities, state); bufferRenderer = new WebGLBufferRenderer(_gl, extensions, info); indexedBufferRenderer = new WebGLIndexedBufferRenderer(_gl, extensions, info); info.programs = programCache.programs; _this.capabilities = capabilities; _this.extensions = extensions; _this.properties = properties; _this.renderLists = renderLists; _this.shadowMap = shadowMap; _this.state = state; _this.info = info; } __name(initGLContext, "initGLContext"); initGLContext(); const xr = new WebXRManager(_this, _gl); this.xr = xr; this.getContext = function() { return _gl; }; this.getContextAttributes = function() { return _gl.getContextAttributes(); }; this.forceContextLoss = function() { const extension = extensions.get("WEBGL_lose_context"); if (extension) extension.loseContext(); }; this.forceContextRestore = function() { const extension = extensions.get("WEBGL_lose_context"); if (extension) extension.restoreContext(); }; this.getPixelRatio = function() { return _pixelRatio; }; this.setPixelRatio = function(value) { if (value === void 0) return; _pixelRatio = value; this.setSize(_width, _height, false); }; this.getSize = function(target) { return target.set(_width, _height); }; this.setSize = function(width, height, updateStyle = true) { if (xr.isPresenting) { console.warn("THREE.WebGLRenderer: Can't change size while VR device is presenting."); return; } _width = width; _height = height; canvas.width = Math.floor(width * _pixelRatio); canvas.height = Math.floor(height * _pixelRatio); if (updateStyle === true) { canvas.style.width = width + "px"; canvas.style.height = height + "px"; } this.setViewport(0, 0, width, height); }; this.getDrawingBufferSize = function(target) { return target.set(_width * _pixelRatio, _height * _pixelRatio).floor(); }; this.setDrawingBufferSize = function(width, height, pixelRatio) { _width = width; _height = height; _pixelRatio = pixelRatio; canvas.width = Math.floor(width * pixelRatio); canvas.height = Math.floor(height * pixelRatio); this.setViewport(0, 0, width, height); }; this.getCurrentViewport = function(target) { return target.copy(_currentViewport); }; this.getViewport = function(target) { return target.copy(_viewport); }; this.setViewport = function(x, y, width, height) { if (x.isVector4) { _viewport.set(x.x, x.y, x.z, x.w); } else { _viewport.set(x, y, width, height); } state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).round()); }; this.getScissor = function(target) { return target.copy(_scissor); }; this.setScissor = function(x, y, width, height) { if (x.isVector4) { _scissor.set(x.x, x.y, x.z, x.w); } else { _scissor.set(x, y, width, height); } state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).round()); }; this.getScissorTest = function() { return _scissorTest; }; this.setScissorTest = function(boolean) { state.setScissorTest(_scissorTest = boolean); }; this.setOpaqueSort = function(method) { _opaqueSort = method; }; this.setTransparentSort = function(method) { _transparentSort = method; }; this.getClearColor = function(target) { return target.copy(background.getClearColor()); }; this.setClearColor = function() { background.setClearColor.apply(background, arguments); }; this.getClearAlpha = function() { return background.getClearAlpha(); }; this.setClearAlpha = function() { background.setClearAlpha.apply(background, arguments); }; this.clear = function(color = true, depth2 = true, stencil2 = true) { let bits2 = 0; if (color) { let isIntegerFormat = false; if (_currentRenderTarget !== null) { const targetFormat = _currentRenderTarget.texture.format; isIntegerFormat = targetFormat === RGBAIntegerFormat || targetFormat === RGIntegerFormat || targetFormat === RedIntegerFormat; } if (isIntegerFormat) { const targetType = _currentRenderTarget.texture.type; const isUnsignedType = targetType === UnsignedByteType || targetType === UnsignedIntType || targetType === UnsignedShortType || targetType === UnsignedInt248Type || targetType === UnsignedShort4444Type || targetType === UnsignedShort5551Type; const clearColor = background.getClearColor(); const a = background.getClearAlpha(); const r = clearColor.r; const g = clearColor.g; const b = clearColor.b; if (isUnsignedType) { uintClearColor[0] = r; uintClearColor[1] = g; uintClearColor[2] = b; uintClearColor[3] = a; _gl.clearBufferuiv(_gl.COLOR, 0, uintClearColor); } else { intClearColor[0] = r; intClearColor[1] = g; intClearColor[2] = b; intClearColor[3] = a; _gl.clearBufferiv(_gl.COLOR, 0, intClearColor); } } else { bits2 |= _gl.COLOR_BUFFER_BIT; } } if (depth2) { bits2 |= _gl.DEPTH_BUFFER_BIT; } if (stencil2) { bits2 |= _gl.STENCIL_BUFFER_BIT; this.state.buffers.stencil.setMask(4294967295); } _gl.clear(bits2); }; this.clearColor = function() { this.clear(true, false, false); }; this.clearDepth = function() { this.clear(false, true, false); }; this.clearStencil = function() { this.clear(false, false, true); }; this.dispose = function() { canvas.removeEventListener("webglcontextlost", onContextLost, false); canvas.removeEventListener("webglcontextrestored", onContextRestore, false); canvas.removeEventListener("webglcontextcreationerror", onContextCreationError, false); renderLists.dispose(); renderStates.dispose(); properties.dispose(); cubemaps.dispose(); cubeuvmaps.dispose(); objects.dispose(); bindingStates.dispose(); uniformsGroups.dispose(); programCache.dispose(); xr.dispose(); xr.removeEventListener("sessionstart", onXRSessionStart); xr.removeEventListener("sessionend", onXRSessionEnd); animation.stop(); }; function onContextLost(event) { event.preventDefault(); console.log("THREE.WebGLRenderer: Context Lost."); _isContextLost = true; } __name(onContextLost, "onContextLost"); function onContextRestore() { console.log("THREE.WebGLRenderer: Context Restored."); _isContextLost = false; const infoAutoReset = info.autoReset; const shadowMapEnabled = shadowMap.enabled; const shadowMapAutoUpdate = shadowMap.autoUpdate; const shadowMapNeedsUpdate = shadowMap.needsUpdate; const shadowMapType = shadowMap.type; initGLContext(); info.autoReset = infoAutoReset; shadowMap.enabled = shadowMapEnabled; shadowMap.autoUpdate = shadowMapAutoUpdate; shadowMap.needsUpdate = shadowMapNeedsUpdate; shadowMap.type = shadowMapType; } __name(onContextRestore, "onContextRestore"); function onContextCreationError(event) { console.error("THREE.WebGLRenderer: A WebGL context could not be created. Reason: ", event.statusMessage); } __name(onContextCreationError, "onContextCreationError"); function onMaterialDispose(event) { const material = event.target; material.removeEventListener("dispose", onMaterialDispose); deallocateMaterial(material); } __name(onMaterialDispose, "onMaterialDispose"); function deallocateMaterial(material) { releaseMaterialProgramReferences(material); properties.remove(material); } __name(deallocateMaterial, "deallocateMaterial"); function releaseMaterialProgramReferences(material) { const programs = properties.get(material).programs; if (programs !== void 0) { programs.forEach(function(program) { programCache.releaseProgram(program); }); if (material.isShaderMaterial) { programCache.releaseShaderCache(material); } } } __name(releaseMaterialProgramReferences, "releaseMaterialProgramReferences"); this.renderBufferDirect = function(camera, scene, geometry, material, object, group) { if (scene === null) scene = _emptyScene; const frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0; const program = setProgram(camera, scene, geometry, material, object); state.setMaterial(material, frontFaceCW); let index = geometry.index; let rangeFactor = 1; if (material.wireframe === true) { index = geometries.getWireframeAttribute(geometry); if (index === void 0) return; rangeFactor = 2; } const drawRange = geometry.drawRange; const position = geometry.attributes.position; let drawStart = drawRange.start * rangeFactor; let drawEnd = (drawRange.start + drawRange.count) * rangeFactor; if (group !== null) { drawStart = Math.max(drawStart, group.start * rangeFactor); drawEnd = Math.min(drawEnd, (group.start + group.count) * rangeFactor); } if (index !== null) { drawStart = Math.max(drawStart, 0); drawEnd = Math.min(drawEnd, index.count); } else if (position !== void 0 && position !== null) { drawStart = Math.max(drawStart, 0); drawEnd = Math.min(drawEnd, position.count); } const drawCount = drawEnd - drawStart; if (drawCount < 0 || drawCount === Infinity) return; bindingStates.setup(object, material, program, geometry, index); let attribute; let renderer = bufferRenderer; if (index !== null) { attribute = attributes.get(index); renderer = indexedBufferRenderer; renderer.setIndex(attribute); } if (object.isMesh) { if (material.wireframe === true) { state.setLineWidth(material.wireframeLinewidth * getTargetPixelRatio()); renderer.setMode(_gl.LINES); } else { renderer.setMode(_gl.TRIANGLES); } } else if (object.isLine) { let lineWidth = material.linewidth; if (lineWidth === void 0) lineWidth = 1; state.setLineWidth(lineWidth * getTargetPixelRatio()); if (object.isLineSegments) { renderer.setMode(_gl.LINES); } else if (object.isLineLoop) { renderer.setMode(_gl.LINE_LOOP); } else { renderer.setMode(_gl.LINE_STRIP); } } else if (object.isPoints) { renderer.setMode(_gl.POINTS); } else if (object.isSprite) { renderer.setMode(_gl.TRIANGLES); } if (object.isBatchedMesh) { if (object._multiDrawInstances !== null) { renderer.renderMultiDrawInstances(object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount, object._multiDrawInstances); } else { if (!extensions.get("WEBGL_multi_draw")) { const starts = object._multiDrawStarts; const counts = object._multiDrawCounts; const drawCount2 = object._multiDrawCount; const bytesPerElement = index ? attributes.get(index).bytesPerElement : 1; const uniforms = properties.get(material).currentProgram.getUniforms(); for (let i = 0; i < drawCount2; i++) { uniforms.setValue(_gl, "_gl_DrawID", i); renderer.render(starts[i] / bytesPerElement, counts[i]); } } else { renderer.renderMultiDraw(object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount); } } } else if (object.isInstancedMesh) { renderer.renderInstances(drawStart, drawCount, object.count); } else if (geometry.isInstancedBufferGeometry) { const maxInstanceCount = geometry._maxInstanceCount !== void 0 ? geometry._maxInstanceCount : Infinity; const instanceCount = Math.min(geometry.instanceCount, maxInstanceCount); renderer.renderInstances(drawStart, drawCount, instanceCount); } else { renderer.render(drawStart, drawCount); } }; function prepareMaterial(material, scene, object) { if (material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false) { material.side = BackSide; material.needsUpdate = true; getProgram(material, scene, object); material.side = FrontSide; material.needsUpdate = true; getProgram(material, scene, object); material.side = DoubleSide; } else { getProgram(material, scene, object); } } __name(prepareMaterial, "prepareMaterial"); this.compile = function(scene, camera, targetScene = null) { if (targetScene === null) targetScene = scene; currentRenderState = renderStates.get(targetScene); currentRenderState.init(camera); renderStateStack.push(currentRenderState); targetScene.traverseVisible(function(object) { if (object.isLight && object.layers.test(camera.layers)) { currentRenderState.pushLight(object); if (object.castShadow) { currentRenderState.pushShadow(object); } } }); if (scene !== targetScene) { scene.traverseVisible(function(object) { if (object.isLight && object.layers.test(camera.layers)) { currentRenderState.pushLight(object); if (object.castShadow) { currentRenderState.pushShadow(object); } } }); } currentRenderState.setupLights(); const materials2 = /* @__PURE__ */ new Set(); scene.traverse(function(object) { if (!(object.isMesh || object.isPoints || object.isLine || object.isSprite)) { return; } const material = object.material; if (material) { if (Array.isArray(material)) { for (let i = 0; i < material.length; i++) { const material2 = material[i]; prepareMaterial(material2, targetScene, object); materials2.add(material2); } } else { prepareMaterial(material, targetScene, object); materials2.add(material); } } }); renderStateStack.pop(); currentRenderState = null; return materials2; }; this.compileAsync = function(scene, camera, targetScene = null) { const materials2 = this.compile(scene, camera, targetScene); return new Promise((resolve) => { function checkMaterialsReady() { materials2.forEach(function(material) { const materialProperties = properties.get(material); const program = materialProperties.currentProgram; if (program.isReady()) { materials2.delete(material); } }); if (materials2.size === 0) { resolve(scene); return; } setTimeout(checkMaterialsReady, 10); } __name(checkMaterialsReady, "checkMaterialsReady"); if (extensions.get("KHR_parallel_shader_compile") !== null) { checkMaterialsReady(); } else { setTimeout(checkMaterialsReady, 10); } }); }; let onAnimationFrameCallback = null; function onAnimationFrame(time) { if (onAnimationFrameCallback) onAnimationFrameCallback(time); } __name(onAnimationFrame, "onAnimationFrame"); function onXRSessionStart() { animation.stop(); } __name(onXRSessionStart, "onXRSessionStart"); function onXRSessionEnd() { animation.start(); } __name(onXRSessionEnd, "onXRSessionEnd"); const animation = new WebGLAnimation(); animation.setAnimationLoop(onAnimationFrame); if (typeof self !== "undefined") animation.setContext(self); this.setAnimationLoop = function(callback) { onAnimationFrameCallback = callback; xr.setAnimationLoop(callback); callback === null ? animation.stop() : animation.start(); }; xr.addEventListener("sessionstart", onXRSessionStart); xr.addEventListener("sessionend", onXRSessionEnd); this.render = function(scene, camera) { if (camera !== void 0 && camera.isCamera !== true) { console.error("THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera."); return; } if (_isContextLost === true) return; if (scene.matrixWorldAutoUpdate === true) scene.updateMatrixWorld(); if (camera.parent === null && camera.matrixWorldAutoUpdate === true) camera.updateMatrixWorld(); if (xr.enabled === true && xr.isPresenting === true) { if (xr.cameraAutoUpdate === true) xr.updateCamera(camera); camera = xr.getCamera(); } if (scene.isScene === true) scene.onBeforeRender(_this, scene, camera, _currentRenderTarget); currentRenderState = renderStates.get(scene, renderStateStack.length); currentRenderState.init(camera); renderStateStack.push(currentRenderState); _projScreenMatrix2.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse); _frustum2.setFromProjectionMatrix(_projScreenMatrix2); _localClippingEnabled = this.localClippingEnabled; _clippingEnabled = clipping.init(this.clippingPlanes, _localClippingEnabled); currentRenderList = renderLists.get(scene, renderListStack.length); currentRenderList.init(); renderListStack.push(currentRenderList); if (xr.enabled === true && xr.isPresenting === true) { const depthSensingMesh = _this.xr.getDepthSensingMesh(); if (depthSensingMesh !== null) { projectObject(depthSensingMesh, camera, -Infinity, _this.sortObjects); } } projectObject(scene, camera, 0, _this.sortObjects); currentRenderList.finish(); if (_this.sortObjects === true) { currentRenderList.sort(_opaqueSort, _transparentSort); } _renderBackground = xr.enabled === false || xr.isPresenting === false || xr.hasDepthSensing() === false; if (_renderBackground) { background.addToRenderList(currentRenderList, scene); } this.info.render.frame++; if (_clippingEnabled === true) clipping.beginShadows(); const shadowsArray = currentRenderState.state.shadowsArray; shadowMap.render(shadowsArray, scene, camera); if (_clippingEnabled === true) clipping.endShadows(); if (this.info.autoReset === true) this.info.reset(); const opaqueObjects = currentRenderList.opaque; const transmissiveObjects = currentRenderList.transmissive; currentRenderState.setupLights(); if (camera.isArrayCamera) { const cameras = camera.cameras; if (transmissiveObjects.length > 0) { for (let i = 0, l = cameras.length; i < l; i++) { const camera2 = cameras[i]; renderTransmissionPass(opaqueObjects, transmissiveObjects, scene, camera2); } } if (_renderBackground) background.render(scene); for (let i = 0, l = cameras.length; i < l; i++) { const camera2 = cameras[i]; renderScene(currentRenderList, scene, camera2, camera2.viewport); } } else { if (transmissiveObjects.length > 0) renderTransmissionPass(opaqueObjects, transmissiveObjects, scene, camera); if (_renderBackground) background.render(scene); renderScene(currentRenderList, scene, camera); } if (_currentRenderTarget !== null) { textures.updateMultisampleRenderTarget(_currentRenderTarget); textures.updateRenderTargetMipmap(_currentRenderTarget); } if (scene.isScene === true) scene.onAfterRender(_this, scene, camera); bindingStates.resetDefaultState(); _currentMaterialId = -1; _currentCamera = null; renderStateStack.pop(); if (renderStateStack.length > 0) { currentRenderState = renderStateStack[renderStateStack.length - 1]; if (_clippingEnabled === true) clipping.setGlobalState(_this.clippingPlanes, currentRenderState.state.camera); } else { currentRenderState = null; } renderListStack.pop(); if (renderListStack.length > 0) { currentRenderList = renderListStack[renderListStack.length - 1]; } else { currentRenderList = null; } }; function projectObject(object, camera, groupOrder, sortObjects) { if (object.visible === false) return; const visible = object.layers.test(camera.layers); if (visible) { if (object.isGroup) { groupOrder = object.renderOrder; } else if (object.isLOD) { if (object.autoUpdate === true) object.update(camera); } else if (object.isLight) { currentRenderState.pushLight(object); if (object.castShadow) { currentRenderState.pushShadow(object); } } else if (object.isSprite) { if (!object.frustumCulled || _frustum2.intersectsSprite(object)) { if (sortObjects) { _vector4.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix2); } const geometry = objects.update(object); const material = object.material; if (material.visible) { currentRenderList.push(object, geometry, material, groupOrder, _vector4.z, null); } } } else if (object.isMesh || object.isLine || object.isPoints) { if (!object.frustumCulled || _frustum2.intersectsObject(object)) { const geometry = objects.update(object); const material = object.material; if (sortObjects) { if (object.boundingSphere !== void 0) { if (object.boundingSphere === null) object.computeBoundingSphere(); _vector4.copy(object.boundingSphere.center); } else { if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); _vector4.copy(geometry.boundingSphere.center); } _vector4.applyMatrix4(object.matrixWorld).applyMatrix4(_projScreenMatrix2); } if (Array.isArray(material)) { const groups = geometry.groups; for (let i = 0, l = groups.length; i < l; i++) { const group = groups[i]; const groupMaterial = material[group.materialIndex]; if (groupMaterial && groupMaterial.visible) { currentRenderList.push(object, geometry, groupMaterial, groupOrder, _vector4.z, group); } } } else if (material.visible) { currentRenderList.push(object, geometry, material, groupOrder, _vector4.z, null); } } } } const children = object.children; for (let i = 0, l = children.length; i < l; i++) { projectObject(children[i], camera, groupOrder, sortObjects); } } __name(projectObject, "projectObject"); function renderScene(currentRenderList2, scene, camera, viewport) { const opaqueObjects = currentRenderList2.opaque; const transmissiveObjects = currentRenderList2.transmissive; const transparentObjects = currentRenderList2.transparent; currentRenderState.setupLightsView(camera); if (_clippingEnabled === true) clipping.setGlobalState(_this.clippingPlanes, camera); if (viewport) state.viewport(_currentViewport.copy(viewport)); if (opaqueObjects.length > 0) renderObjects(opaqueObjects, scene, camera); if (transmissiveObjects.length > 0) renderObjects(transmissiveObjects, scene, camera); if (transparentObjects.length > 0) renderObjects(transparentObjects, scene, camera); state.buffers.depth.setTest(true); state.buffers.depth.setMask(true); state.buffers.color.setMask(true); state.setPolygonOffset(false); } __name(renderScene, "renderScene"); function renderTransmissionPass(opaqueObjects, transmissiveObjects, scene, camera) { const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; if (overrideMaterial !== null) { return; } if (currentRenderState.state.transmissionRenderTarget[camera.id] === void 0) { currentRenderState.state.transmissionRenderTarget[camera.id] = new WebGLRenderTarget(1, 1, { generateMipmaps: true, type: extensions.has("EXT_color_buffer_half_float") || extensions.has("EXT_color_buffer_float") ? HalfFloatType : UnsignedByteType, minFilter: LinearMipmapLinearFilter, samples: 4, stencilBuffer: stencil, resolveDepthBuffer: false, resolveStencilBuffer: false, colorSpace: ColorManagement.workingColorSpace }); } const transmissionRenderTarget = currentRenderState.state.transmissionRenderTarget[camera.id]; const activeViewport = camera.viewport || _currentViewport; transmissionRenderTarget.setSize(activeViewport.z, activeViewport.w); const currentRenderTarget = _this.getRenderTarget(); _this.setRenderTarget(transmissionRenderTarget); _this.getClearColor(_currentClearColor); _currentClearAlpha = _this.getClearAlpha(); if (_currentClearAlpha < 1) _this.setClearColor(16777215, 0.5); _this.clear(); if (_renderBackground) background.render(scene); const currentToneMapping = _this.toneMapping; _this.toneMapping = NoToneMapping; const currentCameraViewport = camera.viewport; if (camera.viewport !== void 0) camera.viewport = void 0; currentRenderState.setupLightsView(camera); if (_clippingEnabled === true) clipping.setGlobalState(_this.clippingPlanes, camera); renderObjects(opaqueObjects, scene, camera); textures.updateMultisampleRenderTarget(transmissionRenderTarget); textures.updateRenderTargetMipmap(transmissionRenderTarget); if (extensions.has("WEBGL_multisampled_render_to_texture") === false) { let renderTargetNeedsUpdate = false; for (let i = 0, l = transmissiveObjects.length; i < l; i++) { const renderItem = transmissiveObjects[i]; const object = renderItem.object; const geometry = renderItem.geometry; const material = renderItem.material; const group = renderItem.group; if (material.side === DoubleSide && object.layers.test(camera.layers)) { const currentSide = material.side; material.side = BackSide; material.needsUpdate = true; renderObject(object, scene, camera, geometry, material, group); material.side = currentSide; material.needsUpdate = true; renderTargetNeedsUpdate = true; } } if (renderTargetNeedsUpdate === true) { textures.updateMultisampleRenderTarget(transmissionRenderTarget); textures.updateRenderTargetMipmap(transmissionRenderTarget); } } _this.setRenderTarget(currentRenderTarget); _this.setClearColor(_currentClearColor, _currentClearAlpha); if (currentCameraViewport !== void 0) camera.viewport = currentCameraViewport; _this.toneMapping = currentToneMapping; } __name(renderTransmissionPass, "renderTransmissionPass"); function renderObjects(renderList, scene, camera) { const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; for (let i = 0, l = renderList.length; i < l; i++) { const renderItem = renderList[i]; const object = renderItem.object; const geometry = renderItem.geometry; const material = overrideMaterial === null ? renderItem.material : overrideMaterial; const group = renderItem.group; if (object.layers.test(camera.layers)) { renderObject(object, scene, camera, geometry, material, group); } } } __name(renderObjects, "renderObjects"); function renderObject(object, scene, camera, geometry, material, group) { object.onBeforeRender(_this, scene, camera, geometry, material, group); object.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, object.matrixWorld); object.normalMatrix.getNormalMatrix(object.modelViewMatrix); material.onBeforeRender(_this, scene, camera, geometry, object, group); if (material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false) { material.side = BackSide; material.needsUpdate = true; _this.renderBufferDirect(camera, scene, geometry, material, object, group); material.side = FrontSide; material.needsUpdate = true; _this.renderBufferDirect(camera, scene, geometry, material, object, group); material.side = DoubleSide; } else { _this.renderBufferDirect(camera, scene, geometry, material, object, group); } object.onAfterRender(_this, scene, camera, geometry, material, group); } __name(renderObject, "renderObject"); function getProgram(material, scene, object) { if (scene.isScene !== true) scene = _emptyScene; const materialProperties = properties.get(material); const lights = currentRenderState.state.lights; const shadowsArray = currentRenderState.state.shadowsArray; const lightsStateVersion = lights.state.version; const parameters2 = programCache.getParameters(material, lights.state, shadowsArray, scene, object); const programCacheKey = programCache.getProgramCacheKey(parameters2); let programs = materialProperties.programs; materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null; materialProperties.fog = scene.fog; materialProperties.envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || materialProperties.environment); materialProperties.envMapRotation = materialProperties.environment !== null && material.envMap === null ? scene.environmentRotation : material.envMapRotation; if (programs === void 0) { material.addEventListener("dispose", onMaterialDispose); programs = /* @__PURE__ */ new Map(); materialProperties.programs = programs; } let program = programs.get(programCacheKey); if (program !== void 0) { if (materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion) { updateCommonMaterialProperties(material, parameters2); return program; } } else { parameters2.uniforms = programCache.getUniforms(material); material.onBeforeCompile(parameters2, _this); program = programCache.acquireProgram(parameters2, programCacheKey); programs.set(programCacheKey, program); materialProperties.uniforms = parameters2.uniforms; } const uniforms = materialProperties.uniforms; if (!material.isShaderMaterial && !material.isRawShaderMaterial || material.clipping === true) { uniforms.clippingPlanes = clipping.uniform; } updateCommonMaterialProperties(material, parameters2); materialProperties.needsLights = materialNeedsLights(material); materialProperties.lightsStateVersion = lightsStateVersion; if (materialProperties.needsLights) { uniforms.ambientLightColor.value = lights.state.ambient; uniforms.lightProbe.value = lights.state.probe; uniforms.directionalLights.value = lights.state.directional; uniforms.directionalLightShadows.value = lights.state.directionalShadow; uniforms.spotLights.value = lights.state.spot; uniforms.spotLightShadows.value = lights.state.spotShadow; uniforms.rectAreaLights.value = lights.state.rectArea; uniforms.ltc_1.value = lights.state.rectAreaLTC1; uniforms.ltc_2.value = lights.state.rectAreaLTC2; uniforms.pointLights.value = lights.state.point; uniforms.pointLightShadows.value = lights.state.pointShadow; uniforms.hemisphereLights.value = lights.state.hemi; uniforms.directionalShadowMap.value = lights.state.directionalShadowMap; uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix; uniforms.spotShadowMap.value = lights.state.spotShadowMap; uniforms.spotLightMatrix.value = lights.state.spotLightMatrix; uniforms.spotLightMap.value = lights.state.spotLightMap; uniforms.pointShadowMap.value = lights.state.pointShadowMap; uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; } materialProperties.currentProgram = program; materialProperties.uniformsList = null; return program; } __name(getProgram, "getProgram"); function getUniformList(materialProperties) { if (materialProperties.uniformsList === null) { const progUniforms = materialProperties.currentProgram.getUniforms(); materialProperties.uniformsList = WebGLUniforms.seqWithValue(progUniforms.seq, materialProperties.uniforms); } return materialProperties.uniformsList; } __name(getUniformList, "getUniformList"); function updateCommonMaterialProperties(material, parameters2) { const materialProperties = properties.get(material); materialProperties.outputColorSpace = parameters2.outputColorSpace; materialProperties.batching = parameters2.batching; materialProperties.batchingColor = parameters2.batchingColor; materialProperties.instancing = parameters2.instancing; materialProperties.instancingColor = parameters2.instancingColor; materialProperties.instancingMorph = parameters2.instancingMorph; materialProperties.skinning = parameters2.skinning; materialProperties.morphTargets = parameters2.morphTargets; materialProperties.morphNormals = parameters2.morphNormals; materialProperties.morphColors = parameters2.morphColors; materialProperties.morphTargetsCount = parameters2.morphTargetsCount; materialProperties.numClippingPlanes = parameters2.numClippingPlanes; materialProperties.numIntersection = parameters2.numClipIntersection; materialProperties.vertexAlphas = parameters2.vertexAlphas; materialProperties.vertexTangents = parameters2.vertexTangents; materialProperties.toneMapping = parameters2.toneMapping; } __name(updateCommonMaterialProperties, "updateCommonMaterialProperties"); function setProgram(camera, scene, geometry, material, object) { if (scene.isScene !== true) scene = _emptyScene; textures.resetTextureUnits(); const fog = scene.fog; const environment = material.isMeshStandardMaterial ? scene.environment : null; const colorSpace = _currentRenderTarget === null ? _this.outputColorSpace : _currentRenderTarget.isXRRenderTarget === true ? _currentRenderTarget.texture.colorSpace : LinearSRGBColorSpace; const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment); const vertexAlphas = material.vertexColors === true && !!geometry.attributes.color && geometry.attributes.color.itemSize === 4; const vertexTangents = !!geometry.attributes.tangent && (!!material.normalMap || material.anisotropy > 0); const morphTargets = !!geometry.morphAttributes.position; const morphNormals = !!geometry.morphAttributes.normal; const morphColors = !!geometry.morphAttributes.color; let toneMapping = NoToneMapping; if (material.toneMapped) { if (_currentRenderTarget === null || _currentRenderTarget.isXRRenderTarget === true) { toneMapping = _this.toneMapping; } } const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = morphAttribute !== void 0 ? morphAttribute.length : 0; const materialProperties = properties.get(material); const lights = currentRenderState.state.lights; if (_clippingEnabled === true) { if (_localClippingEnabled === true || camera !== _currentCamera) { const useCache = camera === _currentCamera && material.id === _currentMaterialId; clipping.setState(material, camera, useCache); } } let needsProgramChange = false; if (material.version === materialProperties.__version) { if (materialProperties.needsLights && materialProperties.lightsStateVersion !== lights.state.version) { needsProgramChange = true; } else if (materialProperties.outputColorSpace !== colorSpace) { needsProgramChange = true; } else if (object.isBatchedMesh && materialProperties.batching === false) { needsProgramChange = true; } else if (!object.isBatchedMesh && materialProperties.batching === true) { needsProgramChange = true; } else if (object.isBatchedMesh && materialProperties.batchingColor === true && object.colorTexture === null) { needsProgramChange = true; } else if (object.isBatchedMesh && materialProperties.batchingColor === false && object.colorTexture !== null) { needsProgramChange = true; } else if (object.isInstancedMesh && materialProperties.instancing === false) { needsProgramChange = true; } else if (!object.isInstancedMesh && materialProperties.instancing === true) { needsProgramChange = true; } else if (object.isSkinnedMesh && materialProperties.skinning === false) { needsProgramChange = true; } else if (!object.isSkinnedMesh && materialProperties.skinning === true) { needsProgramChange = true; } else if (object.isInstancedMesh && materialProperties.instancingColor === true && object.instanceColor === null) { needsProgramChange = true; } else if (object.isInstancedMesh && materialProperties.instancingColor === false && object.instanceColor !== null) { needsProgramChange = true; } else if (object.isInstancedMesh && materialProperties.instancingMorph === true && object.morphTexture === null) { needsProgramChange = true; } else if (object.isInstancedMesh && materialProperties.instancingMorph === false && object.morphTexture !== null) { needsProgramChange = true; } else if (materialProperties.envMap !== envMap) { needsProgramChange = true; } else if (material.fog === true && materialProperties.fog !== fog) { needsProgramChange = true; } else if (materialProperties.numClippingPlanes !== void 0 && (materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection)) { needsProgramChange = true; } else if (materialProperties.vertexAlphas !== vertexAlphas) { needsProgramChange = true; } else if (materialProperties.vertexTangents !== vertexTangents) { needsProgramChange = true; } else if (materialProperties.morphTargets !== morphTargets) { needsProgramChange = true; } else if (materialProperties.morphNormals !== morphNormals) { needsProgramChange = true; } else if (materialProperties.morphColors !== morphColors) { needsProgramChange = true; } else if (materialProperties.toneMapping !== toneMapping) { needsProgramChange = true; } else if (materialProperties.morphTargetsCount !== morphTargetsCount) { needsProgramChange = true; } } else { needsProgramChange = true; materialProperties.__version = material.version; } let program = materialProperties.currentProgram; if (needsProgramChange === true) { program = getProgram(material, scene, object); } let refreshProgram = false; let refreshMaterial = false; let refreshLights = false; const p_uniforms = program.getUniforms(), m_uniforms = materialProperties.uniforms; if (state.useProgram(program.program)) { refreshProgram = true; refreshMaterial = true; refreshLights = true; } if (material.id !== _currentMaterialId) { _currentMaterialId = material.id; refreshMaterial = true; } if (refreshProgram || _currentCamera !== camera) { const reverseDepthBuffer2 = state.buffers.depth.getReversed(); if (reverseDepthBuffer2) { _currentProjectionMatrix.copy(camera.projectionMatrix); toNormalizedProjectionMatrix(_currentProjectionMatrix); toReversedProjectionMatrix(_currentProjectionMatrix); p_uniforms.setValue(_gl, "projectionMatrix", _currentProjectionMatrix); } else { p_uniforms.setValue(_gl, "projectionMatrix", camera.projectionMatrix); } p_uniforms.setValue(_gl, "viewMatrix", camera.matrixWorldInverse); const uCamPos = p_uniforms.map.cameraPosition; if (uCamPos !== void 0) { uCamPos.setValue(_gl, _vector32.setFromMatrixPosition(camera.matrixWorld)); } if (capabilities.logarithmicDepthBuffer) { p_uniforms.setValue( _gl, "logDepthBufFC", 2 / (Math.log(camera.far + 1) / Math.LN2) ); } if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial) { p_uniforms.setValue(_gl, "isOrthographic", camera.isOrthographicCamera === true); } if (_currentCamera !== camera) { _currentCamera = camera; refreshMaterial = true; refreshLights = true; } } if (object.isSkinnedMesh) { p_uniforms.setOptional(_gl, object, "bindMatrix"); p_uniforms.setOptional(_gl, object, "bindMatrixInverse"); const skeleton = object.skeleton; if (skeleton) { if (skeleton.boneTexture === null) skeleton.computeBoneTexture(); p_uniforms.setValue(_gl, "boneTexture", skeleton.boneTexture, textures); } } if (object.isBatchedMesh) { p_uniforms.setOptional(_gl, object, "batchingTexture"); p_uniforms.setValue(_gl, "batchingTexture", object._matricesTexture, textures); p_uniforms.setOptional(_gl, object, "batchingIdTexture"); p_uniforms.setValue(_gl, "batchingIdTexture", object._indirectTexture, textures); p_uniforms.setOptional(_gl, object, "batchingColorTexture"); if (object._colorsTexture !== null) { p_uniforms.setValue(_gl, "batchingColorTexture", object._colorsTexture, textures); } } const morphAttributes = geometry.morphAttributes; if (morphAttributes.position !== void 0 || morphAttributes.normal !== void 0 || morphAttributes.color !== void 0) { morphtargets.update(object, geometry, program); } if (refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow) { materialProperties.receiveShadow = object.receiveShadow; p_uniforms.setValue(_gl, "receiveShadow", object.receiveShadow); } if (material.isMeshGouraudMaterial && material.envMap !== null) { m_uniforms.envMap.value = envMap; m_uniforms.flipEnvMap.value = envMap.isCubeTexture && envMap.isRenderTargetTexture === false ? -1 : 1; } if (material.isMeshStandardMaterial && material.envMap === null && scene.environment !== null) { m_uniforms.envMapIntensity.value = scene.environmentIntensity; } if (refreshMaterial) { p_uniforms.setValue(_gl, "toneMappingExposure", _this.toneMappingExposure); if (materialProperties.needsLights) { markUniformsLightsNeedsUpdate(m_uniforms, refreshLights); } if (fog && material.fog === true) { materials.refreshFogUniforms(m_uniforms, fog); } materials.refreshMaterialUniforms(m_uniforms, material, _pixelRatio, _height, currentRenderState.state.transmissionRenderTarget[camera.id]); WebGLUniforms.upload(_gl, getUniformList(materialProperties), m_uniforms, textures); } if (material.isShaderMaterial && material.uniformsNeedUpdate === true) { WebGLUniforms.upload(_gl, getUniformList(materialProperties), m_uniforms, textures); material.uniformsNeedUpdate = false; } if (material.isSpriteMaterial) { p_uniforms.setValue(_gl, "center", object.center); } p_uniforms.setValue(_gl, "modelViewMatrix", object.modelViewMatrix); p_uniforms.setValue(_gl, "normalMatrix", object.normalMatrix); p_uniforms.setValue(_gl, "modelMatrix", object.matrixWorld); if (material.isShaderMaterial || material.isRawShaderMaterial) { const groups = material.uniformsGroups; for (let i = 0, l = groups.length; i < l; i++) { const group = groups[i]; uniformsGroups.update(group, program); uniformsGroups.bind(group, program); } } return program; } __name(setProgram, "setProgram"); function markUniformsLightsNeedsUpdate(uniforms, value) { uniforms.ambientLightColor.needsUpdate = value; uniforms.lightProbe.needsUpdate = value; uniforms.directionalLights.needsUpdate = value; uniforms.directionalLightShadows.needsUpdate = value; uniforms.pointLights.needsUpdate = value; uniforms.pointLightShadows.needsUpdate = value; uniforms.spotLights.needsUpdate = value; uniforms.spotLightShadows.needsUpdate = value; uniforms.rectAreaLights.needsUpdate = value; uniforms.hemisphereLights.needsUpdate = value; } __name(markUniformsLightsNeedsUpdate, "markUniformsLightsNeedsUpdate"); function materialNeedsLights(material) { return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || material.isShaderMaterial && material.lights === true; } __name(materialNeedsLights, "materialNeedsLights"); this.getActiveCubeFace = function() { return _currentActiveCubeFace; }; this.getActiveMipmapLevel = function() { return _currentActiveMipmapLevel; }; this.getRenderTarget = function() { return _currentRenderTarget; }; this.setRenderTargetTextures = function(renderTarget, colorTexture, depthTexture) { properties.get(renderTarget.texture).__webglTexture = colorTexture; properties.get(renderTarget.depthTexture).__webglTexture = depthTexture; const renderTargetProperties = properties.get(renderTarget); renderTargetProperties.__hasExternalTextures = true; renderTargetProperties.__autoAllocateDepthBuffer = depthTexture === void 0; if (!renderTargetProperties.__autoAllocateDepthBuffer) { if (extensions.has("WEBGL_multisampled_render_to_texture") === true) { console.warn("THREE.WebGLRenderer: Render-to-texture extension was disabled because an external texture was provided"); renderTargetProperties.__useRenderToTexture = false; } } }; this.setRenderTargetFramebuffer = function(renderTarget, defaultFramebuffer) { const renderTargetProperties = properties.get(renderTarget); renderTargetProperties.__webglFramebuffer = defaultFramebuffer; renderTargetProperties.__useDefaultFramebuffer = defaultFramebuffer === void 0; }; this.setRenderTarget = function(renderTarget, activeCubeFace = 0, activeMipmapLevel = 0) { _currentRenderTarget = renderTarget; _currentActiveCubeFace = activeCubeFace; _currentActiveMipmapLevel = activeMipmapLevel; let useDefaultFramebuffer = true; let framebuffer = null; let isCube = false; let isRenderTarget3D = false; if (renderTarget) { const renderTargetProperties = properties.get(renderTarget); if (renderTargetProperties.__useDefaultFramebuffer !== void 0) { state.bindFramebuffer(_gl.FRAMEBUFFER, null); useDefaultFramebuffer = false; } else if (renderTargetProperties.__webglFramebuffer === void 0) { textures.setupRenderTarget(renderTarget); } else if (renderTargetProperties.__hasExternalTextures) { textures.rebindTextures(renderTarget, properties.get(renderTarget.texture).__webglTexture, properties.get(renderTarget.depthTexture).__webglTexture); } else if (renderTarget.depthBuffer) { const depthTexture = renderTarget.depthTexture; if (renderTargetProperties.__boundDepthTexture !== depthTexture) { if (depthTexture !== null && properties.has(depthTexture) && (renderTarget.width !== depthTexture.image.width || renderTarget.height !== depthTexture.image.height)) { throw new Error("WebGLRenderTarget: Attached DepthTexture is initialized to the incorrect size."); } textures.setupDepthRenderbuffer(renderTarget); } } const texture = renderTarget.texture; if (texture.isData3DTexture || texture.isDataArrayTexture || texture.isCompressedArrayTexture) { isRenderTarget3D = true; } const __webglFramebuffer = properties.get(renderTarget).__webglFramebuffer; if (renderTarget.isWebGLCubeRenderTarget) { if (Array.isArray(__webglFramebuffer[activeCubeFace])) { framebuffer = __webglFramebuffer[activeCubeFace][activeMipmapLevel]; } else { framebuffer = __webglFramebuffer[activeCubeFace]; } isCube = true; } else if (renderTarget.samples > 0 && textures.useMultisampledRTT(renderTarget) === false) { framebuffer = properties.get(renderTarget).__webglMultisampledFramebuffer; } else { if (Array.isArray(__webglFramebuffer)) { framebuffer = __webglFramebuffer[activeMipmapLevel]; } else { framebuffer = __webglFramebuffer; } } _currentViewport.copy(renderTarget.viewport); _currentScissor.copy(renderTarget.scissor); _currentScissorTest = renderTarget.scissorTest; } else { _currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor(); _currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor(); _currentScissorTest = _scissorTest; } const framebufferBound = state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); if (framebufferBound && useDefaultFramebuffer) { state.drawBuffers(renderTarget, framebuffer); } state.viewport(_currentViewport); state.scissor(_currentScissor); state.setScissorTest(_currentScissorTest); if (isCube) { const textureProperties = properties.get(renderTarget.texture); _gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel); } else if (isRenderTarget3D) { const textureProperties = properties.get(renderTarget.texture); const layer = activeCubeFace || 0; _gl.framebufferTextureLayer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureProperties.__webglTexture, activeMipmapLevel || 0, layer); } _currentMaterialId = -1; }; this.readRenderTargetPixels = function(renderTarget, x, y, width, height, buffer, activeCubeFaceIndex) { if (!(renderTarget && renderTarget.isWebGLRenderTarget)) { console.error("THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget."); return; } let framebuffer = properties.get(renderTarget).__webglFramebuffer; if (renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== void 0) { framebuffer = framebuffer[activeCubeFaceIndex]; } if (framebuffer) { state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); try { const texture = renderTarget.texture; const textureFormat = texture.format; const textureType = texture.type; if (!capabilities.textureFormatReadable(textureFormat)) { console.error("THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format."); return; } if (!capabilities.textureTypeReadable(textureType)) { console.error("THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type."); return; } if (x >= 0 && x <= renderTarget.width - width && (y >= 0 && y <= renderTarget.height - height)) { _gl.readPixels(x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), buffer); } } finally { const framebuffer2 = _currentRenderTarget !== null ? properties.get(_currentRenderTarget).__webglFramebuffer : null; state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer2); } } }; this.readRenderTargetPixelsAsync = async function(renderTarget, x, y, width, height, buffer, activeCubeFaceIndex) { if (!(renderTarget && renderTarget.isWebGLRenderTarget)) { throw new Error("THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget."); } let framebuffer = properties.get(renderTarget).__webglFramebuffer; if (renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== void 0) { framebuffer = framebuffer[activeCubeFaceIndex]; } if (framebuffer) { const texture = renderTarget.texture; const textureFormat = texture.format; const textureType = texture.type; if (!capabilities.textureFormatReadable(textureFormat)) { throw new Error("THREE.WebGLRenderer.readRenderTargetPixelsAsync: renderTarget is not in RGBA or implementation defined format."); } if (!capabilities.textureTypeReadable(textureType)) { throw new Error("THREE.WebGLRenderer.readRenderTargetPixelsAsync: renderTarget is not in UnsignedByteType or implementation defined type."); } if (x >= 0 && x <= renderTarget.width - width && (y >= 0 && y <= renderTarget.height - height)) { state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer); const glBuffer = _gl.createBuffer(); _gl.bindBuffer(_gl.PIXEL_PACK_BUFFER, glBuffer); _gl.bufferData(_gl.PIXEL_PACK_BUFFER, buffer.byteLength, _gl.STREAM_READ); _gl.readPixels(x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), 0); const currFramebuffer = _currentRenderTarget !== null ? properties.get(_currentRenderTarget).__webglFramebuffer : null; state.bindFramebuffer(_gl.FRAMEBUFFER, currFramebuffer); const sync = _gl.fenceSync(_gl.SYNC_GPU_COMMANDS_COMPLETE, 0); _gl.flush(); await probeAsync(_gl, sync, 4); _gl.bindBuffer(_gl.PIXEL_PACK_BUFFER, glBuffer); _gl.getBufferSubData(_gl.PIXEL_PACK_BUFFER, 0, buffer); _gl.deleteBuffer(glBuffer); _gl.deleteSync(sync); return buffer; } else { throw new Error("THREE.WebGLRenderer.readRenderTargetPixelsAsync: requested read bounds are out of range."); } } }; this.copyFramebufferToTexture = function(texture, position = null, level = 0) { if (texture.isTexture !== true) { warnOnce("WebGLRenderer: copyFramebufferToTexture function signature has changed."); position = arguments[0] || null; texture = arguments[1]; } const levelScale = Math.pow(2, -level); const width = Math.floor(texture.image.width * levelScale); const height = Math.floor(texture.image.height * levelScale); const x = position !== null ? position.x : 0; const y = position !== null ? position.y : 0; textures.setTexture2D(texture, 0); _gl.copyTexSubImage2D(_gl.TEXTURE_2D, level, 0, 0, x, y, width, height); state.unbindTexture(); }; this.copyTextureToTexture = function(srcTexture, dstTexture, srcRegion = null, dstPosition = null, level = 0) { if (srcTexture.isTexture !== true) { warnOnce("WebGLRenderer: copyTextureToTexture function signature has changed."); dstPosition = arguments[0] || null; srcTexture = arguments[1]; dstTexture = arguments[2]; level = arguments[3] || 0; srcRegion = null; } let width, height, depth2, minX, minY, minZ; let dstX, dstY, dstZ; const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[level] : srcTexture.image; if (srcRegion !== null) { width = srcRegion.max.x - srcRegion.min.x; height = srcRegion.max.y - srcRegion.min.y; depth2 = srcRegion.isBox3 ? srcRegion.max.z - srcRegion.min.z : 1; minX = srcRegion.min.x; minY = srcRegion.min.y; minZ = srcRegion.isBox3 ? srcRegion.min.z : 0; } else { width = image.width; height = image.height; depth2 = image.depth || 1; minX = 0; minY = 0; minZ = 0; } if (dstPosition !== null) { dstX = dstPosition.x; dstY = dstPosition.y; dstZ = dstPosition.z; } else { dstX = 0; dstY = 0; dstZ = 0; } const glFormat = utils.convert(dstTexture.format); const glType = utils.convert(dstTexture.type); let glTarget; if (dstTexture.isData3DTexture) { textures.setTexture3D(dstTexture, 0); glTarget = _gl.TEXTURE_3D; } else if (dstTexture.isDataArrayTexture || dstTexture.isCompressedArrayTexture) { textures.setTexture2DArray(dstTexture, 0); glTarget = _gl.TEXTURE_2D_ARRAY; } else { textures.setTexture2D(dstTexture, 0); glTarget = _gl.TEXTURE_2D; } _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY); _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha); _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment); const currentUnpackRowLen = _gl.getParameter(_gl.UNPACK_ROW_LENGTH); const currentUnpackImageHeight = _gl.getParameter(_gl.UNPACK_IMAGE_HEIGHT); const currentUnpackSkipPixels = _gl.getParameter(_gl.UNPACK_SKIP_PIXELS); const currentUnpackSkipRows = _gl.getParameter(_gl.UNPACK_SKIP_ROWS); const currentUnpackSkipImages = _gl.getParameter(_gl.UNPACK_SKIP_IMAGES); _gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, image.width); _gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, image.height); _gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, minX); _gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, minY); _gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, minZ); const isSrc3D = srcTexture.isDataArrayTexture || srcTexture.isData3DTexture; const isDst3D = dstTexture.isDataArrayTexture || dstTexture.isData3DTexture; if (srcTexture.isRenderTargetTexture || srcTexture.isDepthTexture) { const srcTextureProperties = properties.get(srcTexture); const dstTextureProperties = properties.get(dstTexture); const srcRenderTargetProperties = properties.get(srcTextureProperties.__renderTarget); const dstRenderTargetProperties = properties.get(dstTextureProperties.__renderTarget); state.bindFramebuffer(_gl.READ_FRAMEBUFFER, srcRenderTargetProperties.__webglFramebuffer); state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, dstRenderTargetProperties.__webglFramebuffer); for (let i = 0; i < depth2; i++) { if (isSrc3D) { _gl.framebufferTextureLayer(_gl.READ_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, properties.get(srcTexture).__webglTexture, level, minZ + i); } if (srcTexture.isDepthTexture) { if (isDst3D) { _gl.framebufferTextureLayer(_gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, properties.get(dstTexture).__webglTexture, level, dstZ + i); } _gl.blitFramebuffer(minX, minY, width, height, dstX, dstY, width, height, _gl.DEPTH_BUFFER_BIT, _gl.NEAREST); } else if (isDst3D) { _gl.copyTexSubImage3D(glTarget, level, dstX, dstY, dstZ + i, minX, minY, width, height); } else { _gl.copyTexSubImage2D(glTarget, level, dstX, dstY, dstZ + i, minX, minY, width, height); } } state.bindFramebuffer(_gl.READ_FRAMEBUFFER, null); state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, null); } else { if (isDst3D) { if (srcTexture.isDataTexture || srcTexture.isData3DTexture) { _gl.texSubImage3D(glTarget, level, dstX, dstY, dstZ, width, height, depth2, glFormat, glType, image.data); } else if (dstTexture.isCompressedArrayTexture) { _gl.compressedTexSubImage3D(glTarget, level, dstX, dstY, dstZ, width, height, depth2, glFormat, image.data); } else { _gl.texSubImage3D(glTarget, level, dstX, dstY, dstZ, width, height, depth2, glFormat, glType, image); } } else { if (srcTexture.isDataTexture) { _gl.texSubImage2D(_gl.TEXTURE_2D, level, dstX, dstY, width, height, glFormat, glType, image.data); } else if (srcTexture.isCompressedTexture) { _gl.compressedTexSubImage2D(_gl.TEXTURE_2D, level, dstX, dstY, image.width, image.height, glFormat, image.data); } else { _gl.texSubImage2D(_gl.TEXTURE_2D, level, dstX, dstY, width, height, glFormat, glType, image); } } } _gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, currentUnpackRowLen); _gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, currentUnpackImageHeight); _gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, currentUnpackSkipPixels); _gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, currentUnpackSkipRows); _gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, currentUnpackSkipImages); if (level === 0 && dstTexture.generateMipmaps) { _gl.generateMipmap(glTarget); } state.unbindTexture(); }; this.copyTextureToTexture3D = function(srcTexture, dstTexture, srcRegion = null, dstPosition = null, level = 0) { if (srcTexture.isTexture !== true) { warnOnce("WebGLRenderer: copyTextureToTexture3D function signature has changed."); srcRegion = arguments[0] || null; dstPosition = arguments[1] || null; srcTexture = arguments[2]; dstTexture = arguments[3]; level = arguments[4] || 0; } warnOnce('WebGLRenderer: copyTextureToTexture3D function has been deprecated. Use "copyTextureToTexture" instead.'); return this.copyTextureToTexture(srcTexture, dstTexture, srcRegion, dstPosition, level); }; this.initRenderTarget = function(target) { if (properties.get(target).__webglFramebuffer === void 0) { textures.setupRenderTarget(target); } }; this.initTexture = function(texture) { if (texture.isCubeTexture) { textures.setTextureCube(texture, 0); } else if (texture.isData3DTexture) { textures.setTexture3D(texture, 0); } else if (texture.isDataArrayTexture || texture.isCompressedArrayTexture) { textures.setTexture2DArray(texture, 0); } else { textures.setTexture2D(texture, 0); } state.unbindTexture(); }; this.resetState = function() { _currentActiveCubeFace = 0; _currentActiveMipmapLevel = 0; _currentRenderTarget = null; state.reset(); bindingStates.reset(); }; if (typeof __THREE_DEVTOOLS__ !== "undefined") { __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent("observe", { detail: this })); } } get coordinateSystem() { return WebGLCoordinateSystem; } get outputColorSpace() { return this._outputColorSpace; } set outputColorSpace(colorSpace) { this._outputColorSpace = colorSpace; const gl = this.getContext(); gl.drawingBufferColorspace = ColorManagement._getDrawingBufferColorSpace(colorSpace); gl.unpackColorSpace = ColorManagement._getUnpackColorSpace(); } } class FogExp2 { static { __name(this, "FogExp2"); } constructor(color, density = 25e-5) { this.isFogExp2 = true; this.name = ""; this.color = new Color(color); this.density = density; } clone() { return new FogExp2(this.color, this.density); } toJSON() { return { type: "FogExp2", name: this.name, color: this.color.getHex(), density: this.density }; } } class Fog { static { __name(this, "Fog"); } constructor(color, near = 1, far = 1e3) { this.isFog = true; this.name = ""; this.color = new Color(color); this.near = near; this.far = far; } clone() { return new Fog(this.color, this.near, this.far); } toJSON() { return { type: "Fog", name: this.name, color: this.color.getHex(), near: this.near, far: this.far }; } } class Scene extends Object3D { static { __name(this, "Scene"); } constructor() { super(); this.isScene = true; this.type = "Scene"; this.background = null; this.environment = null; this.fog = null; this.backgroundBlurriness = 0; this.backgroundIntensity = 1; this.backgroundRotation = new Euler(); this.environmentIntensity = 1; this.environmentRotation = new Euler(); this.overrideMaterial = null; if (typeof __THREE_DEVTOOLS__ !== "undefined") { __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent("observe", { detail: this })); } } copy(source, recursive) { super.copy(source, recursive); if (source.background !== null) this.background = source.background.clone(); if (source.environment !== null) this.environment = source.environment.clone(); if (source.fog !== null) this.fog = source.fog.clone(); this.backgroundBlurriness = source.backgroundBlurriness; this.backgroundIntensity = source.backgroundIntensity; this.backgroundRotation.copy(source.backgroundRotation); this.environmentIntensity = source.environmentIntensity; this.environmentRotation.copy(source.environmentRotation); if (source.overrideMaterial !== null) this.overrideMaterial = source.overrideMaterial.clone(); this.matrixAutoUpdate = source.matrixAutoUpdate; return this; } toJSON(meta) { const data = super.toJSON(meta); if (this.fog !== null) data.object.fog = this.fog.toJSON(); if (this.backgroundBlurriness > 0) data.object.backgroundBlurriness = this.backgroundBlurriness; if (this.backgroundIntensity !== 1) data.object.backgroundIntensity = this.backgroundIntensity; data.object.backgroundRotation = this.backgroundRotation.toArray(); if (this.environmentIntensity !== 1) data.object.environmentIntensity = this.environmentIntensity; data.object.environmentRotation = this.environmentRotation.toArray(); return data; } } class InterleavedBuffer { static { __name(this, "InterleavedBuffer"); } constructor(array, stride) { this.isInterleavedBuffer = true; this.array = array; this.stride = stride; this.count = array !== void 0 ? array.length / stride : 0; this.usage = StaticDrawUsage; this.updateRanges = []; this.version = 0; this.uuid = generateUUID(); } onUploadCallback() { } set needsUpdate(value) { if (value === true) this.version++; } setUsage(value) { this.usage = value; return this; } addUpdateRange(start, count) { this.updateRanges.push({ start, count }); } clearUpdateRanges() { this.updateRanges.length = 0; } copy(source) { this.array = new source.array.constructor(source.array); this.count = source.count; this.stride = source.stride; this.usage = source.usage; return this; } copyAt(index1, attribute, index2) { index1 *= this.stride; index2 *= attribute.stride; for (let i = 0, l = this.stride; i < l; i++) { this.array[index1 + i] = attribute.array[index2 + i]; } return this; } set(value, offset = 0) { this.array.set(value, offset); return this; } clone(data) { if (data.arrayBuffers === void 0) { data.arrayBuffers = {}; } if (this.array.buffer._uuid === void 0) { this.array.buffer._uuid = generateUUID(); } if (data.arrayBuffers[this.array.buffer._uuid] === void 0) { data.arrayBuffers[this.array.buffer._uuid] = this.array.slice(0).buffer; } const array = new this.array.constructor(data.arrayBuffers[this.array.buffer._uuid]); const ib = new this.constructor(array, this.stride); ib.setUsage(this.usage); return ib; } onUpload(callback) { this.onUploadCallback = callback; return this; } toJSON(data) { if (data.arrayBuffers === void 0) { data.arrayBuffers = {}; } if (this.array.buffer._uuid === void 0) { this.array.buffer._uuid = generateUUID(); } if (data.arrayBuffers[this.array.buffer._uuid] === void 0) { data.arrayBuffers[this.array.buffer._uuid] = Array.from(new Uint32Array(this.array.buffer)); } return { uuid: this.uuid, buffer: this.array.buffer._uuid, type: this.array.constructor.name, stride: this.stride }; } } const _vector$6 = /* @__PURE__ */ new Vector3(); class InterleavedBufferAttribute { static { __name(this, "InterleavedBufferAttribute"); } constructor(interleavedBuffer, itemSize, offset, normalized = false) { this.isInterleavedBufferAttribute = true; this.name = ""; this.data = interleavedBuffer; this.itemSize = itemSize; this.offset = offset; this.normalized = normalized; } get count() { return this.data.count; } get array() { return this.data.array; } set needsUpdate(value) { this.data.needsUpdate = value; } applyMatrix4(m) { for (let i = 0, l = this.data.count; i < l; i++) { _vector$6.fromBufferAttribute(this, i); _vector$6.applyMatrix4(m); this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z); } return this; } applyNormalMatrix(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$6.fromBufferAttribute(this, i); _vector$6.applyNormalMatrix(m); this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z); } return this; } transformDirection(m) { for (let i = 0, l = this.count; i < l; i++) { _vector$6.fromBufferAttribute(this, i); _vector$6.transformDirection(m); this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z); } return this; } getComponent(index, component) { let value = this.array[index * this.data.stride + this.offset + component]; if (this.normalized) value = denormalize(value, this.array); return value; } setComponent(index, component, value) { if (this.normalized) value = normalize(value, this.array); this.data.array[index * this.data.stride + this.offset + component] = value; return this; } setX(index, x) { if (this.normalized) x = normalize(x, this.array); this.data.array[index * this.data.stride + this.offset] = x; return this; } setY(index, y) { if (this.normalized) y = normalize(y, this.array); this.data.array[index * this.data.stride + this.offset + 1] = y; return this; } setZ(index, z) { if (this.normalized) z = normalize(z, this.array); this.data.array[index * this.data.stride + this.offset + 2] = z; return this; } setW(index, w) { if (this.normalized) w = normalize(w, this.array); this.data.array[index * this.data.stride + this.offset + 3] = w; return this; } getX(index) { let x = this.data.array[index * this.data.stride + this.offset]; if (this.normalized) x = denormalize(x, this.array); return x; } getY(index) { let y = this.data.array[index * this.data.stride + this.offset + 1]; if (this.normalized) y = denormalize(y, this.array); return y; } getZ(index) { let z = this.data.array[index * this.data.stride + this.offset + 2]; if (this.normalized) z = denormalize(z, this.array); return z; } getW(index) { let w = this.data.array[index * this.data.stride + this.offset + 3]; if (this.normalized) w = denormalize(w, this.array); return w; } setXY(index, x, y) { index = index * this.data.stride + this.offset; if (this.normalized) { x = normalize(x, this.array); y = normalize(y, this.array); } this.data.array[index + 0] = x; this.data.array[index + 1] = y; return this; } setXYZ(index, x, y, z) { index = index * this.data.stride + this.offset; if (this.normalized) { x = normalize(x, this.array); y = normalize(y, this.array); z = normalize(z, this.array); } this.data.array[index + 0] = x; this.data.array[index + 1] = y; this.data.array[index + 2] = z; return this; } setXYZW(index, x, y, z, w) { index = index * this.data.stride + this.offset; if (this.normalized) { x = normalize(x, this.array); y = normalize(y, this.array); z = normalize(z, this.array); w = normalize(w, this.array); } this.data.array[index + 0] = x; this.data.array[index + 1] = y; this.data.array[index + 2] = z; this.data.array[index + 3] = w; return this; } clone(data) { if (data === void 0) { console.log("THREE.InterleavedBufferAttribute.clone(): Cloning an interleaved buffer attribute will de-interleave buffer data."); const array = []; for (let i = 0; i < this.count; i++) { const index = i * this.data.stride + this.offset; for (let j = 0; j < this.itemSize; j++) { array.push(this.data.array[index + j]); } } return new BufferAttribute(new this.array.constructor(array), this.itemSize, this.normalized); } else { if (data.interleavedBuffers === void 0) { data.interleavedBuffers = {}; } if (data.interleavedBuffers[this.data.uuid] === void 0) { data.interleavedBuffers[this.data.uuid] = this.data.clone(data); } return new InterleavedBufferAttribute(data.interleavedBuffers[this.data.uuid], this.itemSize, this.offset, this.normalized); } } toJSON(data) { if (data === void 0) { console.log("THREE.InterleavedBufferAttribute.toJSON(): Serializing an interleaved buffer attribute will de-interleave buffer data."); const array = []; for (let i = 0; i < this.count; i++) { const index = i * this.data.stride + this.offset; for (let j = 0; j < this.itemSize; j++) { array.push(this.data.array[index + j]); } } return { itemSize: this.itemSize, type: this.array.constructor.name, array, normalized: this.normalized }; } else { if (data.interleavedBuffers === void 0) { data.interleavedBuffers = {}; } if (data.interleavedBuffers[this.data.uuid] === void 0) { data.interleavedBuffers[this.data.uuid] = this.data.toJSON(data); } return { isInterleavedBufferAttribute: true, itemSize: this.itemSize, data: this.data.uuid, offset: this.offset, normalized: this.normalized }; } } } class SpriteMaterial extends Material { static { __name(this, "SpriteMaterial"); } static get type() { return "SpriteMaterial"; } constructor(parameters) { super(); this.isSpriteMaterial = true; this.color = new Color(16777215); this.map = null; this.alphaMap = null; this.rotation = 0; this.sizeAttenuation = true; this.transparent = true; this.fog = true; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.map = source.map; this.alphaMap = source.alphaMap; this.rotation = source.rotation; this.sizeAttenuation = source.sizeAttenuation; this.fog = source.fog; return this; } } let _geometry; const _intersectPoint = /* @__PURE__ */ new Vector3(); const _worldScale = /* @__PURE__ */ new Vector3(); const _mvPosition = /* @__PURE__ */ new Vector3(); const _alignedPosition = /* @__PURE__ */ new Vector2(); const _rotatedPosition = /* @__PURE__ */ new Vector2(); const _viewWorldMatrix = /* @__PURE__ */ new Matrix4(); const _vA$2 = /* @__PURE__ */ new Vector3(); const _vB$2 = /* @__PURE__ */ new Vector3(); const _vC$2 = /* @__PURE__ */ new Vector3(); const _uvA = /* @__PURE__ */ new Vector2(); const _uvB = /* @__PURE__ */ new Vector2(); const _uvC = /* @__PURE__ */ new Vector2(); class Sprite extends Object3D { static { __name(this, "Sprite"); } constructor(material = new SpriteMaterial()) { super(); this.isSprite = true; this.type = "Sprite"; if (_geometry === void 0) { _geometry = new BufferGeometry(); const float32Array = new Float32Array([ -0.5, -0.5, 0, 0, 0, 0.5, -0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, -0.5, 0.5, 0, 0, 1 ]); const interleavedBuffer = new InterleavedBuffer(float32Array, 5); _geometry.setIndex([0, 1, 2, 0, 2, 3]); _geometry.setAttribute("position", new InterleavedBufferAttribute(interleavedBuffer, 3, 0, false)); _geometry.setAttribute("uv", new InterleavedBufferAttribute(interleavedBuffer, 2, 3, false)); } this.geometry = _geometry; this.material = material; this.center = new Vector2(0.5, 0.5); } raycast(raycaster, intersects2) { if (raycaster.camera === null) { console.error('THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.'); } _worldScale.setFromMatrixScale(this.matrixWorld); _viewWorldMatrix.copy(raycaster.camera.matrixWorld); this.modelViewMatrix.multiplyMatrices(raycaster.camera.matrixWorldInverse, this.matrixWorld); _mvPosition.setFromMatrixPosition(this.modelViewMatrix); if (raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false) { _worldScale.multiplyScalar(-_mvPosition.z); } const rotation = this.material.rotation; let sin, cos; if (rotation !== 0) { cos = Math.cos(rotation); sin = Math.sin(rotation); } const center = this.center; transformVertex(_vA$2.set(-0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos); transformVertex(_vB$2.set(0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos); transformVertex(_vC$2.set(0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos); _uvA.set(0, 0); _uvB.set(1, 0); _uvC.set(1, 1); let intersect2 = raycaster.ray.intersectTriangle(_vA$2, _vB$2, _vC$2, false, _intersectPoint); if (intersect2 === null) { transformVertex(_vB$2.set(-0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos); _uvB.set(0, 1); intersect2 = raycaster.ray.intersectTriangle(_vA$2, _vC$2, _vB$2, false, _intersectPoint); if (intersect2 === null) { return; } } const distance = raycaster.ray.origin.distanceTo(_intersectPoint); if (distance < raycaster.near || distance > raycaster.far) return; intersects2.push({ distance, point: _intersectPoint.clone(), uv: Triangle.getInterpolation(_intersectPoint, _vA$2, _vB$2, _vC$2, _uvA, _uvB, _uvC, new Vector2()), face: null, object: this }); } copy(source, recursive) { super.copy(source, recursive); if (source.center !== void 0) this.center.copy(source.center); this.material = source.material; return this; } } function transformVertex(vertexPosition, mvPosition, center, scale, sin, cos) { _alignedPosition.subVectors(vertexPosition, center).addScalar(0.5).multiply(scale); if (sin !== void 0) { _rotatedPosition.x = cos * _alignedPosition.x - sin * _alignedPosition.y; _rotatedPosition.y = sin * _alignedPosition.x + cos * _alignedPosition.y; } else { _rotatedPosition.copy(_alignedPosition); } vertexPosition.copy(mvPosition); vertexPosition.x += _rotatedPosition.x; vertexPosition.y += _rotatedPosition.y; vertexPosition.applyMatrix4(_viewWorldMatrix); } __name(transformVertex, "transformVertex"); const _v1$2 = /* @__PURE__ */ new Vector3(); const _v2$1 = /* @__PURE__ */ new Vector3(); class LOD extends Object3D { static { __name(this, "LOD"); } constructor() { super(); this._currentLevel = 0; this.type = "LOD"; Object.defineProperties(this, { levels: { enumerable: true, value: [] }, isLOD: { value: true } }); this.autoUpdate = true; } copy(source) { super.copy(source, false); const levels = source.levels; for (let i = 0, l = levels.length; i < l; i++) { const level = levels[i]; this.addLevel(level.object.clone(), level.distance, level.hysteresis); } this.autoUpdate = source.autoUpdate; return this; } addLevel(object, distance = 0, hysteresis = 0) { distance = Math.abs(distance); const levels = this.levels; let l; for (l = 0; l < levels.length; l++) { if (distance < levels[l].distance) { break; } } levels.splice(l, 0, { distance, hysteresis, object }); this.add(object); return this; } removeLevel(distance) { const levels = this.levels; for (let i = 0; i < levels.length; i++) { if (levels[i].distance === distance) { const removedElements = levels.splice(i, 1); this.remove(removedElements[0].object); return true; } } return false; } getCurrentLevel() { return this._currentLevel; } getObjectForDistance(distance) { const levels = this.levels; if (levels.length > 0) { let i, l; for (i = 1, l = levels.length; i < l; i++) { let levelDistance = levels[i].distance; if (levels[i].object.visible) { levelDistance -= levelDistance * levels[i].hysteresis; } if (distance < levelDistance) { break; } } return levels[i - 1].object; } return null; } raycast(raycaster, intersects2) { const levels = this.levels; if (levels.length > 0) { _v1$2.setFromMatrixPosition(this.matrixWorld); const distance = raycaster.ray.origin.distanceTo(_v1$2); this.getObjectForDistance(distance).raycast(raycaster, intersects2); } } update(camera) { const levels = this.levels; if (levels.length > 1) { _v1$2.setFromMatrixPosition(camera.matrixWorld); _v2$1.setFromMatrixPosition(this.matrixWorld); const distance = _v1$2.distanceTo(_v2$1) / camera.zoom; levels[0].object.visible = true; let i, l; for (i = 1, l = levels.length; i < l; i++) { let levelDistance = levels[i].distance; if (levels[i].object.visible) { levelDistance -= levelDistance * levels[i].hysteresis; } if (distance >= levelDistance) { levels[i - 1].object.visible = false; levels[i].object.visible = true; } else { break; } } this._currentLevel = i - 1; for (; i < l; i++) { levels[i].object.visible = false; } } } toJSON(meta) { const data = super.toJSON(meta); if (this.autoUpdate === false) data.object.autoUpdate = false; data.object.levels = []; const levels = this.levels; for (let i = 0, l = levels.length; i < l; i++) { const level = levels[i]; data.object.levels.push({ object: level.object.uuid, distance: level.distance, hysteresis: level.hysteresis }); } return data; } } const _basePosition = /* @__PURE__ */ new Vector3(); const _skinIndex = /* @__PURE__ */ new Vector4(); const _skinWeight = /* @__PURE__ */ new Vector4(); const _vector3 = /* @__PURE__ */ new Vector3(); const _matrix4 = /* @__PURE__ */ new Matrix4(); const _vertex = /* @__PURE__ */ new Vector3(); const _sphere$4 = /* @__PURE__ */ new Sphere(); const _inverseMatrix$2 = /* @__PURE__ */ new Matrix4(); const _ray$2 = /* @__PURE__ */ new Ray(); class SkinnedMesh extends Mesh { static { __name(this, "SkinnedMesh"); } constructor(geometry, material) { super(geometry, material); this.isSkinnedMesh = true; this.type = "SkinnedMesh"; this.bindMode = AttachedBindMode; this.bindMatrix = new Matrix4(); this.bindMatrixInverse = new Matrix4(); this.boundingBox = null; this.boundingSphere = null; } computeBoundingBox() { const geometry = this.geometry; if (this.boundingBox === null) { this.boundingBox = new Box3(); } this.boundingBox.makeEmpty(); const positionAttribute = geometry.getAttribute("position"); for (let i = 0; i < positionAttribute.count; i++) { this.getVertexPosition(i, _vertex); this.boundingBox.expandByPoint(_vertex); } } computeBoundingSphere() { const geometry = this.geometry; if (this.boundingSphere === null) { this.boundingSphere = new Sphere(); } this.boundingSphere.makeEmpty(); const positionAttribute = geometry.getAttribute("position"); for (let i = 0; i < positionAttribute.count; i++) { this.getVertexPosition(i, _vertex); this.boundingSphere.expandByPoint(_vertex); } } copy(source, recursive) { super.copy(source, recursive); this.bindMode = source.bindMode; this.bindMatrix.copy(source.bindMatrix); this.bindMatrixInverse.copy(source.bindMatrixInverse); this.skeleton = source.skeleton; if (source.boundingBox !== null) this.boundingBox = source.boundingBox.clone(); if (source.boundingSphere !== null) this.boundingSphere = source.boundingSphere.clone(); return this; } raycast(raycaster, intersects2) { const material = this.material; const matrixWorld = this.matrixWorld; if (material === void 0) return; if (this.boundingSphere === null) this.computeBoundingSphere(); _sphere$4.copy(this.boundingSphere); _sphere$4.applyMatrix4(matrixWorld); if (raycaster.ray.intersectsSphere(_sphere$4) === false) return; _inverseMatrix$2.copy(matrixWorld).invert(); _ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2); if (this.boundingBox !== null) { if (_ray$2.intersectsBox(this.boundingBox) === false) return; } this._computeIntersections(raycaster, intersects2, _ray$2); } getVertexPosition(index, target) { super.getVertexPosition(index, target); this.applyBoneTransform(index, target); return target; } bind(skeleton, bindMatrix) { this.skeleton = skeleton; if (bindMatrix === void 0) { this.updateMatrixWorld(true); this.skeleton.calculateInverses(); bindMatrix = this.matrixWorld; } this.bindMatrix.copy(bindMatrix); this.bindMatrixInverse.copy(bindMatrix).invert(); } pose() { this.skeleton.pose(); } normalizeSkinWeights() { const vector = new Vector4(); const skinWeight = this.geometry.attributes.skinWeight; for (let i = 0, l = skinWeight.count; i < l; i++) { vector.fromBufferAttribute(skinWeight, i); const scale = 1 / vector.manhattanLength(); if (scale !== Infinity) { vector.multiplyScalar(scale); } else { vector.set(1, 0, 0, 0); } skinWeight.setXYZW(i, vector.x, vector.y, vector.z, vector.w); } } updateMatrixWorld(force) { super.updateMatrixWorld(force); if (this.bindMode === AttachedBindMode) { this.bindMatrixInverse.copy(this.matrixWorld).invert(); } else if (this.bindMode === DetachedBindMode) { this.bindMatrixInverse.copy(this.bindMatrix).invert(); } else { console.warn("THREE.SkinnedMesh: Unrecognized bindMode: " + this.bindMode); } } applyBoneTransform(index, vector) { const skeleton = this.skeleton; const geometry = this.geometry; _skinIndex.fromBufferAttribute(geometry.attributes.skinIndex, index); _skinWeight.fromBufferAttribute(geometry.attributes.skinWeight, index); _basePosition.copy(vector).applyMatrix4(this.bindMatrix); vector.set(0, 0, 0); for (let i = 0; i < 4; i++) { const weight = _skinWeight.getComponent(i); if (weight !== 0) { const boneIndex = _skinIndex.getComponent(i); _matrix4.multiplyMatrices(skeleton.bones[boneIndex].matrixWorld, skeleton.boneInverses[boneIndex]); vector.addScaledVector(_vector3.copy(_basePosition).applyMatrix4(_matrix4), weight); } } return vector.applyMatrix4(this.bindMatrixInverse); } } class Bone extends Object3D { static { __name(this, "Bone"); } constructor() { super(); this.isBone = true; this.type = "Bone"; } } class DataTexture extends Texture { static { __name(this, "DataTexture"); } constructor(data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, colorSpace) { super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace); this.isDataTexture = true; this.image = { data, width, height }; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; } } const _offsetMatrix = /* @__PURE__ */ new Matrix4(); const _identityMatrix$1 = /* @__PURE__ */ new Matrix4(); class Skeleton { static { __name(this, "Skeleton"); } constructor(bones = [], boneInverses = []) { this.uuid = generateUUID(); this.bones = bones.slice(0); this.boneInverses = boneInverses; this.boneMatrices = null; this.boneTexture = null; this.init(); } init() { const bones = this.bones; const boneInverses = this.boneInverses; this.boneMatrices = new Float32Array(bones.length * 16); if (boneInverses.length === 0) { this.calculateInverses(); } else { if (bones.length !== boneInverses.length) { console.warn("THREE.Skeleton: Number of inverse bone matrices does not match amount of bones."); this.boneInverses = []; for (let i = 0, il = this.bones.length; i < il; i++) { this.boneInverses.push(new Matrix4()); } } } } calculateInverses() { this.boneInverses.length = 0; for (let i = 0, il = this.bones.length; i < il; i++) { const inverse = new Matrix4(); if (this.bones[i]) { inverse.copy(this.bones[i].matrixWorld).invert(); } this.boneInverses.push(inverse); } } pose() { for (let i = 0, il = this.bones.length; i < il; i++) { const bone = this.bones[i]; if (bone) { bone.matrixWorld.copy(this.boneInverses[i]).invert(); } } for (let i = 0, il = this.bones.length; i < il; i++) { const bone = this.bones[i]; if (bone) { if (bone.parent && bone.parent.isBone) { bone.matrix.copy(bone.parent.matrixWorld).invert(); bone.matrix.multiply(bone.matrixWorld); } else { bone.matrix.copy(bone.matrixWorld); } bone.matrix.decompose(bone.position, bone.quaternion, bone.scale); } } } update() { const bones = this.bones; const boneInverses = this.boneInverses; const boneMatrices = this.boneMatrices; const boneTexture = this.boneTexture; for (let i = 0, il = bones.length; i < il; i++) { const matrix = bones[i] ? bones[i].matrixWorld : _identityMatrix$1; _offsetMatrix.multiplyMatrices(matrix, boneInverses[i]); _offsetMatrix.toArray(boneMatrices, i * 16); } if (boneTexture !== null) { boneTexture.needsUpdate = true; } } clone() { return new Skeleton(this.bones, this.boneInverses); } computeBoneTexture() { let size = Math.sqrt(this.bones.length * 4); size = Math.ceil(size / 4) * 4; size = Math.max(size, 4); const boneMatrices = new Float32Array(size * size * 4); boneMatrices.set(this.boneMatrices); const boneTexture = new DataTexture(boneMatrices, size, size, RGBAFormat, FloatType); boneTexture.needsUpdate = true; this.boneMatrices = boneMatrices; this.boneTexture = boneTexture; return this; } getBoneByName(name) { for (let i = 0, il = this.bones.length; i < il; i++) { const bone = this.bones[i]; if (bone.name === name) { return bone; } } return void 0; } dispose() { if (this.boneTexture !== null) { this.boneTexture.dispose(); this.boneTexture = null; } } fromJSON(json, bones) { this.uuid = json.uuid; for (let i = 0, l = json.bones.length; i < l; i++) { const uuid = json.bones[i]; let bone = bones[uuid]; if (bone === void 0) { console.warn("THREE.Skeleton: No bone found with UUID:", uuid); bone = new Bone(); } this.bones.push(bone); this.boneInverses.push(new Matrix4().fromArray(json.boneInverses[i])); } this.init(); return this; } toJSON() { const data = { metadata: { version: 4.6, type: "Skeleton", generator: "Skeleton.toJSON" }, bones: [], boneInverses: [] }; data.uuid = this.uuid; const bones = this.bones; const boneInverses = this.boneInverses; for (let i = 0, l = bones.length; i < l; i++) { const bone = bones[i]; data.bones.push(bone.uuid); const boneInverse = boneInverses[i]; data.boneInverses.push(boneInverse.toArray()); } return data; } } class InstancedBufferAttribute extends BufferAttribute { static { __name(this, "InstancedBufferAttribute"); } constructor(array, itemSize, normalized, meshPerAttribute = 1) { super(array, itemSize, normalized); this.isInstancedBufferAttribute = true; this.meshPerAttribute = meshPerAttribute; } copy(source) { super.copy(source); this.meshPerAttribute = source.meshPerAttribute; return this; } toJSON() { const data = super.toJSON(); data.meshPerAttribute = this.meshPerAttribute; data.isInstancedBufferAttribute = true; return data; } } const _instanceLocalMatrix = /* @__PURE__ */ new Matrix4(); const _instanceWorldMatrix = /* @__PURE__ */ new Matrix4(); const _instanceIntersects = []; const _box3 = /* @__PURE__ */ new Box3(); const _identity = /* @__PURE__ */ new Matrix4(); const _mesh$1 = /* @__PURE__ */ new Mesh(); const _sphere$3 = /* @__PURE__ */ new Sphere(); class InstancedMesh extends Mesh { static { __name(this, "InstancedMesh"); } constructor(geometry, material, count) { super(geometry, material); this.isInstancedMesh = true; this.instanceMatrix = new InstancedBufferAttribute(new Float32Array(count * 16), 16); this.instanceColor = null; this.morphTexture = null; this.count = count; this.boundingBox = null; this.boundingSphere = null; for (let i = 0; i < count; i++) { this.setMatrixAt(i, _identity); } } computeBoundingBox() { const geometry = this.geometry; const count = this.count; if (this.boundingBox === null) { this.boundingBox = new Box3(); } if (geometry.boundingBox === null) { geometry.computeBoundingBox(); } this.boundingBox.makeEmpty(); for (let i = 0; i < count; i++) { this.getMatrixAt(i, _instanceLocalMatrix); _box3.copy(geometry.boundingBox).applyMatrix4(_instanceLocalMatrix); this.boundingBox.union(_box3); } } computeBoundingSphere() { const geometry = this.geometry; const count = this.count; if (this.boundingSphere === null) { this.boundingSphere = new Sphere(); } if (geometry.boundingSphere === null) { geometry.computeBoundingSphere(); } this.boundingSphere.makeEmpty(); for (let i = 0; i < count; i++) { this.getMatrixAt(i, _instanceLocalMatrix); _sphere$3.copy(geometry.boundingSphere).applyMatrix4(_instanceLocalMatrix); this.boundingSphere.union(_sphere$3); } } copy(source, recursive) { super.copy(source, recursive); this.instanceMatrix.copy(source.instanceMatrix); if (source.morphTexture !== null) this.morphTexture = source.morphTexture.clone(); if (source.instanceColor !== null) this.instanceColor = source.instanceColor.clone(); this.count = source.count; if (source.boundingBox !== null) this.boundingBox = source.boundingBox.clone(); if (source.boundingSphere !== null) this.boundingSphere = source.boundingSphere.clone(); return this; } getColorAt(index, color) { color.fromArray(this.instanceColor.array, index * 3); } getMatrixAt(index, matrix) { matrix.fromArray(this.instanceMatrix.array, index * 16); } getMorphAt(index, object) { const objectInfluences = object.morphTargetInfluences; const array = this.morphTexture.source.data.data; const len = objectInfluences.length + 1; const dataIndex = index * len + 1; for (let i = 0; i < objectInfluences.length; i++) { objectInfluences[i] = array[dataIndex + i]; } } raycast(raycaster, intersects2) { const matrixWorld = this.matrixWorld; const raycastTimes = this.count; _mesh$1.geometry = this.geometry; _mesh$1.material = this.material; if (_mesh$1.material === void 0) return; if (this.boundingSphere === null) this.computeBoundingSphere(); _sphere$3.copy(this.boundingSphere); _sphere$3.applyMatrix4(matrixWorld); if (raycaster.ray.intersectsSphere(_sphere$3) === false) return; for (let instanceId = 0; instanceId < raycastTimes; instanceId++) { this.getMatrixAt(instanceId, _instanceLocalMatrix); _instanceWorldMatrix.multiplyMatrices(matrixWorld, _instanceLocalMatrix); _mesh$1.matrixWorld = _instanceWorldMatrix; _mesh$1.raycast(raycaster, _instanceIntersects); for (let i = 0, l = _instanceIntersects.length; i < l; i++) { const intersect2 = _instanceIntersects[i]; intersect2.instanceId = instanceId; intersect2.object = this; intersects2.push(intersect2); } _instanceIntersects.length = 0; } } setColorAt(index, color) { if (this.instanceColor === null) { this.instanceColor = new InstancedBufferAttribute(new Float32Array(this.instanceMatrix.count * 3).fill(1), 3); } color.toArray(this.instanceColor.array, index * 3); } setMatrixAt(index, matrix) { matrix.toArray(this.instanceMatrix.array, index * 16); } setMorphAt(index, object) { const objectInfluences = object.morphTargetInfluences; const len = objectInfluences.length + 1; if (this.morphTexture === null) { this.morphTexture = new DataTexture(new Float32Array(len * this.count), len, this.count, RedFormat, FloatType); } const array = this.morphTexture.source.data.data; let morphInfluencesSum = 0; for (let i = 0; i < objectInfluences.length; i++) { morphInfluencesSum += objectInfluences[i]; } const morphBaseInfluence = this.geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; const dataIndex = len * index; array[dataIndex] = morphBaseInfluence; array.set(objectInfluences, dataIndex + 1); } updateMorphTargets() { } dispose() { this.dispatchEvent({ type: "dispose" }); if (this.morphTexture !== null) { this.morphTexture.dispose(); this.morphTexture = null; } return this; } } function ascIdSort(a, b) { return a - b; } __name(ascIdSort, "ascIdSort"); function sortOpaque(a, b) { return a.z - b.z; } __name(sortOpaque, "sortOpaque"); function sortTransparent(a, b) { return b.z - a.z; } __name(sortTransparent, "sortTransparent"); class MultiDrawRenderList { static { __name(this, "MultiDrawRenderList"); } constructor() { this.index = 0; this.pool = []; this.list = []; } push(start, count, z, index) { const pool = this.pool; const list = this.list; if (this.index >= pool.length) { pool.push({ start: -1, count: -1, z: -1, index: -1 }); } const item = pool[this.index]; list.push(item); this.index++; item.start = start; item.count = count; item.z = z; item.index = index; } reset() { this.list.length = 0; this.index = 0; } } const _matrix$1 = /* @__PURE__ */ new Matrix4(); const _whiteColor = /* @__PURE__ */ new Color(1, 1, 1); const _frustum = /* @__PURE__ */ new Frustum(); const _box$1 = /* @__PURE__ */ new Box3(); const _sphere$2 = /* @__PURE__ */ new Sphere(); const _vector$5 = /* @__PURE__ */ new Vector3(); const _forward = /* @__PURE__ */ new Vector3(); const _temp = /* @__PURE__ */ new Vector3(); const _renderList = /* @__PURE__ */ new MultiDrawRenderList(); const _mesh = /* @__PURE__ */ new Mesh(); const _batchIntersects = []; function copyAttributeData(src, target, targetOffset = 0) { const itemSize = target.itemSize; if (src.isInterleavedBufferAttribute || src.array.constructor !== target.array.constructor) { const vertexCount = src.count; for (let i = 0; i < vertexCount; i++) { for (let c = 0; c < itemSize; c++) { target.setComponent(i + targetOffset, c, src.getComponent(i, c)); } } } else { target.array.set(src.array, targetOffset * itemSize); } target.needsUpdate = true; } __name(copyAttributeData, "copyAttributeData"); function copyArrayContents(src, target) { if (src.constructor !== target.constructor) { const len = Math.min(src.length, target.length); for (let i = 0; i < len; i++) { target[i] = src[i]; } } else { const len = Math.min(src.length, target.length); target.set(new src.constructor(src.buffer, 0, len)); } } __name(copyArrayContents, "copyArrayContents"); class BatchedMesh extends Mesh { static { __name(this, "BatchedMesh"); } get maxInstanceCount() { return this._maxInstanceCount; } get instanceCount() { return this._instanceInfo.length - this._availableInstanceIds.length; } get unusedVertexCount() { return this._maxVertexCount - this._nextVertexStart; } get unusedIndexCount() { return this._maxIndexCount - this._nextIndexStart; } constructor(maxInstanceCount, maxVertexCount, maxIndexCount = maxVertexCount * 2, material) { super(new BufferGeometry(), material); this.isBatchedMesh = true; this.perObjectFrustumCulled = true; this.sortObjects = true; this.boundingBox = null; this.boundingSphere = null; this.customSort = null; this._instanceInfo = []; this._geometryInfo = []; this._availableInstanceIds = []; this._availableGeometryIds = []; this._nextIndexStart = 0; this._nextVertexStart = 0; this._geometryCount = 0; this._visibilityChanged = true; this._geometryInitialized = false; this._maxInstanceCount = maxInstanceCount; this._maxVertexCount = maxVertexCount; this._maxIndexCount = maxIndexCount; this._multiDrawCounts = new Int32Array(maxInstanceCount); this._multiDrawStarts = new Int32Array(maxInstanceCount); this._multiDrawCount = 0; this._multiDrawInstances = null; this._matricesTexture = null; this._indirectTexture = null; this._colorsTexture = null; this._initMatricesTexture(); this._initIndirectTexture(); } _initMatricesTexture() { let size = Math.sqrt(this._maxInstanceCount * 4); size = Math.ceil(size / 4) * 4; size = Math.max(size, 4); const matricesArray = new Float32Array(size * size * 4); const matricesTexture = new DataTexture(matricesArray, size, size, RGBAFormat, FloatType); this._matricesTexture = matricesTexture; } _initIndirectTexture() { let size = Math.sqrt(this._maxInstanceCount); size = Math.ceil(size); const indirectArray = new Uint32Array(size * size); const indirectTexture = new DataTexture(indirectArray, size, size, RedIntegerFormat, UnsignedIntType); this._indirectTexture = indirectTexture; } _initColorsTexture() { let size = Math.sqrt(this._maxInstanceCount); size = Math.ceil(size); const colorsArray = new Float32Array(size * size * 4).fill(1); const colorsTexture = new DataTexture(colorsArray, size, size, RGBAFormat, FloatType); colorsTexture.colorSpace = ColorManagement.workingColorSpace; this._colorsTexture = colorsTexture; } _initializeGeometry(reference) { const geometry = this.geometry; const maxVertexCount = this._maxVertexCount; const maxIndexCount = this._maxIndexCount; if (this._geometryInitialized === false) { for (const attributeName in reference.attributes) { const srcAttribute = reference.getAttribute(attributeName); const { array, itemSize, normalized } = srcAttribute; const dstArray = new array.constructor(maxVertexCount * itemSize); const dstAttribute = new BufferAttribute(dstArray, itemSize, normalized); geometry.setAttribute(attributeName, dstAttribute); } if (reference.getIndex() !== null) { const indexArray = maxVertexCount > 65535 ? new Uint32Array(maxIndexCount) : new Uint16Array(maxIndexCount); geometry.setIndex(new BufferAttribute(indexArray, 1)); } this._geometryInitialized = true; } } // Make sure the geometry is compatible with the existing combined geometry attributes _validateGeometry(geometry) { const batchGeometry = this.geometry; if (Boolean(geometry.getIndex()) !== Boolean(batchGeometry.getIndex())) { throw new Error('BatchedMesh: All geometries must consistently have "index".'); } for (const attributeName in batchGeometry.attributes) { if (!geometry.hasAttribute(attributeName)) { throw new Error(`BatchedMesh: Added geometry missing "${attributeName}". All geometries must have consistent attributes.`); } const srcAttribute = geometry.getAttribute(attributeName); const dstAttribute = batchGeometry.getAttribute(attributeName); if (srcAttribute.itemSize !== dstAttribute.itemSize || srcAttribute.normalized !== dstAttribute.normalized) { throw new Error("BatchedMesh: All attributes must have a consistent itemSize and normalized value."); } } } setCustomSort(func) { this.customSort = func; return this; } computeBoundingBox() { if (this.boundingBox === null) { this.boundingBox = new Box3(); } const boundingBox = this.boundingBox; const instanceInfo = this._instanceInfo; boundingBox.makeEmpty(); for (let i = 0, l = instanceInfo.length; i < l; i++) { if (instanceInfo[i].active === false) continue; const geometryId = instanceInfo[i].geometryIndex; this.getMatrixAt(i, _matrix$1); this.getBoundingBoxAt(geometryId, _box$1).applyMatrix4(_matrix$1); boundingBox.union(_box$1); } } computeBoundingSphere() { if (this.boundingSphere === null) { this.boundingSphere = new Sphere(); } const boundingSphere = this.boundingSphere; const instanceInfo = this._instanceInfo; boundingSphere.makeEmpty(); for (let i = 0, l = instanceInfo.length; i < l; i++) { if (instanceInfo[i].active === false) continue; const geometryId = instanceInfo[i].geometryIndex; this.getMatrixAt(i, _matrix$1); this.getBoundingSphereAt(geometryId, _sphere$2).applyMatrix4(_matrix$1); boundingSphere.union(_sphere$2); } } addInstance(geometryId) { const atCapacity = this._instanceInfo.length >= this.maxInstanceCount; if (atCapacity && this._availableInstanceIds.length === 0) { throw new Error("BatchedMesh: Maximum item count reached."); } const instanceInfo = { visible: true, active: true, geometryIndex: geometryId }; let drawId = null; if (this._availableInstanceIds.length > 0) { this._availableInstanceIds.sort(ascIdSort); drawId = this._availableInstanceIds.shift(); this._instanceInfo[drawId] = instanceInfo; } else { drawId = this._instanceInfo.length; this._instanceInfo.push(instanceInfo); } const matricesTexture = this._matricesTexture; _matrix$1.identity().toArray(matricesTexture.image.data, drawId * 16); matricesTexture.needsUpdate = true; const colorsTexture = this._colorsTexture; if (colorsTexture) { _whiteColor.toArray(colorsTexture.image.data, drawId * 4); colorsTexture.needsUpdate = true; } this._visibilityChanged = true; return drawId; } addGeometry(geometry, reservedVertexCount = -1, reservedIndexCount = -1) { this._initializeGeometry(geometry); this._validateGeometry(geometry); const geometryInfo = { // geometry information vertexStart: -1, vertexCount: -1, reservedVertexCount: -1, indexStart: -1, indexCount: -1, reservedIndexCount: -1, // draw range information start: -1, count: -1, // state boundingBox: null, boundingSphere: null, active: true }; const geometryInfoList = this._geometryInfo; geometryInfo.vertexStart = this._nextVertexStart; geometryInfo.reservedVertexCount = reservedVertexCount === -1 ? geometry.getAttribute("position").count : reservedVertexCount; const index = geometry.getIndex(); const hasIndex = index !== null; if (hasIndex) { geometryInfo.indexStart = this._nextIndexStart; geometryInfo.reservedIndexCount = reservedIndexCount === -1 ? index.count : reservedIndexCount; } if (geometryInfo.indexStart !== -1 && geometryInfo.indexStart + geometryInfo.reservedIndexCount > this._maxIndexCount || geometryInfo.vertexStart + geometryInfo.reservedVertexCount > this._maxVertexCount) { throw new Error("BatchedMesh: Reserved space request exceeds the maximum buffer size."); } let geometryId; if (this._availableGeometryIds.length > 0) { this._availableGeometryIds.sort(ascIdSort); geometryId = this._availableGeometryIds.shift(); geometryInfoList[geometryId] = geometryInfo; } else { geometryId = this._geometryCount; this._geometryCount++; geometryInfoList.push(geometryInfo); } this.setGeometryAt(geometryId, geometry); this._nextIndexStart = geometryInfo.indexStart + geometryInfo.reservedIndexCount; this._nextVertexStart = geometryInfo.vertexStart + geometryInfo.reservedVertexCount; return geometryId; } setGeometryAt(geometryId, geometry) { if (geometryId >= this._geometryCount) { throw new Error("BatchedMesh: Maximum geometry count reached."); } this._validateGeometry(geometry); const batchGeometry = this.geometry; const hasIndex = batchGeometry.getIndex() !== null; const dstIndex = batchGeometry.getIndex(); const srcIndex = geometry.getIndex(); const geometryInfo = this._geometryInfo[geometryId]; if (hasIndex && srcIndex.count > geometryInfo.reservedIndexCount || geometry.attributes.position.count > geometryInfo.reservedVertexCount) { throw new Error("BatchedMesh: Reserved space not large enough for provided geometry."); } const vertexStart = geometryInfo.vertexStart; const reservedVertexCount = geometryInfo.reservedVertexCount; geometryInfo.vertexCount = geometry.getAttribute("position").count; for (const attributeName in batchGeometry.attributes) { const srcAttribute = geometry.getAttribute(attributeName); const dstAttribute = batchGeometry.getAttribute(attributeName); copyAttributeData(srcAttribute, dstAttribute, vertexStart); const itemSize = srcAttribute.itemSize; for (let i = srcAttribute.count, l = reservedVertexCount; i < l; i++) { const index = vertexStart + i; for (let c = 0; c < itemSize; c++) { dstAttribute.setComponent(index, c, 0); } } dstAttribute.needsUpdate = true; dstAttribute.addUpdateRange(vertexStart * itemSize, reservedVertexCount * itemSize); } if (hasIndex) { const indexStart = geometryInfo.indexStart; const reservedIndexCount = geometryInfo.reservedIndexCount; geometryInfo.indexCount = geometry.getIndex().count; for (let i = 0; i < srcIndex.count; i++) { dstIndex.setX(indexStart + i, vertexStart + srcIndex.getX(i)); } for (let i = srcIndex.count, l = reservedIndexCount; i < l; i++) { dstIndex.setX(indexStart + i, vertexStart); } dstIndex.needsUpdate = true; dstIndex.addUpdateRange(indexStart, geometryInfo.reservedIndexCount); } geometryInfo.start = hasIndex ? geometryInfo.indexStart : geometryInfo.vertexStart; geometryInfo.count = hasIndex ? geometryInfo.indexCount : geometryInfo.vertexCount; geometryInfo.boundingBox = null; if (geometry.boundingBox !== null) { geometryInfo.boundingBox = geometry.boundingBox.clone(); } geometryInfo.boundingSphere = null; if (geometry.boundingSphere !== null) { geometryInfo.boundingSphere = geometry.boundingSphere.clone(); } this._visibilityChanged = true; return geometryId; } deleteGeometry(geometryId) { const geometryInfoList = this._geometryInfo; if (geometryId >= geometryInfoList.length || geometryInfoList[geometryId].active === false) { return this; } const instanceInfo = this._instanceInfo; for (let i = 0, l = instanceInfo.length; i < l; i++) { if (instanceInfo[i].geometryIndex === geometryId) { this.deleteInstance(i); } } geometryInfoList[geometryId].active = false; this._availableGeometryIds.push(geometryId); this._visibilityChanged = true; return this; } deleteInstance(instanceId) { const instanceInfo = this._instanceInfo; if (instanceId >= instanceInfo.length || instanceInfo[instanceId].active === false) { return this; } instanceInfo[instanceId].active = false; this._availableInstanceIds.push(instanceId); this._visibilityChanged = true; return this; } optimize() { let nextVertexStart = 0; let nextIndexStart = 0; const geometryInfoList = this._geometryInfo; const indices = geometryInfoList.map((e, i) => i).sort((a, b) => { return geometryInfoList[a].vertexStart - geometryInfoList[b].vertexStart; }); const geometry = this.geometry; for (let i = 0, l = geometryInfoList.length; i < l; i++) { const index = indices[i]; const geometryInfo = geometryInfoList[index]; if (geometryInfo.active === false) { continue; } if (geometry.index !== null) { if (geometryInfo.indexStart !== nextIndexStart) { const { indexStart, vertexStart, reservedIndexCount } = geometryInfo; const index2 = geometry.index; const array = index2.array; const elementDelta = nextVertexStart - vertexStart; for (let j = indexStart; j < indexStart + reservedIndexCount; j++) { array[j] = array[j] + elementDelta; } index2.array.copyWithin(nextIndexStart, indexStart, indexStart + reservedIndexCount); index2.addUpdateRange(nextIndexStart, reservedIndexCount); geometryInfo.indexStart = nextIndexStart; } nextIndexStart += geometryInfo.reservedIndexCount; } if (geometryInfo.vertexStart !== nextVertexStart) { const { vertexStart, reservedVertexCount } = geometryInfo; const attributes = geometry.attributes; for (const key in attributes) { const attribute = attributes[key]; const { array, itemSize } = attribute; array.copyWithin(nextVertexStart * itemSize, vertexStart * itemSize, (vertexStart + reservedVertexCount) * itemSize); attribute.addUpdateRange(nextVertexStart * itemSize, reservedVertexCount * itemSize); } geometryInfo.vertexStart = nextVertexStart; } nextVertexStart += geometryInfo.reservedVertexCount; geometryInfo.start = geometry.index ? geometryInfo.indexStart : geometryInfo.vertexStart; this._nextIndexStart = geometry.index ? geometryInfo.indexStart + geometryInfo.reservedIndexCount : 0; this._nextVertexStart = geometryInfo.vertexStart + geometryInfo.reservedVertexCount; } return this; } // get bounding box and compute it if it doesn't exist getBoundingBoxAt(geometryId, target) { if (geometryId >= this._geometryCount) { return null; } const geometry = this.geometry; const geometryInfo = this._geometryInfo[geometryId]; if (geometryInfo.boundingBox === null) { const box = new Box3(); const index = geometry.index; const position = geometry.attributes.position; for (let i = geometryInfo.start, l = geometryInfo.start + geometryInfo.count; i < l; i++) { let iv = i; if (index) { iv = index.getX(iv); } box.expandByPoint(_vector$5.fromBufferAttribute(position, iv)); } geometryInfo.boundingBox = box; } target.copy(geometryInfo.boundingBox); return target; } // get bounding sphere and compute it if it doesn't exist getBoundingSphereAt(geometryId, target) { if (geometryId >= this._geometryCount) { return null; } const geometry = this.geometry; const geometryInfo = this._geometryInfo[geometryId]; if (geometryInfo.boundingSphere === null) { const sphere = new Sphere(); this.getBoundingBoxAt(geometryId, _box$1); _box$1.getCenter(sphere.center); const index = geometry.index; const position = geometry.attributes.position; let maxRadiusSq = 0; for (let i = geometryInfo.start, l = geometryInfo.start + geometryInfo.count; i < l; i++) { let iv = i; if (index) { iv = index.getX(iv); } _vector$5.fromBufferAttribute(position, iv); maxRadiusSq = Math.max(maxRadiusSq, sphere.center.distanceToSquared(_vector$5)); } sphere.radius = Math.sqrt(maxRadiusSq); geometryInfo.boundingSphere = sphere; } target.copy(geometryInfo.boundingSphere); return target; } setMatrixAt(instanceId, matrix) { const instanceInfo = this._instanceInfo; const matricesTexture = this._matricesTexture; const matricesArray = this._matricesTexture.image.data; if (instanceId >= instanceInfo.length || instanceInfo[instanceId].active === false) { return this; } matrix.toArray(matricesArray, instanceId * 16); matricesTexture.needsUpdate = true; return this; } getMatrixAt(instanceId, matrix) { const instanceInfo = this._instanceInfo; const matricesArray = this._matricesTexture.image.data; if (instanceId >= instanceInfo.length || instanceInfo[instanceId].active === false) { return null; } return matrix.fromArray(matricesArray, instanceId * 16); } setColorAt(instanceId, color) { if (this._colorsTexture === null) { this._initColorsTexture(); } const colorsTexture = this._colorsTexture; const colorsArray = this._colorsTexture.image.data; const instanceInfo = this._instanceInfo; if (instanceId >= instanceInfo.length || instanceInfo[instanceId].active === false) { return this; } color.toArray(colorsArray, instanceId * 4); colorsTexture.needsUpdate = true; return this; } getColorAt(instanceId, color) { const colorsArray = this._colorsTexture.image.data; const instanceInfo = this._instanceInfo; if (instanceId >= instanceInfo.length || instanceInfo[instanceId].active === false) { return null; } return color.fromArray(colorsArray, instanceId * 4); } setVisibleAt(instanceId, value) { const instanceInfo = this._instanceInfo; if (instanceId >= instanceInfo.length || instanceInfo[instanceId].active === false || instanceInfo[instanceId].visible === value) { return this; } instanceInfo[instanceId].visible = value; this._visibilityChanged = true; return this; } getVisibleAt(instanceId) { const instanceInfo = this._instanceInfo; if (instanceId >= instanceInfo.length || instanceInfo[instanceId].active === false) { return false; } return instanceInfo[instanceId].visible; } setGeometryIdAt(instanceId, geometryId) { const instanceInfo = this._instanceInfo; const geometryInfoList = this._geometryInfo; if (instanceId >= instanceInfo.length || instanceInfo[instanceId].active === false) { return null; } if (geometryId >= geometryInfoList.length || geometryInfoList[geometryId].active === false) { return null; } instanceInfo[instanceId].geometryIndex = geometryId; return this; } getGeometryIdAt(instanceId) { const instanceInfo = this._instanceInfo; if (instanceId >= instanceInfo.length || instanceInfo[instanceId].active === false) { return -1; } return instanceInfo[instanceId].geometryIndex; } getGeometryRangeAt(geometryId, target = {}) { if (geometryId < 0 || geometryId >= this._geometryCount) { return null; } const geometryInfo = this._geometryInfo[geometryId]; target.vertexStart = geometryInfo.vertexStart; target.vertexCount = geometryInfo.vertexCount; target.reservedVertexCount = geometryInfo.reservedVertexCount; target.indexStart = geometryInfo.indexStart; target.indexCount = geometryInfo.indexCount; target.reservedIndexCount = geometryInfo.reservedIndexCount; target.start = geometryInfo.start; target.count = geometryInfo.count; return target; } setInstanceCount(maxInstanceCount) { const availableInstanceIds = this._availableInstanceIds; const instanceInfo = this._instanceInfo; availableInstanceIds.sort(ascIdSort); while (availableInstanceIds[availableInstanceIds.length - 1] === instanceInfo.length) { instanceInfo.pop(); availableInstanceIds.pop(); } if (maxInstanceCount < instanceInfo.length) { throw new Error(`BatchedMesh: Instance ids outside the range ${maxInstanceCount} are being used. Cannot shrink instance count.`); } const multiDrawCounts = new Int32Array(maxInstanceCount); const multiDrawStarts = new Int32Array(maxInstanceCount); copyArrayContents(this._multiDrawCounts, multiDrawCounts); copyArrayContents(this._multiDrawStarts, multiDrawStarts); this._multiDrawCounts = multiDrawCounts; this._multiDrawStarts = multiDrawStarts; this._maxInstanceCount = maxInstanceCount; const indirectTexture = this._indirectTexture; const matricesTexture = this._matricesTexture; const colorsTexture = this._colorsTexture; indirectTexture.dispose(); this._initIndirectTexture(); copyArrayContents(indirectTexture.image.data, this._indirectTexture.image.data); matricesTexture.dispose(); this._initMatricesTexture(); copyArrayContents(matricesTexture.image.data, this._matricesTexture.image.data); if (colorsTexture) { colorsTexture.dispose(); this._initColorsTexture(); copyArrayContents(colorsTexture.image.data, this._colorsTexture.image.data); } } setGeometrySize(maxVertexCount, maxIndexCount) { const validRanges = [...this._geometryInfo].filter((info) => info.active); const requiredVertexLength = Math.max(...validRanges.map((range) => range.vertexStart + range.reservedVertexCount)); if (requiredVertexLength > maxVertexCount) { throw new Error(`BatchedMesh: Geometry vertex values are being used outside the range ${maxIndexCount}. Cannot shrink further.`); } if (this.geometry.index) { const requiredIndexLength = Math.max(...validRanges.map((range) => range.indexStart + range.reservedIndexCount)); if (requiredIndexLength > maxIndexCount) { throw new Error(`BatchedMesh: Geometry index values are being used outside the range ${maxIndexCount}. Cannot shrink further.`); } } const oldGeometry = this.geometry; oldGeometry.dispose(); this._maxVertexCount = maxVertexCount; this._maxIndexCount = maxIndexCount; if (this._geometryInitialized) { this._geometryInitialized = false; this.geometry = new BufferGeometry(); this._initializeGeometry(oldGeometry); } const geometry = this.geometry; if (oldGeometry.index) { copyArrayContents(oldGeometry.index.array, geometry.index.array); } for (const key in oldGeometry.attributes) { copyArrayContents(oldGeometry.attributes[key].array, geometry.attributes[key].array); } } raycast(raycaster, intersects2) { const instanceInfo = this._instanceInfo; const geometryInfoList = this._geometryInfo; const matrixWorld = this.matrixWorld; const batchGeometry = this.geometry; _mesh.material = this.material; _mesh.geometry.index = batchGeometry.index; _mesh.geometry.attributes = batchGeometry.attributes; if (_mesh.geometry.boundingBox === null) { _mesh.geometry.boundingBox = new Box3(); } if (_mesh.geometry.boundingSphere === null) { _mesh.geometry.boundingSphere = new Sphere(); } for (let i = 0, l = instanceInfo.length; i < l; i++) { if (!instanceInfo[i].visible || !instanceInfo[i].active) { continue; } const geometryId = instanceInfo[i].geometryIndex; const geometryInfo = geometryInfoList[geometryId]; _mesh.geometry.setDrawRange(geometryInfo.start, geometryInfo.count); this.getMatrixAt(i, _mesh.matrixWorld).premultiply(matrixWorld); this.getBoundingBoxAt(geometryId, _mesh.geometry.boundingBox); this.getBoundingSphereAt(geometryId, _mesh.geometry.boundingSphere); _mesh.raycast(raycaster, _batchIntersects); for (let j = 0, l2 = _batchIntersects.length; j < l2; j++) { const intersect2 = _batchIntersects[j]; intersect2.object = this; intersect2.batchId = i; intersects2.push(intersect2); } _batchIntersects.length = 0; } _mesh.material = null; _mesh.geometry.index = null; _mesh.geometry.attributes = {}; _mesh.geometry.setDrawRange(0, Infinity); } copy(source) { super.copy(source); this.geometry = source.geometry.clone(); this.perObjectFrustumCulled = source.perObjectFrustumCulled; this.sortObjects = source.sortObjects; this.boundingBox = source.boundingBox !== null ? source.boundingBox.clone() : null; this.boundingSphere = source.boundingSphere !== null ? source.boundingSphere.clone() : null; this._geometryInfo = source._geometryInfo.map((info) => ({ ...info, boundingBox: info.boundingBox !== null ? info.boundingBox.clone() : null, boundingSphere: info.boundingSphere !== null ? info.boundingSphere.clone() : null })); this._instanceInfo = source._instanceInfo.map((info) => ({ ...info })); this._maxInstanceCount = source._maxInstanceCount; this._maxVertexCount = source._maxVertexCount; this._maxIndexCount = source._maxIndexCount; this._geometryInitialized = source._geometryInitialized; this._geometryCount = source._geometryCount; this._multiDrawCounts = source._multiDrawCounts.slice(); this._multiDrawStarts = source._multiDrawStarts.slice(); this._matricesTexture = source._matricesTexture.clone(); this._matricesTexture.image.data = this._matricesTexture.image.data.slice(); if (this._colorsTexture !== null) { this._colorsTexture = source._colorsTexture.clone(); this._colorsTexture.image.data = this._colorsTexture.image.data.slice(); } return this; } dispose() { this.geometry.dispose(); this._matricesTexture.dispose(); this._matricesTexture = null; this._indirectTexture.dispose(); this._indirectTexture = null; if (this._colorsTexture !== null) { this._colorsTexture.dispose(); this._colorsTexture = null; } return this; } onBeforeRender(renderer, scene, camera, geometry, material) { if (!this._visibilityChanged && !this.perObjectFrustumCulled && !this.sortObjects) { return; } const index = geometry.getIndex(); const bytesPerElement = index === null ? 1 : index.array.BYTES_PER_ELEMENT; const instanceInfo = this._instanceInfo; const multiDrawStarts = this._multiDrawStarts; const multiDrawCounts = this._multiDrawCounts; const geometryInfoList = this._geometryInfo; const perObjectFrustumCulled = this.perObjectFrustumCulled; const indirectTexture = this._indirectTexture; const indirectArray = indirectTexture.image.data; if (perObjectFrustumCulled) { _matrix$1.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse).multiply(this.matrixWorld); _frustum.setFromProjectionMatrix( _matrix$1, renderer.coordinateSystem ); } let multiDrawCount = 0; if (this.sortObjects) { _matrix$1.copy(this.matrixWorld).invert(); _vector$5.setFromMatrixPosition(camera.matrixWorld).applyMatrix4(_matrix$1); _forward.set(0, 0, -1).transformDirection(camera.matrixWorld).transformDirection(_matrix$1); for (let i = 0, l = instanceInfo.length; i < l; i++) { if (instanceInfo[i].visible && instanceInfo[i].active) { const geometryId = instanceInfo[i].geometryIndex; this.getMatrixAt(i, _matrix$1); this.getBoundingSphereAt(geometryId, _sphere$2).applyMatrix4(_matrix$1); let culled = false; if (perObjectFrustumCulled) { culled = !_frustum.intersectsSphere(_sphere$2); } if (!culled) { const geometryInfo = geometryInfoList[geometryId]; const z = _temp.subVectors(_sphere$2.center, _vector$5).dot(_forward); _renderList.push(geometryInfo.start, geometryInfo.count, z, i); } } } const list = _renderList.list; const customSort = this.customSort; if (customSort === null) { list.sort(material.transparent ? sortTransparent : sortOpaque); } else { customSort.call(this, list, camera); } for (let i = 0, l = list.length; i < l; i++) { const item = list[i]; multiDrawStarts[multiDrawCount] = item.start * bytesPerElement; multiDrawCounts[multiDrawCount] = item.count; indirectArray[multiDrawCount] = item.index; multiDrawCount++; } _renderList.reset(); } else { for (let i = 0, l = instanceInfo.length; i < l; i++) { if (instanceInfo[i].visible && instanceInfo[i].active) { const geometryId = instanceInfo[i].geometryIndex; let culled = false; if (perObjectFrustumCulled) { this.getMatrixAt(i, _matrix$1); this.getBoundingSphereAt(geometryId, _sphere$2).applyMatrix4(_matrix$1); culled = !_frustum.intersectsSphere(_sphere$2); } if (!culled) { const geometryInfo = geometryInfoList[geometryId]; multiDrawStarts[multiDrawCount] = geometryInfo.start * bytesPerElement; multiDrawCounts[multiDrawCount] = geometryInfo.count; indirectArray[multiDrawCount] = i; multiDrawCount++; } } } } indirectTexture.needsUpdate = true; this._multiDrawCount = multiDrawCount; this._visibilityChanged = false; } onBeforeShadow(renderer, object, camera, shadowCamera, geometry, depthMaterial) { this.onBeforeRender(renderer, null, shadowCamera, geometry, depthMaterial); } } class LineBasicMaterial extends Material { static { __name(this, "LineBasicMaterial"); } static get type() { return "LineBasicMaterial"; } constructor(parameters) { super(); this.isLineBasicMaterial = true; this.color = new Color(16777215); this.map = null; this.linewidth = 1; this.linecap = "round"; this.linejoin = "round"; this.fog = true; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.map = source.map; this.linewidth = source.linewidth; this.linecap = source.linecap; this.linejoin = source.linejoin; this.fog = source.fog; return this; } } const _vStart = /* @__PURE__ */ new Vector3(); const _vEnd = /* @__PURE__ */ new Vector3(); const _inverseMatrix$1 = /* @__PURE__ */ new Matrix4(); const _ray$1 = /* @__PURE__ */ new Ray(); const _sphere$1 = /* @__PURE__ */ new Sphere(); const _intersectPointOnRay = /* @__PURE__ */ new Vector3(); const _intersectPointOnSegment = /* @__PURE__ */ new Vector3(); class Line extends Object3D { static { __name(this, "Line"); } constructor(geometry = new BufferGeometry(), material = new LineBasicMaterial()) { super(); this.isLine = true; this.type = "Line"; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy(source, recursive) { super.copy(source, recursive); this.material = Array.isArray(source.material) ? source.material.slice() : source.material; this.geometry = source.geometry; return this; } computeLineDistances() { const geometry = this.geometry; if (geometry.index === null) { const positionAttribute = geometry.attributes.position; const lineDistances = [0]; for (let i = 1, l = positionAttribute.count; i < l; i++) { _vStart.fromBufferAttribute(positionAttribute, i - 1); _vEnd.fromBufferAttribute(positionAttribute, i); lineDistances[i] = lineDistances[i - 1]; lineDistances[i] += _vStart.distanceTo(_vEnd); } geometry.setAttribute("lineDistance", new Float32BufferAttribute(lineDistances, 1)); } else { console.warn("THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry."); } return this; } raycast(raycaster, intersects2) { const geometry = this.geometry; const matrixWorld = this.matrixWorld; const threshold = raycaster.params.Line.threshold; const drawRange = geometry.drawRange; if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); _sphere$1.copy(geometry.boundingSphere); _sphere$1.applyMatrix4(matrixWorld); _sphere$1.radius += threshold; if (raycaster.ray.intersectsSphere(_sphere$1) === false) return; _inverseMatrix$1.copy(matrixWorld).invert(); _ray$1.copy(raycaster.ray).applyMatrix4(_inverseMatrix$1); const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3); const localThresholdSq = localThreshold * localThreshold; const step = this.isLineSegments ? 2 : 1; const index = geometry.index; const attributes = geometry.attributes; const positionAttribute = attributes.position; if (index !== null) { const start = Math.max(0, drawRange.start); const end = Math.min(index.count, drawRange.start + drawRange.count); for (let i = start, l = end - 1; i < l; i += step) { const a = index.getX(i); const b = index.getX(i + 1); const intersect2 = checkIntersection(this, raycaster, _ray$1, localThresholdSq, a, b); if (intersect2) { intersects2.push(intersect2); } } if (this.isLineLoop) { const a = index.getX(end - 1); const b = index.getX(start); const intersect2 = checkIntersection(this, raycaster, _ray$1, localThresholdSq, a, b); if (intersect2) { intersects2.push(intersect2); } } } else { const start = Math.max(0, drawRange.start); const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count); for (let i = start, l = end - 1; i < l; i += step) { const intersect2 = checkIntersection(this, raycaster, _ray$1, localThresholdSq, i, i + 1); if (intersect2) { intersects2.push(intersect2); } } if (this.isLineLoop) { const intersect2 = checkIntersection(this, raycaster, _ray$1, localThresholdSq, end - 1, start); if (intersect2) { intersects2.push(intersect2); } } } } updateMorphTargets() { const geometry = this.geometry; const morphAttributes = geometry.morphAttributes; const keys = Object.keys(morphAttributes); if (keys.length > 0) { const morphAttribute = morphAttributes[keys[0]]; if (morphAttribute !== void 0) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for (let m = 0, ml = morphAttribute.length; m < ml; m++) { const name = morphAttribute[m].name || String(m); this.morphTargetInfluences.push(0); this.morphTargetDictionary[name] = m; } } } } } function checkIntersection(object, raycaster, ray, thresholdSq, a, b) { const positionAttribute = object.geometry.attributes.position; _vStart.fromBufferAttribute(positionAttribute, a); _vEnd.fromBufferAttribute(positionAttribute, b); const distSq = ray.distanceSqToSegment(_vStart, _vEnd, _intersectPointOnRay, _intersectPointOnSegment); if (distSq > thresholdSq) return; _intersectPointOnRay.applyMatrix4(object.matrixWorld); const distance = raycaster.ray.origin.distanceTo(_intersectPointOnRay); if (distance < raycaster.near || distance > raycaster.far) return; return { distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: _intersectPointOnSegment.clone().applyMatrix4(object.matrixWorld), index: a, face: null, faceIndex: null, barycoord: null, object }; } __name(checkIntersection, "checkIntersection"); const _start = /* @__PURE__ */ new Vector3(); const _end = /* @__PURE__ */ new Vector3(); class LineSegments extends Line { static { __name(this, "LineSegments"); } constructor(geometry, material) { super(geometry, material); this.isLineSegments = true; this.type = "LineSegments"; } computeLineDistances() { const geometry = this.geometry; if (geometry.index === null) { const positionAttribute = geometry.attributes.position; const lineDistances = []; for (let i = 0, l = positionAttribute.count; i < l; i += 2) { _start.fromBufferAttribute(positionAttribute, i); _end.fromBufferAttribute(positionAttribute, i + 1); lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1]; lineDistances[i + 1] = lineDistances[i] + _start.distanceTo(_end); } geometry.setAttribute("lineDistance", new Float32BufferAttribute(lineDistances, 1)); } else { console.warn("THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry."); } return this; } } class LineLoop extends Line { static { __name(this, "LineLoop"); } constructor(geometry, material) { super(geometry, material); this.isLineLoop = true; this.type = "LineLoop"; } } class PointsMaterial extends Material { static { __name(this, "PointsMaterial"); } static get type() { return "PointsMaterial"; } constructor(parameters) { super(); this.isPointsMaterial = true; this.color = new Color(16777215); this.map = null; this.alphaMap = null; this.size = 1; this.sizeAttenuation = true; this.fog = true; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.map = source.map; this.alphaMap = source.alphaMap; this.size = source.size; this.sizeAttenuation = source.sizeAttenuation; this.fog = source.fog; return this; } } const _inverseMatrix = /* @__PURE__ */ new Matrix4(); const _ray$4 = /* @__PURE__ */ new Ray(); const _sphere = /* @__PURE__ */ new Sphere(); const _position$2 = /* @__PURE__ */ new Vector3(); class Points extends Object3D { static { __name(this, "Points"); } constructor(geometry = new BufferGeometry(), material = new PointsMaterial()) { super(); this.isPoints = true; this.type = "Points"; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy(source, recursive) { super.copy(source, recursive); this.material = Array.isArray(source.material) ? source.material.slice() : source.material; this.geometry = source.geometry; return this; } raycast(raycaster, intersects2) { const geometry = this.geometry; const matrixWorld = this.matrixWorld; const threshold = raycaster.params.Points.threshold; const drawRange = geometry.drawRange; if (geometry.boundingSphere === null) geometry.computeBoundingSphere(); _sphere.copy(geometry.boundingSphere); _sphere.applyMatrix4(matrixWorld); _sphere.radius += threshold; if (raycaster.ray.intersectsSphere(_sphere) === false) return; _inverseMatrix.copy(matrixWorld).invert(); _ray$4.copy(raycaster.ray).applyMatrix4(_inverseMatrix); const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3); const localThresholdSq = localThreshold * localThreshold; const index = geometry.index; const attributes = geometry.attributes; const positionAttribute = attributes.position; if (index !== null) { const start = Math.max(0, drawRange.start); const end = Math.min(index.count, drawRange.start + drawRange.count); for (let i = start, il = end; i < il; i++) { const a = index.getX(i); _position$2.fromBufferAttribute(positionAttribute, a); testPoint(_position$2, a, localThresholdSq, matrixWorld, raycaster, intersects2, this); } } else { const start = Math.max(0, drawRange.start); const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count); for (let i = start, l = end; i < l; i++) { _position$2.fromBufferAttribute(positionAttribute, i); testPoint(_position$2, i, localThresholdSq, matrixWorld, raycaster, intersects2, this); } } } updateMorphTargets() { const geometry = this.geometry; const morphAttributes = geometry.morphAttributes; const keys = Object.keys(morphAttributes); if (keys.length > 0) { const morphAttribute = morphAttributes[keys[0]]; if (morphAttribute !== void 0) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for (let m = 0, ml = morphAttribute.length; m < ml; m++) { const name = morphAttribute[m].name || String(m); this.morphTargetInfluences.push(0); this.morphTargetDictionary[name] = m; } } } } } function testPoint(point, index, localThresholdSq, matrixWorld, raycaster, intersects2, object) { const rayPointDistanceSq = _ray$4.distanceSqToPoint(point); if (rayPointDistanceSq < localThresholdSq) { const intersectPoint = new Vector3(); _ray$4.closestPointToPoint(point, intersectPoint); intersectPoint.applyMatrix4(matrixWorld); const distance = raycaster.ray.origin.distanceTo(intersectPoint); if (distance < raycaster.near || distance > raycaster.far) return; intersects2.push({ distance, distanceToRay: Math.sqrt(rayPointDistanceSq), point: intersectPoint, index, face: null, faceIndex: null, barycoord: null, object }); } } __name(testPoint, "testPoint"); class VideoTexture extends Texture { static { __name(this, "VideoTexture"); } constructor(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) { super(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy); this.isVideoTexture = true; this.minFilter = minFilter !== void 0 ? minFilter : LinearFilter; this.magFilter = magFilter !== void 0 ? magFilter : LinearFilter; this.generateMipmaps = false; const scope = this; function updateVideo() { scope.needsUpdate = true; video.requestVideoFrameCallback(updateVideo); } __name(updateVideo, "updateVideo"); if ("requestVideoFrameCallback" in video) { video.requestVideoFrameCallback(updateVideo); } } clone() { return new this.constructor(this.image).copy(this); } update() { const video = this.image; const hasVideoFrameCallback = "requestVideoFrameCallback" in video; if (hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA) { this.needsUpdate = true; } } } class FramebufferTexture extends Texture { static { __name(this, "FramebufferTexture"); } constructor(width, height) { super({ width, height }); this.isFramebufferTexture = true; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.generateMipmaps = false; this.needsUpdate = true; } } class CompressedTexture extends Texture { static { __name(this, "CompressedTexture"); } constructor(mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, colorSpace) { super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace); this.isCompressedTexture = true; this.image = { width, height }; this.mipmaps = mipmaps; this.flipY = false; this.generateMipmaps = false; } } class CompressedArrayTexture extends CompressedTexture { static { __name(this, "CompressedArrayTexture"); } constructor(mipmaps, width, height, depth, format, type) { super(mipmaps, width, height, format, type); this.isCompressedArrayTexture = true; this.image.depth = depth; this.wrapR = ClampToEdgeWrapping; this.layerUpdates = /* @__PURE__ */ new Set(); } addLayerUpdate(layerIndex) { this.layerUpdates.add(layerIndex); } clearLayerUpdates() { this.layerUpdates.clear(); } } class CompressedCubeTexture extends CompressedTexture { static { __name(this, "CompressedCubeTexture"); } constructor(images, format, type) { super(void 0, images[0].width, images[0].height, format, type, CubeReflectionMapping); this.isCompressedCubeTexture = true; this.isCubeTexture = true; this.image = images; } } class CanvasTexture extends Texture { static { __name(this, "CanvasTexture"); } constructor(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) { super(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy); this.isCanvasTexture = true; this.needsUpdate = true; } } class Curve { static { __name(this, "Curve"); } constructor() { this.type = "Curve"; this.arcLengthDivisions = 200; } // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint() { console.warn("THREE.Curve: .getPoint() not implemented."); return null; } // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt(u, optionalTarget) { const t = this.getUtoTmapping(u); return this.getPoint(t, optionalTarget); } // Get sequence of points using getPoint( t ) getPoints(divisions = 5) { const points = []; for (let d = 0; d <= divisions; d++) { points.push(this.getPoint(d / divisions)); } return points; } // Get sequence of points using getPointAt( u ) getSpacedPoints(divisions = 5) { const points = []; for (let d = 0; d <= divisions; d++) { points.push(this.getPointAt(d / divisions)); } return points; } // Get total curve arc length getLength() { const lengths = this.getLengths(); return lengths[lengths.length - 1]; } // Get list of cumulative segment lengths getLengths(divisions = this.arcLengthDivisions) { if (this.cacheArcLengths && this.cacheArcLengths.length === divisions + 1 && !this.needsUpdate) { return this.cacheArcLengths; } this.needsUpdate = false; const cache = []; let current, last = this.getPoint(0); let sum = 0; cache.push(0); for (let p = 1; p <= divisions; p++) { current = this.getPoint(p / divisions); sum += current.distanceTo(last); cache.push(sum); last = current; } this.cacheArcLengths = cache; return cache; } updateArcLengths() { this.needsUpdate = true; this.getLengths(); } // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping(u, distance) { const arcLengths = this.getLengths(); let i = 0; const il = arcLengths.length; let targetArcLength; if (distance) { targetArcLength = distance; } else { targetArcLength = u * arcLengths[il - 1]; } let low = 0, high = il - 1, comparison; while (low <= high) { i = Math.floor(low + (high - low) / 2); comparison = arcLengths[i] - targetArcLength; if (comparison < 0) { low = i + 1; } else if (comparison > 0) { high = i - 1; } else { high = i; break; } } i = high; if (arcLengths[i] === targetArcLength) { return i / (il - 1); } const lengthBefore = arcLengths[i]; const lengthAfter = arcLengths[i + 1]; const segmentLength = lengthAfter - lengthBefore; const segmentFraction = (targetArcLength - lengthBefore) / segmentLength; const t = (i + segmentFraction) / (il - 1); return t; } // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent(t, optionalTarget) { const delta = 1e-4; let t1 = t - delta; let t2 = t + delta; if (t1 < 0) t1 = 0; if (t2 > 1) t2 = 1; const pt1 = this.getPoint(t1); const pt2 = this.getPoint(t2); const tangent = optionalTarget || (pt1.isVector2 ? new Vector2() : new Vector3()); tangent.copy(pt2).sub(pt1).normalize(); return tangent; } getTangentAt(u, optionalTarget) { const t = this.getUtoTmapping(u); return this.getTangent(t, optionalTarget); } computeFrenetFrames(segments, closed) { const normal = new Vector3(); const tangents = []; const normals = []; const binormals = []; const vec = new Vector3(); const mat = new Matrix4(); for (let i = 0; i <= segments; i++) { const u = i / segments; tangents[i] = this.getTangentAt(u, new Vector3()); } normals[0] = new Vector3(); binormals[0] = new Vector3(); let min = Number.MAX_VALUE; const tx = Math.abs(tangents[0].x); const ty = Math.abs(tangents[0].y); const tz = Math.abs(tangents[0].z); if (tx <= min) { min = tx; normal.set(1, 0, 0); } if (ty <= min) { min = ty; normal.set(0, 1, 0); } if (tz <= min) { normal.set(0, 0, 1); } vec.crossVectors(tangents[0], normal).normalize(); normals[0].crossVectors(tangents[0], vec); binormals[0].crossVectors(tangents[0], normals[0]); for (let i = 1; i <= segments; i++) { normals[i] = normals[i - 1].clone(); binormals[i] = binormals[i - 1].clone(); vec.crossVectors(tangents[i - 1], tangents[i]); if (vec.length() > Number.EPSILON) { vec.normalize(); const theta = Math.acos(clamp(tangents[i - 1].dot(tangents[i]), -1, 1)); normals[i].applyMatrix4(mat.makeRotationAxis(vec, theta)); } binormals[i].crossVectors(tangents[i], normals[i]); } if (closed === true) { let theta = Math.acos(clamp(normals[0].dot(normals[segments]), -1, 1)); theta /= segments; if (tangents[0].dot(vec.crossVectors(normals[0], normals[segments])) > 0) { theta = -theta; } for (let i = 1; i <= segments; i++) { normals[i].applyMatrix4(mat.makeRotationAxis(tangents[i], theta * i)); binormals[i].crossVectors(tangents[i], normals[i]); } } return { tangents, normals, binormals }; } clone() { return new this.constructor().copy(this); } copy(source) { this.arcLengthDivisions = source.arcLengthDivisions; return this; } toJSON() { const data = { metadata: { version: 4.6, type: "Curve", generator: "Curve.toJSON" } }; data.arcLengthDivisions = this.arcLengthDivisions; data.type = this.type; return data; } fromJSON(json) { this.arcLengthDivisions = json.arcLengthDivisions; return this; } } class EllipseCurve extends Curve { static { __name(this, "EllipseCurve"); } constructor(aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0) { super(); this.isEllipseCurve = true; this.type = "EllipseCurve"; this.aX = aX; this.aY = aY; this.xRadius = xRadius; this.yRadius = yRadius; this.aStartAngle = aStartAngle; this.aEndAngle = aEndAngle; this.aClockwise = aClockwise; this.aRotation = aRotation; } getPoint(t, optionalTarget = new Vector2()) { const point = optionalTarget; const twoPi = Math.PI * 2; let deltaAngle = this.aEndAngle - this.aStartAngle; const samePoints = Math.abs(deltaAngle) < Number.EPSILON; while (deltaAngle < 0) deltaAngle += twoPi; while (deltaAngle > twoPi) deltaAngle -= twoPi; if (deltaAngle < Number.EPSILON) { if (samePoints) { deltaAngle = 0; } else { deltaAngle = twoPi; } } if (this.aClockwise === true && !samePoints) { if (deltaAngle === twoPi) { deltaAngle = -twoPi; } else { deltaAngle = deltaAngle - twoPi; } } const angle = this.aStartAngle + t * deltaAngle; let x = this.aX + this.xRadius * Math.cos(angle); let y = this.aY + this.yRadius * Math.sin(angle); if (this.aRotation !== 0) { const cos = Math.cos(this.aRotation); const sin = Math.sin(this.aRotation); const tx = x - this.aX; const ty = y - this.aY; x = tx * cos - ty * sin + this.aX; y = tx * sin + ty * cos + this.aY; } return point.set(x, y); } copy(source) { super.copy(source); this.aX = source.aX; this.aY = source.aY; this.xRadius = source.xRadius; this.yRadius = source.yRadius; this.aStartAngle = source.aStartAngle; this.aEndAngle = source.aEndAngle; this.aClockwise = source.aClockwise; this.aRotation = source.aRotation; return this; } toJSON() { const data = super.toJSON(); data.aX = this.aX; data.aY = this.aY; data.xRadius = this.xRadius; data.yRadius = this.yRadius; data.aStartAngle = this.aStartAngle; data.aEndAngle = this.aEndAngle; data.aClockwise = this.aClockwise; data.aRotation = this.aRotation; return data; } fromJSON(json) { super.fromJSON(json); this.aX = json.aX; this.aY = json.aY; this.xRadius = json.xRadius; this.yRadius = json.yRadius; this.aStartAngle = json.aStartAngle; this.aEndAngle = json.aEndAngle; this.aClockwise = json.aClockwise; this.aRotation = json.aRotation; return this; } } class ArcCurve extends EllipseCurve { static { __name(this, "ArcCurve"); } constructor(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { super(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise); this.isArcCurve = true; this.type = "ArcCurve"; } } function CubicPoly() { let c0 = 0, c1 = 0, c2 = 0, c3 = 0; function init(x0, x1, t0, t1) { c0 = x0; c1 = t0; c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1; c3 = 2 * x0 - 2 * x1 + t0 + t1; } __name(init, "init"); return { initCatmullRom: /* @__PURE__ */ __name(function(x0, x1, x2, x3, tension) { init(x1, x2, tension * (x2 - x0), tension * (x3 - x1)); }, "initCatmullRom"), initNonuniformCatmullRom: /* @__PURE__ */ __name(function(x0, x1, x2, x3, dt0, dt1, dt2) { let t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1; let t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2; t1 *= dt1; t2 *= dt1; init(x1, x2, t1, t2); }, "initNonuniformCatmullRom"), calc: /* @__PURE__ */ __name(function(t) { const t2 = t * t; const t3 = t2 * t; return c0 + c1 * t + c2 * t2 + c3 * t3; }, "calc") }; } __name(CubicPoly, "CubicPoly"); const tmp = /* @__PURE__ */ new Vector3(); const px = /* @__PURE__ */ new CubicPoly(); const py = /* @__PURE__ */ new CubicPoly(); const pz = /* @__PURE__ */ new CubicPoly(); class CatmullRomCurve3 extends Curve { static { __name(this, "CatmullRomCurve3"); } constructor(points = [], closed = false, curveType = "centripetal", tension = 0.5) { super(); this.isCatmullRomCurve3 = true; this.type = "CatmullRomCurve3"; this.points = points; this.closed = closed; this.curveType = curveType; this.tension = tension; } getPoint(t, optionalTarget = new Vector3()) { const point = optionalTarget; const points = this.points; const l = points.length; const p = (l - (this.closed ? 0 : 1)) * t; let intPoint = Math.floor(p); let weight = p - intPoint; if (this.closed) { intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l; } else if (weight === 0 && intPoint === l - 1) { intPoint = l - 2; weight = 1; } let p0, p3; if (this.closed || intPoint > 0) { p0 = points[(intPoint - 1) % l]; } else { tmp.subVectors(points[0], points[1]).add(points[0]); p0 = tmp; } const p1 = points[intPoint % l]; const p2 = points[(intPoint + 1) % l]; if (this.closed || intPoint + 2 < l) { p3 = points[(intPoint + 2) % l]; } else { tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]); p3 = tmp; } if (this.curveType === "centripetal" || this.curveType === "chordal") { const pow = this.curveType === "chordal" ? 0.5 : 0.25; let dt0 = Math.pow(p0.distanceToSquared(p1), pow); let dt1 = Math.pow(p1.distanceToSquared(p2), pow); let dt2 = Math.pow(p2.distanceToSquared(p3), pow); if (dt1 < 1e-4) dt1 = 1; if (dt0 < 1e-4) dt0 = dt1; if (dt2 < 1e-4) dt2 = dt1; px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2); py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2); pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2); } else if (this.curveType === "catmullrom") { px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension); py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension); pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension); } point.set( px.calc(weight), py.calc(weight), pz.calc(weight) ); return point; } copy(source) { super.copy(source); this.points = []; for (let i = 0, l = source.points.length; i < l; i++) { const point = source.points[i]; this.points.push(point.clone()); } this.closed = source.closed; this.curveType = source.curveType; this.tension = source.tension; return this; } toJSON() { const data = super.toJSON(); data.points = []; for (let i = 0, l = this.points.length; i < l; i++) { const point = this.points[i]; data.points.push(point.toArray()); } data.closed = this.closed; data.curveType = this.curveType; data.tension = this.tension; return data; } fromJSON(json) { super.fromJSON(json); this.points = []; for (let i = 0, l = json.points.length; i < l; i++) { const point = json.points[i]; this.points.push(new Vector3().fromArray(point)); } this.closed = json.closed; this.curveType = json.curveType; this.tension = json.tension; return this; } } function CatmullRom(t, p0, p1, p2, p3) { const v0 = (p2 - p0) * 0.5; const v1 = (p3 - p1) * 0.5; const t2 = t * t; const t3 = t * t2; return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1; } __name(CatmullRom, "CatmullRom"); function QuadraticBezierP0(t, p) { const k = 1 - t; return k * k * p; } __name(QuadraticBezierP0, "QuadraticBezierP0"); function QuadraticBezierP1(t, p) { return 2 * (1 - t) * t * p; } __name(QuadraticBezierP1, "QuadraticBezierP1"); function QuadraticBezierP2(t, p) { return t * t * p; } __name(QuadraticBezierP2, "QuadraticBezierP2"); function QuadraticBezier(t, p0, p1, p2) { return QuadraticBezierP0(t, p0) + QuadraticBezierP1(t, p1) + QuadraticBezierP2(t, p2); } __name(QuadraticBezier, "QuadraticBezier"); function CubicBezierP0(t, p) { const k = 1 - t; return k * k * k * p; } __name(CubicBezierP0, "CubicBezierP0"); function CubicBezierP1(t, p) { const k = 1 - t; return 3 * k * k * t * p; } __name(CubicBezierP1, "CubicBezierP1"); function CubicBezierP2(t, p) { return 3 * (1 - t) * t * t * p; } __name(CubicBezierP2, "CubicBezierP2"); function CubicBezierP3(t, p) { return t * t * t * p; } __name(CubicBezierP3, "CubicBezierP3"); function CubicBezier(t, p0, p1, p2, p3) { return CubicBezierP0(t, p0) + CubicBezierP1(t, p1) + CubicBezierP2(t, p2) + CubicBezierP3(t, p3); } __name(CubicBezier, "CubicBezier"); class CubicBezierCurve extends Curve { static { __name(this, "CubicBezierCurve"); } constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2()) { super(); this.isCubicBezierCurve = true; this.type = "CubicBezierCurve"; this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } getPoint(t, optionalTarget = new Vector2()) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set( CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y) ); return point; } copy(source) { super.copy(source); this.v0.copy(source.v0); this.v1.copy(source.v1); this.v2.copy(source.v2); this.v3.copy(source.v3); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.v0.fromArray(json.v0); this.v1.fromArray(json.v1); this.v2.fromArray(json.v2); this.v3.fromArray(json.v3); return this; } } class CubicBezierCurve3 extends Curve { static { __name(this, "CubicBezierCurve3"); } constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3()) { super(); this.isCubicBezierCurve3 = true; this.type = "CubicBezierCurve3"; this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } getPoint(t, optionalTarget = new Vector3()) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set( CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y), CubicBezier(t, v0.z, v1.z, v2.z, v3.z) ); return point; } copy(source) { super.copy(source); this.v0.copy(source.v0); this.v1.copy(source.v1); this.v2.copy(source.v2); this.v3.copy(source.v3); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.v0.fromArray(json.v0); this.v1.fromArray(json.v1); this.v2.fromArray(json.v2); this.v3.fromArray(json.v3); return this; } } class LineCurve extends Curve { static { __name(this, "LineCurve"); } constructor(v1 = new Vector2(), v2 = new Vector2()) { super(); this.isLineCurve = true; this.type = "LineCurve"; this.v1 = v1; this.v2 = v2; } getPoint(t, optionalTarget = new Vector2()) { const point = optionalTarget; if (t === 1) { point.copy(this.v2); } else { point.copy(this.v2).sub(this.v1); point.multiplyScalar(t).add(this.v1); } return point; } // Line curve is linear, so we can overwrite default getPointAt getPointAt(u, optionalTarget) { return this.getPoint(u, optionalTarget); } getTangent(t, optionalTarget = new Vector2()) { return optionalTarget.subVectors(this.v2, this.v1).normalize(); } getTangentAt(u, optionalTarget) { return this.getTangent(u, optionalTarget); } copy(source) { super.copy(source); this.v1.copy(source.v1); this.v2.copy(source.v2); return this; } toJSON() { const data = super.toJSON(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.v1.fromArray(json.v1); this.v2.fromArray(json.v2); return this; } } class LineCurve3 extends Curve { static { __name(this, "LineCurve3"); } constructor(v1 = new Vector3(), v2 = new Vector3()) { super(); this.isLineCurve3 = true; this.type = "LineCurve3"; this.v1 = v1; this.v2 = v2; } getPoint(t, optionalTarget = new Vector3()) { const point = optionalTarget; if (t === 1) { point.copy(this.v2); } else { point.copy(this.v2).sub(this.v1); point.multiplyScalar(t).add(this.v1); } return point; } // Line curve is linear, so we can overwrite default getPointAt getPointAt(u, optionalTarget) { return this.getPoint(u, optionalTarget); } getTangent(t, optionalTarget = new Vector3()) { return optionalTarget.subVectors(this.v2, this.v1).normalize(); } getTangentAt(u, optionalTarget) { return this.getTangent(u, optionalTarget); } copy(source) { super.copy(source); this.v1.copy(source.v1); this.v2.copy(source.v2); return this; } toJSON() { const data = super.toJSON(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.v1.fromArray(json.v1); this.v2.fromArray(json.v2); return this; } } class QuadraticBezierCurve extends Curve { static { __name(this, "QuadraticBezierCurve"); } constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2()) { super(); this.isQuadraticBezierCurve = true; this.type = "QuadraticBezierCurve"; this.v0 = v0; this.v1 = v1; this.v2 = v2; } getPoint(t, optionalTarget = new Vector2()) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set( QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y) ); return point; } copy(source) { super.copy(source); this.v0.copy(source.v0); this.v1.copy(source.v1); this.v2.copy(source.v2); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.v0.fromArray(json.v0); this.v1.fromArray(json.v1); this.v2.fromArray(json.v2); return this; } } class QuadraticBezierCurve3 extends Curve { static { __name(this, "QuadraticBezierCurve3"); } constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3()) { super(); this.isQuadraticBezierCurve3 = true; this.type = "QuadraticBezierCurve3"; this.v0 = v0; this.v1 = v1; this.v2 = v2; } getPoint(t, optionalTarget = new Vector3()) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set( QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y), QuadraticBezier(t, v0.z, v1.z, v2.z) ); return point; } copy(source) { super.copy(source); this.v0.copy(source.v0); this.v1.copy(source.v1); this.v2.copy(source.v2); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.v0.fromArray(json.v0); this.v1.fromArray(json.v1); this.v2.fromArray(json.v2); return this; } } class SplineCurve extends Curve { static { __name(this, "SplineCurve"); } constructor(points = []) { super(); this.isSplineCurve = true; this.type = "SplineCurve"; this.points = points; } getPoint(t, optionalTarget = new Vector2()) { const point = optionalTarget; const points = this.points; const p = (points.length - 1) * t; const intPoint = Math.floor(p); const weight = p - intPoint; const p0 = points[intPoint === 0 ? intPoint : intPoint - 1]; const p1 = points[intPoint]; const p2 = points[intPoint > points.length - 2 ? points.length - 1 : intPoint + 1]; const p3 = points[intPoint > points.length - 3 ? points.length - 1 : intPoint + 2]; point.set( CatmullRom(weight, p0.x, p1.x, p2.x, p3.x), CatmullRom(weight, p0.y, p1.y, p2.y, p3.y) ); return point; } copy(source) { super.copy(source); this.points = []; for (let i = 0, l = source.points.length; i < l; i++) { const point = source.points[i]; this.points.push(point.clone()); } return this; } toJSON() { const data = super.toJSON(); data.points = []; for (let i = 0, l = this.points.length; i < l; i++) { const point = this.points[i]; data.points.push(point.toArray()); } return data; } fromJSON(json) { super.fromJSON(json); this.points = []; for (let i = 0, l = json.points.length; i < l; i++) { const point = json.points[i]; this.points.push(new Vector2().fromArray(point)); } return this; } } var Curves = /* @__PURE__ */ Object.freeze({ __proto__: null, ArcCurve, CatmullRomCurve3, CubicBezierCurve, CubicBezierCurve3, EllipseCurve, LineCurve, LineCurve3, QuadraticBezierCurve, QuadraticBezierCurve3, SplineCurve }); class CurvePath extends Curve { static { __name(this, "CurvePath"); } constructor() { super(); this.type = "CurvePath"; this.curves = []; this.autoClose = false; } add(curve) { this.curves.push(curve); } closePath() { const startPoint = this.curves[0].getPoint(0); const endPoint = this.curves[this.curves.length - 1].getPoint(1); if (!startPoint.equals(endPoint)) { const lineType = startPoint.isVector2 === true ? "LineCurve" : "LineCurve3"; this.curves.push(new Curves[lineType](endPoint, startPoint)); } return this; } // To get accurate point with reference to // entire path distance at time t, // following has to be done: // 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t') getPoint(t, optionalTarget) { const d = t * this.getLength(); const curveLengths = this.getCurveLengths(); let i = 0; while (i < curveLengths.length) { if (curveLengths[i] >= d) { const diff = curveLengths[i] - d; const curve = this.curves[i]; const segmentLength = curve.getLength(); const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength; return curve.getPointAt(u, optionalTarget); } i++; } return null; } // We cannot use the default THREE.Curve getPoint() with getLength() because in // THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath // getPoint() depends on getLength getLength() { const lens = this.getCurveLengths(); return lens[lens.length - 1]; } // cacheLengths must be recalculated. updateArcLengths() { this.needsUpdate = true; this.cacheLengths = null; this.getCurveLengths(); } // Compute lengths and cache them // We cannot overwrite getLengths() because UtoT mapping uses it. getCurveLengths() { if (this.cacheLengths && this.cacheLengths.length === this.curves.length) { return this.cacheLengths; } const lengths = []; let sums = 0; for (let i = 0, l = this.curves.length; i < l; i++) { sums += this.curves[i].getLength(); lengths.push(sums); } this.cacheLengths = lengths; return lengths; } getSpacedPoints(divisions = 40) { const points = []; for (let i = 0; i <= divisions; i++) { points.push(this.getPoint(i / divisions)); } if (this.autoClose) { points.push(points[0]); } return points; } getPoints(divisions = 12) { const points = []; let last; for (let i = 0, curves = this.curves; i < curves.length; i++) { const curve = curves[i]; const resolution = curve.isEllipseCurve ? divisions * 2 : curve.isLineCurve || curve.isLineCurve3 ? 1 : curve.isSplineCurve ? divisions * curve.points.length : divisions; const pts = curve.getPoints(resolution); for (let j = 0; j < pts.length; j++) { const point = pts[j]; if (last && last.equals(point)) continue; points.push(point); last = point; } } if (this.autoClose && points.length > 1 && !points[points.length - 1].equals(points[0])) { points.push(points[0]); } return points; } copy(source) { super.copy(source); this.curves = []; for (let i = 0, l = source.curves.length; i < l; i++) { const curve = source.curves[i]; this.curves.push(curve.clone()); } this.autoClose = source.autoClose; return this; } toJSON() { const data = super.toJSON(); data.autoClose = this.autoClose; data.curves = []; for (let i = 0, l = this.curves.length; i < l; i++) { const curve = this.curves[i]; data.curves.push(curve.toJSON()); } return data; } fromJSON(json) { super.fromJSON(json); this.autoClose = json.autoClose; this.curves = []; for (let i = 0, l = json.curves.length; i < l; i++) { const curve = json.curves[i]; this.curves.push(new Curves[curve.type]().fromJSON(curve)); } return this; } } class Path extends CurvePath { static { __name(this, "Path"); } constructor(points) { super(); this.type = "Path"; this.currentPoint = new Vector2(); if (points) { this.setFromPoints(points); } } setFromPoints(points) { this.moveTo(points[0].x, points[0].y); for (let i = 1, l = points.length; i < l; i++) { this.lineTo(points[i].x, points[i].y); } return this; } moveTo(x, y) { this.currentPoint.set(x, y); return this; } lineTo(x, y) { const curve = new LineCurve(this.currentPoint.clone(), new Vector2(x, y)); this.curves.push(curve); this.currentPoint.set(x, y); return this; } quadraticCurveTo(aCPx, aCPy, aX, aY) { const curve = new QuadraticBezierCurve( this.currentPoint.clone(), new Vector2(aCPx, aCPy), new Vector2(aX, aY) ); this.curves.push(curve); this.currentPoint.set(aX, aY); return this; } bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) { const curve = new CubicBezierCurve( this.currentPoint.clone(), new Vector2(aCP1x, aCP1y), new Vector2(aCP2x, aCP2y), new Vector2(aX, aY) ); this.curves.push(curve); this.currentPoint.set(aX, aY); return this; } splineThru(pts) { const npts = [this.currentPoint.clone()].concat(pts); const curve = new SplineCurve(npts); this.curves.push(curve); this.currentPoint.copy(pts[pts.length - 1]); return this; } arc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { const x0 = this.currentPoint.x; const y0 = this.currentPoint.y; this.absarc( aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise ); return this; } absarc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise); return this; } ellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) { const x0 = this.currentPoint.x; const y0 = this.currentPoint.y; this.absellipse(aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation); return this; } absellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) { const curve = new EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation); if (this.curves.length > 0) { const firstPoint = curve.getPoint(0); if (!firstPoint.equals(this.currentPoint)) { this.lineTo(firstPoint.x, firstPoint.y); } } this.curves.push(curve); const lastPoint = curve.getPoint(1); this.currentPoint.copy(lastPoint); return this; } copy(source) { super.copy(source); this.currentPoint.copy(source.currentPoint); return this; } toJSON() { const data = super.toJSON(); data.currentPoint = this.currentPoint.toArray(); return data; } fromJSON(json) { super.fromJSON(json); this.currentPoint.fromArray(json.currentPoint); return this; } } class LatheGeometry extends BufferGeometry { static { __name(this, "LatheGeometry"); } constructor(points = [new Vector2(0, -0.5), new Vector2(0.5, 0), new Vector2(0, 0.5)], segments = 12, phiStart = 0, phiLength = Math.PI * 2) { super(); this.type = "LatheGeometry"; this.parameters = { points, segments, phiStart, phiLength }; segments = Math.floor(segments); phiLength = clamp(phiLength, 0, Math.PI * 2); const indices = []; const vertices = []; const uvs = []; const initNormals = []; const normals = []; const inverseSegments = 1 / segments; const vertex2 = new Vector3(); const uv = new Vector2(); const normal = new Vector3(); const curNormal = new Vector3(); const prevNormal = new Vector3(); let dx = 0; let dy = 0; for (let j = 0; j <= points.length - 1; j++) { switch (j) { case 0: dx = points[j + 1].x - points[j].x; dy = points[j + 1].y - points[j].y; normal.x = dy * 1; normal.y = -dx; normal.z = dy * 0; prevNormal.copy(normal); normal.normalize(); initNormals.push(normal.x, normal.y, normal.z); break; case points.length - 1: initNormals.push(prevNormal.x, prevNormal.y, prevNormal.z); break; default: dx = points[j + 1].x - points[j].x; dy = points[j + 1].y - points[j].y; normal.x = dy * 1; normal.y = -dx; normal.z = dy * 0; curNormal.copy(normal); normal.x += prevNormal.x; normal.y += prevNormal.y; normal.z += prevNormal.z; normal.normalize(); initNormals.push(normal.x, normal.y, normal.z); prevNormal.copy(curNormal); } } for (let i = 0; i <= segments; i++) { const phi = phiStart + i * inverseSegments * phiLength; const sin = Math.sin(phi); const cos = Math.cos(phi); for (let j = 0; j <= points.length - 1; j++) { vertex2.x = points[j].x * sin; vertex2.y = points[j].y; vertex2.z = points[j].x * cos; vertices.push(vertex2.x, vertex2.y, vertex2.z); uv.x = i / segments; uv.y = j / (points.length - 1); uvs.push(uv.x, uv.y); const x = initNormals[3 * j + 0] * sin; const y = initNormals[3 * j + 1]; const z = initNormals[3 * j + 0] * cos; normals.push(x, y, z); } } for (let i = 0; i < segments; i++) { for (let j = 0; j < points.length - 1; j++) { const base = j + i * points.length; const a = base; const b = base + points.length; const c = base + points.length + 1; const d = base + 1; indices.push(a, b, d); indices.push(c, d, b); } } this.setIndex(indices); this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvs, 2)); this.setAttribute("normal", new Float32BufferAttribute(normals, 3)); } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } static fromJSON(data) { return new LatheGeometry(data.points, data.segments, data.phiStart, data.phiLength); } } class CapsuleGeometry extends LatheGeometry { static { __name(this, "CapsuleGeometry"); } constructor(radius = 1, length = 1, capSegments = 4, radialSegments = 8) { const path = new Path(); path.absarc(0, -length / 2, radius, Math.PI * 1.5, 0); path.absarc(0, length / 2, radius, 0, Math.PI * 0.5); super(path.getPoints(capSegments), radialSegments); this.type = "CapsuleGeometry"; this.parameters = { radius, length, capSegments, radialSegments }; } static fromJSON(data) { return new CapsuleGeometry(data.radius, data.length, data.capSegments, data.radialSegments); } } class CircleGeometry extends BufferGeometry { static { __name(this, "CircleGeometry"); } constructor(radius = 1, segments = 32, thetaStart = 0, thetaLength = Math.PI * 2) { super(); this.type = "CircleGeometry"; this.parameters = { radius, segments, thetaStart, thetaLength }; segments = Math.max(3, segments); const indices = []; const vertices = []; const normals = []; const uvs = []; const vertex2 = new Vector3(); const uv = new Vector2(); vertices.push(0, 0, 0); normals.push(0, 0, 1); uvs.push(0.5, 0.5); for (let s = 0, i = 3; s <= segments; s++, i += 3) { const segment = thetaStart + s / segments * thetaLength; vertex2.x = radius * Math.cos(segment); vertex2.y = radius * Math.sin(segment); vertices.push(vertex2.x, vertex2.y, vertex2.z); normals.push(0, 0, 1); uv.x = (vertices[i] / radius + 1) / 2; uv.y = (vertices[i + 1] / radius + 1) / 2; uvs.push(uv.x, uv.y); } for (let i = 1; i <= segments; i++) { indices.push(i, i + 1, 0); } this.setIndex(indices); this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); this.setAttribute("normal", new Float32BufferAttribute(normals, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvs, 2)); } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } static fromJSON(data) { return new CircleGeometry(data.radius, data.segments, data.thetaStart, data.thetaLength); } } class CylinderGeometry extends BufferGeometry { static { __name(this, "CylinderGeometry"); } constructor(radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 32, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) { super(); this.type = "CylinderGeometry"; this.parameters = { radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength }; const scope = this; radialSegments = Math.floor(radialSegments); heightSegments = Math.floor(heightSegments); const indices = []; const vertices = []; const normals = []; const uvs = []; let index = 0; const indexArray = []; const halfHeight = height / 2; let groupStart = 0; generateTorso(); if (openEnded === false) { if (radiusTop > 0) generateCap(true); if (radiusBottom > 0) generateCap(false); } this.setIndex(indices); this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); this.setAttribute("normal", new Float32BufferAttribute(normals, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvs, 2)); function generateTorso() { const normal = new Vector3(); const vertex2 = new Vector3(); let groupCount = 0; const slope = (radiusBottom - radiusTop) / height; for (let y = 0; y <= heightSegments; y++) { const indexRow = []; const v = y / heightSegments; const radius = v * (radiusBottom - radiusTop) + radiusTop; for (let x = 0; x <= radialSegments; x++) { const u = x / radialSegments; const theta = u * thetaLength + thetaStart; const sinTheta = Math.sin(theta); const cosTheta = Math.cos(theta); vertex2.x = radius * sinTheta; vertex2.y = -v * height + halfHeight; vertex2.z = radius * cosTheta; vertices.push(vertex2.x, vertex2.y, vertex2.z); normal.set(sinTheta, slope, cosTheta).normalize(); normals.push(normal.x, normal.y, normal.z); uvs.push(u, 1 - v); indexRow.push(index++); } indexArray.push(indexRow); } for (let x = 0; x < radialSegments; x++) { for (let y = 0; y < heightSegments; y++) { const a = indexArray[y][x]; const b = indexArray[y + 1][x]; const c = indexArray[y + 1][x + 1]; const d = indexArray[y][x + 1]; if (radiusTop > 0 || y !== 0) { indices.push(a, b, d); groupCount += 3; } if (radiusBottom > 0 || y !== heightSegments - 1) { indices.push(b, c, d); groupCount += 3; } } } scope.addGroup(groupStart, groupCount, 0); groupStart += groupCount; } __name(generateTorso, "generateTorso"); function generateCap(top) { const centerIndexStart = index; const uv = new Vector2(); const vertex2 = new Vector3(); let groupCount = 0; const radius = top === true ? radiusTop : radiusBottom; const sign2 = top === true ? 1 : -1; for (let x = 1; x <= radialSegments; x++) { vertices.push(0, halfHeight * sign2, 0); normals.push(0, sign2, 0); uvs.push(0.5, 0.5); index++; } const centerIndexEnd = index; for (let x = 0; x <= radialSegments; x++) { const u = x / radialSegments; const theta = u * thetaLength + thetaStart; const cosTheta = Math.cos(theta); const sinTheta = Math.sin(theta); vertex2.x = radius * sinTheta; vertex2.y = halfHeight * sign2; vertex2.z = radius * cosTheta; vertices.push(vertex2.x, vertex2.y, vertex2.z); normals.push(0, sign2, 0); uv.x = cosTheta * 0.5 + 0.5; uv.y = sinTheta * 0.5 * sign2 + 0.5; uvs.push(uv.x, uv.y); index++; } for (let x = 0; x < radialSegments; x++) { const c = centerIndexStart + x; const i = centerIndexEnd + x; if (top === true) { indices.push(i, i + 1, c); } else { indices.push(i + 1, i, c); } groupCount += 3; } scope.addGroup(groupStart, groupCount, top === true ? 1 : 2); groupStart += groupCount; } __name(generateCap, "generateCap"); } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } static fromJSON(data) { return new CylinderGeometry(data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength); } } class ConeGeometry extends CylinderGeometry { static { __name(this, "ConeGeometry"); } constructor(radius = 1, height = 1, radialSegments = 32, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) { super(0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength); this.type = "ConeGeometry"; this.parameters = { radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength }; } static fromJSON(data) { return new ConeGeometry(data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength); } } class PolyhedronGeometry extends BufferGeometry { static { __name(this, "PolyhedronGeometry"); } constructor(vertices = [], indices = [], radius = 1, detail = 0) { super(); this.type = "PolyhedronGeometry"; this.parameters = { vertices, indices, radius, detail }; const vertexBuffer = []; const uvBuffer = []; subdivide(detail); applyRadius(radius); generateUVs(); this.setAttribute("position", new Float32BufferAttribute(vertexBuffer, 3)); this.setAttribute("normal", new Float32BufferAttribute(vertexBuffer.slice(), 3)); this.setAttribute("uv", new Float32BufferAttribute(uvBuffer, 2)); if (detail === 0) { this.computeVertexNormals(); } else { this.normalizeNormals(); } function subdivide(detail2) { const a = new Vector3(); const b = new Vector3(); const c = new Vector3(); for (let i = 0; i < indices.length; i += 3) { getVertexByIndex(indices[i + 0], a); getVertexByIndex(indices[i + 1], b); getVertexByIndex(indices[i + 2], c); subdivideFace(a, b, c, detail2); } } __name(subdivide, "subdivide"); function subdivideFace(a, b, c, detail2) { const cols = detail2 + 1; const v = []; for (let i = 0; i <= cols; i++) { v[i] = []; const aj = a.clone().lerp(c, i / cols); const bj = b.clone().lerp(c, i / cols); const rows = cols - i; for (let j = 0; j <= rows; j++) { if (j === 0 && i === cols) { v[i][j] = aj; } else { v[i][j] = aj.clone().lerp(bj, j / rows); } } } for (let i = 0; i < cols; i++) { for (let j = 0; j < 2 * (cols - i) - 1; j++) { const k = Math.floor(j / 2); if (j % 2 === 0) { pushVertex(v[i][k + 1]); pushVertex(v[i + 1][k]); pushVertex(v[i][k]); } else { pushVertex(v[i][k + 1]); pushVertex(v[i + 1][k + 1]); pushVertex(v[i + 1][k]); } } } } __name(subdivideFace, "subdivideFace"); function applyRadius(radius2) { const vertex2 = new Vector3(); for (let i = 0; i < vertexBuffer.length; i += 3) { vertex2.x = vertexBuffer[i + 0]; vertex2.y = vertexBuffer[i + 1]; vertex2.z = vertexBuffer[i + 2]; vertex2.normalize().multiplyScalar(radius2); vertexBuffer[i + 0] = vertex2.x; vertexBuffer[i + 1] = vertex2.y; vertexBuffer[i + 2] = vertex2.z; } } __name(applyRadius, "applyRadius"); function generateUVs() { const vertex2 = new Vector3(); for (let i = 0; i < vertexBuffer.length; i += 3) { vertex2.x = vertexBuffer[i + 0]; vertex2.y = vertexBuffer[i + 1]; vertex2.z = vertexBuffer[i + 2]; const u = azimuth(vertex2) / 2 / Math.PI + 0.5; const v = inclination(vertex2) / Math.PI + 0.5; uvBuffer.push(u, 1 - v); } correctUVs(); correctSeam(); } __name(generateUVs, "generateUVs"); function correctSeam() { for (let i = 0; i < uvBuffer.length; i += 6) { const x0 = uvBuffer[i + 0]; const x1 = uvBuffer[i + 2]; const x2 = uvBuffer[i + 4]; const max2 = Math.max(x0, x1, x2); const min = Math.min(x0, x1, x2); if (max2 > 0.9 && min < 0.1) { if (x0 < 0.2) uvBuffer[i + 0] += 1; if (x1 < 0.2) uvBuffer[i + 2] += 1; if (x2 < 0.2) uvBuffer[i + 4] += 1; } } } __name(correctSeam, "correctSeam"); function pushVertex(vertex2) { vertexBuffer.push(vertex2.x, vertex2.y, vertex2.z); } __name(pushVertex, "pushVertex"); function getVertexByIndex(index, vertex2) { const stride = index * 3; vertex2.x = vertices[stride + 0]; vertex2.y = vertices[stride + 1]; vertex2.z = vertices[stride + 2]; } __name(getVertexByIndex, "getVertexByIndex"); function correctUVs() { const a = new Vector3(); const b = new Vector3(); const c = new Vector3(); const centroid = new Vector3(); const uvA = new Vector2(); const uvB = new Vector2(); const uvC = new Vector2(); for (let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6) { a.set(vertexBuffer[i + 0], vertexBuffer[i + 1], vertexBuffer[i + 2]); b.set(vertexBuffer[i + 3], vertexBuffer[i + 4], vertexBuffer[i + 5]); c.set(vertexBuffer[i + 6], vertexBuffer[i + 7], vertexBuffer[i + 8]); uvA.set(uvBuffer[j + 0], uvBuffer[j + 1]); uvB.set(uvBuffer[j + 2], uvBuffer[j + 3]); uvC.set(uvBuffer[j + 4], uvBuffer[j + 5]); centroid.copy(a).add(b).add(c).divideScalar(3); const azi = azimuth(centroid); correctUV(uvA, j + 0, a, azi); correctUV(uvB, j + 2, b, azi); correctUV(uvC, j + 4, c, azi); } } __name(correctUVs, "correctUVs"); function correctUV(uv, stride, vector, azimuth2) { if (azimuth2 < 0 && uv.x === 1) { uvBuffer[stride] = uv.x - 1; } if (vector.x === 0 && vector.z === 0) { uvBuffer[stride] = azimuth2 / 2 / Math.PI + 0.5; } } __name(correctUV, "correctUV"); function azimuth(vector) { return Math.atan2(vector.z, -vector.x); } __name(azimuth, "azimuth"); function inclination(vector) { return Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z)); } __name(inclination, "inclination"); } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } static fromJSON(data) { return new PolyhedronGeometry(data.vertices, data.indices, data.radius, data.details); } } class DodecahedronGeometry extends PolyhedronGeometry { static { __name(this, "DodecahedronGeometry"); } constructor(radius = 1, detail = 0) { const t = (1 + Math.sqrt(5)) / 2; const r = 1 / t; const vertices = [ // (±1, ±1, ±1) -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ) 0, -r, -t, 0, -r, t, 0, r, -t, 0, r, t, // (±1/φ, ±φ, 0) -r, -t, 0, -r, t, 0, r, -t, 0, r, t, 0, // (±φ, 0, ±1/φ) -t, 0, -r, t, 0, -r, -t, 0, r, t, 0, r ]; const indices = [ 3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9 ]; super(vertices, indices, radius, detail); this.type = "DodecahedronGeometry"; this.parameters = { radius, detail }; } static fromJSON(data) { return new DodecahedronGeometry(data.radius, data.detail); } } const _v0 = /* @__PURE__ */ new Vector3(); const _v1$1 = /* @__PURE__ */ new Vector3(); const _normal = /* @__PURE__ */ new Vector3(); const _triangle = /* @__PURE__ */ new Triangle(); class EdgesGeometry extends BufferGeometry { static { __name(this, "EdgesGeometry"); } constructor(geometry = null, thresholdAngle = 1) { super(); this.type = "EdgesGeometry"; this.parameters = { geometry, thresholdAngle }; if (geometry !== null) { const precisionPoints = 4; const precision = Math.pow(10, precisionPoints); const thresholdDot = Math.cos(DEG2RAD * thresholdAngle); const indexAttr = geometry.getIndex(); const positionAttr = geometry.getAttribute("position"); const indexCount = indexAttr ? indexAttr.count : positionAttr.count; const indexArr = [0, 0, 0]; const vertKeys = ["a", "b", "c"]; const hashes = new Array(3); const edgeData = {}; const vertices = []; for (let i = 0; i < indexCount; i += 3) { if (indexAttr) { indexArr[0] = indexAttr.getX(i); indexArr[1] = indexAttr.getX(i + 1); indexArr[2] = indexAttr.getX(i + 2); } else { indexArr[0] = i; indexArr[1] = i + 1; indexArr[2] = i + 2; } const { a, b, c } = _triangle; a.fromBufferAttribute(positionAttr, indexArr[0]); b.fromBufferAttribute(positionAttr, indexArr[1]); c.fromBufferAttribute(positionAttr, indexArr[2]); _triangle.getNormal(_normal); hashes[0] = `${Math.round(a.x * precision)},${Math.round(a.y * precision)},${Math.round(a.z * precision)}`; hashes[1] = `${Math.round(b.x * precision)},${Math.round(b.y * precision)},${Math.round(b.z * precision)}`; hashes[2] = `${Math.round(c.x * precision)},${Math.round(c.y * precision)},${Math.round(c.z * precision)}`; if (hashes[0] === hashes[1] || hashes[1] === hashes[2] || hashes[2] === hashes[0]) { continue; } for (let j = 0; j < 3; j++) { const jNext = (j + 1) % 3; const vecHash0 = hashes[j]; const vecHash1 = hashes[jNext]; const v0 = _triangle[vertKeys[j]]; const v1 = _triangle[vertKeys[jNext]]; const hash = `${vecHash0}_${vecHash1}`; const reverseHash = `${vecHash1}_${vecHash0}`; if (reverseHash in edgeData && edgeData[reverseHash]) { if (_normal.dot(edgeData[reverseHash].normal) <= thresholdDot) { vertices.push(v0.x, v0.y, v0.z); vertices.push(v1.x, v1.y, v1.z); } edgeData[reverseHash] = null; } else if (!(hash in edgeData)) { edgeData[hash] = { index0: indexArr[j], index1: indexArr[jNext], normal: _normal.clone() }; } } } for (const key in edgeData) { if (edgeData[key]) { const { index0, index1 } = edgeData[key]; _v0.fromBufferAttribute(positionAttr, index0); _v1$1.fromBufferAttribute(positionAttr, index1); vertices.push(_v0.x, _v0.y, _v0.z); vertices.push(_v1$1.x, _v1$1.y, _v1$1.z); } } this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); } } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } } class Shape extends Path { static { __name(this, "Shape"); } constructor(points) { super(points); this.uuid = generateUUID(); this.type = "Shape"; this.holes = []; } getPointsHoles(divisions) { const holesPts = []; for (let i = 0, l = this.holes.length; i < l; i++) { holesPts[i] = this.holes[i].getPoints(divisions); } return holesPts; } // get points of shape and holes (keypoints based on segments parameter) extractPoints(divisions) { return { shape: this.getPoints(divisions), holes: this.getPointsHoles(divisions) }; } copy(source) { super.copy(source); this.holes = []; for (let i = 0, l = source.holes.length; i < l; i++) { const hole = source.holes[i]; this.holes.push(hole.clone()); } return this; } toJSON() { const data = super.toJSON(); data.uuid = this.uuid; data.holes = []; for (let i = 0, l = this.holes.length; i < l; i++) { const hole = this.holes[i]; data.holes.push(hole.toJSON()); } return data; } fromJSON(json) { super.fromJSON(json); this.uuid = json.uuid; this.holes = []; for (let i = 0, l = json.holes.length; i < l; i++) { const hole = json.holes[i]; this.holes.push(new Path().fromJSON(hole)); } return this; } } const Earcut = { triangulate: /* @__PURE__ */ __name(function(data, holeIndices, dim = 2) { const hasHoles = holeIndices && holeIndices.length; const outerLen = hasHoles ? holeIndices[0] * dim : data.length; let outerNode = linkedList(data, 0, outerLen, dim, true); const triangles = []; if (!outerNode || outerNode.next === outerNode.prev) return triangles; let minX, minY, maxX, maxY, x, y, invSize; if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); if (data.length > 80 * dim) { minX = maxX = data[0]; minY = maxY = data[1]; for (let i = dim; i < outerLen; i += dim) { x = data[i]; y = data[i + 1]; if (x < minX) minX = x; if (y < minY) minY = y; if (x > maxX) maxX = x; if (y > maxY) maxY = y; } invSize = Math.max(maxX - minX, maxY - minY); invSize = invSize !== 0 ? 32767 / invSize : 0; } earcutLinked(outerNode, triangles, dim, minX, minY, invSize, 0); return triangles; }, "triangulate") }; function linkedList(data, start, end, dim, clockwise) { let i, last; if (clockwise === signedArea(data, start, end, dim) > 0) { for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last); } else { for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last); } if (last && equals(last, last.next)) { removeNode(last); last = last.next; } return last; } __name(linkedList, "linkedList"); function filterPoints(start, end) { if (!start) return start; if (!end) end = start; let p = start, again; do { again = false; if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) { removeNode(p); p = end = p.prev; if (p === p.next) break; again = true; } else { p = p.next; } } while (again || p !== end); return end; } __name(filterPoints, "filterPoints"); function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) { if (!ear) return; if (!pass && invSize) indexCurve(ear, minX, minY, invSize); let stop = ear, prev, next; while (ear.prev !== ear.next) { prev = ear.prev; next = ear.next; if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) { triangles.push(prev.i / dim | 0); triangles.push(ear.i / dim | 0); triangles.push(next.i / dim | 0); removeNode(ear); ear = next.next; stop = next.next; continue; } ear = next; if (ear === stop) { if (!pass) { earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); } else if (pass === 1) { ear = cureLocalIntersections(filterPoints(ear), triangles, dim); earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); } else if (pass === 2) { splitEarcut(ear, triangles, dim, minX, minY, invSize); } break; } } } __name(earcutLinked, "earcutLinked"); function isEar(ear) { const a = ear.prev, b = ear, c = ear.next; if (area(a, b, c) >= 0) return false; const ax = a.x, bx = b.x, cx = c.x, ay = a.y, by = b.y, cy = c.y; const x0 = ax < bx ? ax < cx ? ax : cx : bx < cx ? bx : cx, y0 = ay < by ? ay < cy ? ay : cy : by < cy ? by : cy, x1 = ax > bx ? ax > cx ? ax : cx : bx > cx ? bx : cx, y1 = ay > by ? ay > cy ? ay : cy : by > cy ? by : cy; let p = c.next; while (p !== a) { if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && pointInTriangle(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; p = p.next; } return true; } __name(isEar, "isEar"); function isEarHashed(ear, minX, minY, invSize) { const a = ear.prev, b = ear, c = ear.next; if (area(a, b, c) >= 0) return false; const ax = a.x, bx = b.x, cx = c.x, ay = a.y, by = b.y, cy = c.y; const x0 = ax < bx ? ax < cx ? ax : cx : bx < cx ? bx : cx, y0 = ay < by ? ay < cy ? ay : cy : by < cy ? by : cy, x1 = ax > bx ? ax > cx ? ax : cx : bx > cx ? bx : cx, y1 = ay > by ? ay > cy ? ay : cy : by > cy ? by : cy; const minZ = zOrder(x0, y0, minX, minY, invSize), maxZ = zOrder(x1, y1, minX, minY, invSize); let p = ear.prevZ, n = ear.nextZ; while (p && p.z >= minZ && n && n.z <= maxZ) { if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c && pointInTriangle(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; p = p.prevZ; if (n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c && pointInTriangle(ax, ay, bx, by, cx, cy, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; n = n.nextZ; } while (p && p.z >= minZ) { if (p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c && pointInTriangle(ax, ay, bx, by, cx, cy, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false; p = p.prevZ; } while (n && n.z <= maxZ) { if (n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c && pointInTriangle(ax, ay, bx, by, cx, cy, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false; n = n.nextZ; } return true; } __name(isEarHashed, "isEarHashed"); function cureLocalIntersections(start, triangles, dim) { let p = start; do { const a = p.prev, b = p.next.next; if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) { triangles.push(a.i / dim | 0); triangles.push(p.i / dim | 0); triangles.push(b.i / dim | 0); removeNode(p); removeNode(p.next); p = start = b; } p = p.next; } while (p !== start); return filterPoints(p); } __name(cureLocalIntersections, "cureLocalIntersections"); function splitEarcut(start, triangles, dim, minX, minY, invSize) { let a = start; do { let b = a.next.next; while (b !== a.prev) { if (a.i !== b.i && isValidDiagonal(a, b)) { let c = splitPolygon(a, b); a = filterPoints(a, a.next); c = filterPoints(c, c.next); earcutLinked(a, triangles, dim, minX, minY, invSize, 0); earcutLinked(c, triangles, dim, minX, minY, invSize, 0); return; } b = b.next; } a = a.next; } while (a !== start); } __name(splitEarcut, "splitEarcut"); function eliminateHoles(data, holeIndices, outerNode, dim) { const queue = []; let i, len, start, end, list; for (i = 0, len = holeIndices.length; i < len; i++) { start = holeIndices[i] * dim; end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; list = linkedList(data, start, end, dim, false); if (list === list.next) list.steiner = true; queue.push(getLeftmost(list)); } queue.sort(compareX); for (i = 0; i < queue.length; i++) { outerNode = eliminateHole(queue[i], outerNode); } return outerNode; } __name(eliminateHoles, "eliminateHoles"); function compareX(a, b) { return a.x - b.x; } __name(compareX, "compareX"); function eliminateHole(hole, outerNode) { const bridge = findHoleBridge(hole, outerNode); if (!bridge) { return outerNode; } const bridgeReverse = splitPolygon(bridge, hole); filterPoints(bridgeReverse, bridgeReverse.next); return filterPoints(bridge, bridge.next); } __name(eliminateHole, "eliminateHole"); function findHoleBridge(hole, outerNode) { let p = outerNode, qx = -Infinity, m; const hx = hole.x, hy = hole.y; do { if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) { const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y); if (x <= hx && x > qx) { qx = x; m = p.x < p.next.x ? p : p.next; if (x === hx) return m; } } p = p.next; } while (p !== outerNode); if (!m) return null; const stop = m, mx = m.x, my = m.y; let tanMin = Infinity, tan; p = m; do { if (hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) { tan = Math.abs(hy - p.y) / (hx - p.x); if (locallyInside(p, hole) && (tan < tanMin || tan === tanMin && (p.x > m.x || p.x === m.x && sectorContainsSector(m, p)))) { m = p; tanMin = tan; } } p = p.next; } while (p !== stop); return m; } __name(findHoleBridge, "findHoleBridge"); function sectorContainsSector(m, p) { return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0; } __name(sectorContainsSector, "sectorContainsSector"); function indexCurve(start, minX, minY, invSize) { let p = start; do { if (p.z === 0) p.z = zOrder(p.x, p.y, minX, minY, invSize); p.prevZ = p.prev; p.nextZ = p.next; p = p.next; } while (p !== start); p.prevZ.nextZ = null; p.prevZ = null; sortLinked(p); } __name(indexCurve, "indexCurve"); function sortLinked(list) { let i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1; do { p = list; list = null; tail = null; numMerges = 0; while (p) { numMerges++; q = p; pSize = 0; for (i = 0; i < inSize; i++) { pSize++; q = q.nextZ; if (!q) break; } qSize = inSize; while (pSize > 0 || qSize > 0 && q) { if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) { e = p; p = p.nextZ; pSize--; } else { e = q; q = q.nextZ; qSize--; } if (tail) tail.nextZ = e; else list = e; e.prevZ = tail; tail = e; } p = q; } tail.nextZ = null; inSize *= 2; } while (numMerges > 1); return list; } __name(sortLinked, "sortLinked"); function zOrder(x, y, minX, minY, invSize) { x = (x - minX) * invSize | 0; y = (y - minY) * invSize | 0; x = (x | x << 8) & 16711935; x = (x | x << 4) & 252645135; x = (x | x << 2) & 858993459; x = (x | x << 1) & 1431655765; y = (y | y << 8) & 16711935; y = (y | y << 4) & 252645135; y = (y | y << 2) & 858993459; y = (y | y << 1) & 1431655765; return x | y << 1; } __name(zOrder, "zOrder"); function getLeftmost(start) { let p = start, leftmost = start; do { if (p.x < leftmost.x || p.x === leftmost.x && p.y < leftmost.y) leftmost = p; p = p.next; } while (p !== start); return leftmost; } __name(getLeftmost, "getLeftmost"); function pointInTriangle(ax, ay, bx, by, cx, cy, px2, py2) { return (cx - px2) * (ay - py2) >= (ax - px2) * (cy - py2) && (ax - px2) * (by - py2) >= (bx - px2) * (ay - py2) && (bx - px2) * (cy - py2) >= (cx - px2) * (by - py2); } __name(pointInTriangle, "pointInTriangle"); function isValidDiagonal(a, b) { return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && // dones't intersect other edges (locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible (area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); } __name(isValidDiagonal, "isValidDiagonal"); function area(p, q, r) { return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); } __name(area, "area"); function equals(p1, p2) { return p1.x === p2.x && p1.y === p2.y; } __name(equals, "equals"); function intersects(p1, q1, p2, q2) { const o1 = sign(area(p1, q1, p2)); const o2 = sign(area(p1, q1, q2)); const o3 = sign(area(p2, q2, p1)); const o4 = sign(area(p2, q2, q1)); if (o1 !== o2 && o3 !== o4) return true; if (o1 === 0 && onSegment(p1, p2, q1)) return true; if (o2 === 0 && onSegment(p1, q2, q1)) return true; if (o3 === 0 && onSegment(p2, p1, q2)) return true; if (o4 === 0 && onSegment(p2, q1, q2)) return true; return false; } __name(intersects, "intersects"); function onSegment(p, q, r) { return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y); } __name(onSegment, "onSegment"); function sign(num) { return num > 0 ? 1 : num < 0 ? -1 : 0; } __name(sign, "sign"); function intersectsPolygon(a, b) { let p = a; do { if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) return true; p = p.next; } while (p !== a); return false; } __name(intersectsPolygon, "intersectsPolygon"); function locallyInside(a, b) { return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0; } __name(locallyInside, "locallyInside"); function middleInside(a, b) { let p = a, inside = false; const px2 = (a.x + b.x) / 2, py2 = (a.y + b.y) / 2; do { if (p.y > py2 !== p.next.y > py2 && p.next.y !== p.y && px2 < (p.next.x - p.x) * (py2 - p.y) / (p.next.y - p.y) + p.x) inside = !inside; p = p.next; } while (p !== a); return inside; } __name(middleInside, "middleInside"); function splitPolygon(a, b) { const a2 = new Node(a.i, a.x, a.y), b22 = new Node(b.i, b.x, b.y), an = a.next, bp = b.prev; a.next = b; b.prev = a; a2.next = an; an.prev = a2; b22.next = a2; a2.prev = b22; bp.next = b22; b22.prev = bp; return b22; } __name(splitPolygon, "splitPolygon"); function insertNode(i, x, y, last) { const p = new Node(i, x, y); if (!last) { p.prev = p; p.next = p; } else { p.next = last.next; p.prev = last; last.next.prev = p; last.next = p; } return p; } __name(insertNode, "insertNode"); function removeNode(p) { p.next.prev = p.prev; p.prev.next = p.next; if (p.prevZ) p.prevZ.nextZ = p.nextZ; if (p.nextZ) p.nextZ.prevZ = p.prevZ; } __name(removeNode, "removeNode"); function Node(i, x, y) { this.i = i; this.x = x; this.y = y; this.prev = null; this.next = null; this.z = 0; this.prevZ = null; this.nextZ = null; this.steiner = false; } __name(Node, "Node"); function signedArea(data, start, end, dim) { let sum = 0; for (let i = start, j = end - dim; i < end; i += dim) { sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]); j = i; } return sum; } __name(signedArea, "signedArea"); class ShapeUtils { static { __name(this, "ShapeUtils"); } // calculate area of the contour polygon static area(contour) { const n = contour.length; let a = 0; for (let p = n - 1, q = 0; q < n; p = q++) { a += contour[p].x * contour[q].y - contour[q].x * contour[p].y; } return a * 0.5; } static isClockWise(pts) { return ShapeUtils.area(pts) < 0; } static triangulateShape(contour, holes) { const vertices = []; const holeIndices = []; const faces = []; removeDupEndPts(contour); addContour(vertices, contour); let holeIndex = contour.length; holes.forEach(removeDupEndPts); for (let i = 0; i < holes.length; i++) { holeIndices.push(holeIndex); holeIndex += holes[i].length; addContour(vertices, holes[i]); } const triangles = Earcut.triangulate(vertices, holeIndices); for (let i = 0; i < triangles.length; i += 3) { faces.push(triangles.slice(i, i + 3)); } return faces; } } function removeDupEndPts(points) { const l = points.length; if (l > 2 && points[l - 1].equals(points[0])) { points.pop(); } } __name(removeDupEndPts, "removeDupEndPts"); function addContour(vertices, contour) { for (let i = 0; i < contour.length; i++) { vertices.push(contour[i].x); vertices.push(contour[i].y); } } __name(addContour, "addContour"); class ExtrudeGeometry extends BufferGeometry { static { __name(this, "ExtrudeGeometry"); } constructor(shapes = new Shape([new Vector2(0.5, 0.5), new Vector2(-0.5, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), options = {}) { super(); this.type = "ExtrudeGeometry"; this.parameters = { shapes, options }; shapes = Array.isArray(shapes) ? shapes : [shapes]; const scope = this; const verticesArray = []; const uvArray = []; for (let i = 0, l = shapes.length; i < l; i++) { const shape = shapes[i]; addShape(shape); } this.setAttribute("position", new Float32BufferAttribute(verticesArray, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvArray, 2)); this.computeVertexNormals(); function addShape(shape) { const placeholder = []; const curveSegments = options.curveSegments !== void 0 ? options.curveSegments : 12; const steps = options.steps !== void 0 ? options.steps : 1; const depth = options.depth !== void 0 ? options.depth : 1; let bevelEnabled = options.bevelEnabled !== void 0 ? options.bevelEnabled : true; let bevelThickness = options.bevelThickness !== void 0 ? options.bevelThickness : 0.2; let bevelSize = options.bevelSize !== void 0 ? options.bevelSize : bevelThickness - 0.1; let bevelOffset = options.bevelOffset !== void 0 ? options.bevelOffset : 0; let bevelSegments = options.bevelSegments !== void 0 ? options.bevelSegments : 3; const extrudePath = options.extrudePath; const uvgen = options.UVGenerator !== void 0 ? options.UVGenerator : WorldUVGenerator; let extrudePts, extrudeByPath = false; let splineTube, binormal, normal, position2; if (extrudePath) { extrudePts = extrudePath.getSpacedPoints(steps); extrudeByPath = true; bevelEnabled = false; splineTube = extrudePath.computeFrenetFrames(steps, false); binormal = new Vector3(); normal = new Vector3(); position2 = new Vector3(); } if (!bevelEnabled) { bevelSegments = 0; bevelThickness = 0; bevelSize = 0; bevelOffset = 0; } const shapePoints = shape.extractPoints(curveSegments); let vertices = shapePoints.shape; const holes = shapePoints.holes; const reverse = !ShapeUtils.isClockWise(vertices); if (reverse) { vertices = vertices.reverse(); for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h]; if (ShapeUtils.isClockWise(ahole)) { holes[h] = ahole.reverse(); } } } const faces = ShapeUtils.triangulateShape(vertices, holes); const contour = vertices; for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h]; vertices = vertices.concat(ahole); } function scalePt2(pt, vec, size) { if (!vec) console.error("THREE.ExtrudeGeometry: vec does not exist"); return pt.clone().addScaledVector(vec, size); } __name(scalePt2, "scalePt2"); const vlen = vertices.length, flen = faces.length; function getBevelVec(inPt, inPrev, inNext) { let v_trans_x, v_trans_y, shrink_by; const v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; const v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y; const v_prev_lensq = v_prev_x * v_prev_x + v_prev_y * v_prev_y; const collinear0 = v_prev_x * v_next_y - v_prev_y * v_next_x; if (Math.abs(collinear0) > Number.EPSILON) { const v_prev_len = Math.sqrt(v_prev_lensq); const v_next_len = Math.sqrt(v_next_x * v_next_x + v_next_y * v_next_y); const ptPrevShift_x = inPrev.x - v_prev_y / v_prev_len; const ptPrevShift_y = inPrev.y + v_prev_x / v_prev_len; const ptNextShift_x = inNext.x - v_next_y / v_next_len; const ptNextShift_y = inNext.y + v_next_x / v_next_len; const sf = ((ptNextShift_x - ptPrevShift_x) * v_next_y - (ptNextShift_y - ptPrevShift_y) * v_next_x) / (v_prev_x * v_next_y - v_prev_y * v_next_x); v_trans_x = ptPrevShift_x + v_prev_x * sf - inPt.x; v_trans_y = ptPrevShift_y + v_prev_y * sf - inPt.y; const v_trans_lensq = v_trans_x * v_trans_x + v_trans_y * v_trans_y; if (v_trans_lensq <= 2) { return new Vector2(v_trans_x, v_trans_y); } else { shrink_by = Math.sqrt(v_trans_lensq / 2); } } else { let direction_eq = false; if (v_prev_x > Number.EPSILON) { if (v_next_x > Number.EPSILON) { direction_eq = true; } } else { if (v_prev_x < -Number.EPSILON) { if (v_next_x < -Number.EPSILON) { direction_eq = true; } } else { if (Math.sign(v_prev_y) === Math.sign(v_next_y)) { direction_eq = true; } } } if (direction_eq) { v_trans_x = -v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt(v_prev_lensq); } else { v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt(v_prev_lensq / 2); } } return new Vector2(v_trans_x / shrink_by, v_trans_y / shrink_by); } __name(getBevelVec, "getBevelVec"); const contourMovements = []; for (let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) { if (j === il) j = 0; if (k === il) k = 0; contourMovements[i] = getBevelVec(contour[i], contour[j], contour[k]); } const holesMovements = []; let oneHoleMovements, verticesMovements = contourMovements.concat(); for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h]; oneHoleMovements = []; for (let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) { if (j === il) j = 0; if (k === il) k = 0; oneHoleMovements[i] = getBevelVec(ahole[i], ahole[j], ahole[k]); } holesMovements.push(oneHoleMovements); verticesMovements = verticesMovements.concat(oneHoleMovements); } for (let b = 0; b < bevelSegments; b++) { const t = b / bevelSegments; const z = bevelThickness * Math.cos(t * Math.PI / 2); const bs2 = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; for (let i = 0, il = contour.length; i < il; i++) { const vert = scalePt2(contour[i], contourMovements[i], bs2); v(vert.x, vert.y, -z); } for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h]; oneHoleMovements = holesMovements[h]; for (let i = 0, il = ahole.length; i < il; i++) { const vert = scalePt2(ahole[i], oneHoleMovements[i], bs2); v(vert.x, vert.y, -z); } } } const bs = bevelSize + bevelOffset; for (let i = 0; i < vlen; i++) { const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i]; if (!extrudeByPath) { v(vert.x, vert.y, 0); } else { normal.copy(splineTube.normals[0]).multiplyScalar(vert.x); binormal.copy(splineTube.binormals[0]).multiplyScalar(vert.y); position2.copy(extrudePts[0]).add(normal).add(binormal); v(position2.x, position2.y, position2.z); } } for (let s = 1; s <= steps; s++) { for (let i = 0; i < vlen; i++) { const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i]; if (!extrudeByPath) { v(vert.x, vert.y, depth / steps * s); } else { normal.copy(splineTube.normals[s]).multiplyScalar(vert.x); binormal.copy(splineTube.binormals[s]).multiplyScalar(vert.y); position2.copy(extrudePts[s]).add(normal).add(binormal); v(position2.x, position2.y, position2.z); } } } for (let b = bevelSegments - 1; b >= 0; b--) { const t = b / bevelSegments; const z = bevelThickness * Math.cos(t * Math.PI / 2); const bs2 = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; for (let i = 0, il = contour.length; i < il; i++) { const vert = scalePt2(contour[i], contourMovements[i], bs2); v(vert.x, vert.y, depth + z); } for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h]; oneHoleMovements = holesMovements[h]; for (let i = 0, il = ahole.length; i < il; i++) { const vert = scalePt2(ahole[i], oneHoleMovements[i], bs2); if (!extrudeByPath) { v(vert.x, vert.y, depth + z); } else { v(vert.x, vert.y + extrudePts[steps - 1].y, extrudePts[steps - 1].x + z); } } } } buildLidFaces(); buildSideFaces(); function buildLidFaces() { const start = verticesArray.length / 3; if (bevelEnabled) { let layer = 0; let offset = vlen * layer; for (let i = 0; i < flen; i++) { const face = faces[i]; f3(face[2] + offset, face[1] + offset, face[0] + offset); } layer = steps + bevelSegments * 2; offset = vlen * layer; for (let i = 0; i < flen; i++) { const face = faces[i]; f3(face[0] + offset, face[1] + offset, face[2] + offset); } } else { for (let i = 0; i < flen; i++) { const face = faces[i]; f3(face[2], face[1], face[0]); } for (let i = 0; i < flen; i++) { const face = faces[i]; f3(face[0] + vlen * steps, face[1] + vlen * steps, face[2] + vlen * steps); } } scope.addGroup(start, verticesArray.length / 3 - start, 0); } __name(buildLidFaces, "buildLidFaces"); function buildSideFaces() { const start = verticesArray.length / 3; let layeroffset = 0; sidewalls(contour, layeroffset); layeroffset += contour.length; for (let h = 0, hl = holes.length; h < hl; h++) { const ahole = holes[h]; sidewalls(ahole, layeroffset); layeroffset += ahole.length; } scope.addGroup(start, verticesArray.length / 3 - start, 1); } __name(buildSideFaces, "buildSideFaces"); function sidewalls(contour2, layeroffset) { let i = contour2.length; while (--i >= 0) { const j = i; let k = i - 1; if (k < 0) k = contour2.length - 1; for (let s = 0, sl = steps + bevelSegments * 2; s < sl; s++) { const slen1 = vlen * s; const slen2 = vlen * (s + 1); const a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2; f4(a, b, c, d); } } } __name(sidewalls, "sidewalls"); function v(x, y, z) { placeholder.push(x); placeholder.push(y); placeholder.push(z); } __name(v, "v"); function f3(a, b, c) { addVertex(a); addVertex(b); addVertex(c); const nextIndex = verticesArray.length / 3; const uvs = uvgen.generateTopUV(scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1); addUV(uvs[0]); addUV(uvs[1]); addUV(uvs[2]); } __name(f3, "f3"); function f4(a, b, c, d) { addVertex(a); addVertex(b); addVertex(d); addVertex(b); addVertex(c); addVertex(d); const nextIndex = verticesArray.length / 3; const uvs = uvgen.generateSideWallUV(scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1); addUV(uvs[0]); addUV(uvs[1]); addUV(uvs[3]); addUV(uvs[1]); addUV(uvs[2]); addUV(uvs[3]); } __name(f4, "f4"); function addVertex(index) { verticesArray.push(placeholder[index * 3 + 0]); verticesArray.push(placeholder[index * 3 + 1]); verticesArray.push(placeholder[index * 3 + 2]); } __name(addVertex, "addVertex"); function addUV(vector2) { uvArray.push(vector2.x); uvArray.push(vector2.y); } __name(addUV, "addUV"); } __name(addShape, "addShape"); } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } toJSON() { const data = super.toJSON(); const shapes = this.parameters.shapes; const options = this.parameters.options; return toJSON$1(shapes, options, data); } static fromJSON(data, shapes) { const geometryShapes = []; for (let j = 0, jl = data.shapes.length; j < jl; j++) { const shape = shapes[data.shapes[j]]; geometryShapes.push(shape); } const extrudePath = data.options.extrudePath; if (extrudePath !== void 0) { data.options.extrudePath = new Curves[extrudePath.type]().fromJSON(extrudePath); } return new ExtrudeGeometry(geometryShapes, data.options); } } const WorldUVGenerator = { generateTopUV: /* @__PURE__ */ __name(function(geometry, vertices, indexA, indexB, indexC) { const a_x = vertices[indexA * 3]; const a_y = vertices[indexA * 3 + 1]; const b_x = vertices[indexB * 3]; const b_y = vertices[indexB * 3 + 1]; const c_x = vertices[indexC * 3]; const c_y = vertices[indexC * 3 + 1]; return [ new Vector2(a_x, a_y), new Vector2(b_x, b_y), new Vector2(c_x, c_y) ]; }, "generateTopUV"), generateSideWallUV: /* @__PURE__ */ __name(function(geometry, vertices, indexA, indexB, indexC, indexD) { const a_x = vertices[indexA * 3]; const a_y = vertices[indexA * 3 + 1]; const a_z = vertices[indexA * 3 + 2]; const b_x = vertices[indexB * 3]; const b_y = vertices[indexB * 3 + 1]; const b_z = vertices[indexB * 3 + 2]; const c_x = vertices[indexC * 3]; const c_y = vertices[indexC * 3 + 1]; const c_z = vertices[indexC * 3 + 2]; const d_x = vertices[indexD * 3]; const d_y = vertices[indexD * 3 + 1]; const d_z = vertices[indexD * 3 + 2]; if (Math.abs(a_y - b_y) < Math.abs(a_x - b_x)) { return [ new Vector2(a_x, 1 - a_z), new Vector2(b_x, 1 - b_z), new Vector2(c_x, 1 - c_z), new Vector2(d_x, 1 - d_z) ]; } else { return [ new Vector2(a_y, 1 - a_z), new Vector2(b_y, 1 - b_z), new Vector2(c_y, 1 - c_z), new Vector2(d_y, 1 - d_z) ]; } }, "generateSideWallUV") }; function toJSON$1(shapes, options, data) { data.shapes = []; if (Array.isArray(shapes)) { for (let i = 0, l = shapes.length; i < l; i++) { const shape = shapes[i]; data.shapes.push(shape.uuid); } } else { data.shapes.push(shapes.uuid); } data.options = Object.assign({}, options); if (options.extrudePath !== void 0) data.options.extrudePath = options.extrudePath.toJSON(); return data; } __name(toJSON$1, "toJSON$1"); class IcosahedronGeometry extends PolyhedronGeometry { static { __name(this, "IcosahedronGeometry"); } constructor(radius = 1, detail = 0) { const t = (1 + Math.sqrt(5)) / 2; const vertices = [ -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1 ]; const indices = [ 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 ]; super(vertices, indices, radius, detail); this.type = "IcosahedronGeometry"; this.parameters = { radius, detail }; } static fromJSON(data) { return new IcosahedronGeometry(data.radius, data.detail); } } class OctahedronGeometry extends PolyhedronGeometry { static { __name(this, "OctahedronGeometry"); } constructor(radius = 1, detail = 0) { const vertices = [ 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1 ]; const indices = [ 0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2 ]; super(vertices, indices, radius, detail); this.type = "OctahedronGeometry"; this.parameters = { radius, detail }; } static fromJSON(data) { return new OctahedronGeometry(data.radius, data.detail); } } class RingGeometry extends BufferGeometry { static { __name(this, "RingGeometry"); } constructor(innerRadius = 0.5, outerRadius = 1, thetaSegments = 32, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2) { super(); this.type = "RingGeometry"; this.parameters = { innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength }; thetaSegments = Math.max(3, thetaSegments); phiSegments = Math.max(1, phiSegments); const indices = []; const vertices = []; const normals = []; const uvs = []; let radius = innerRadius; const radiusStep = (outerRadius - innerRadius) / phiSegments; const vertex2 = new Vector3(); const uv = new Vector2(); for (let j = 0; j <= phiSegments; j++) { for (let i = 0; i <= thetaSegments; i++) { const segment = thetaStart + i / thetaSegments * thetaLength; vertex2.x = radius * Math.cos(segment); vertex2.y = radius * Math.sin(segment); vertices.push(vertex2.x, vertex2.y, vertex2.z); normals.push(0, 0, 1); uv.x = (vertex2.x / outerRadius + 1) / 2; uv.y = (vertex2.y / outerRadius + 1) / 2; uvs.push(uv.x, uv.y); } radius += radiusStep; } for (let j = 0; j < phiSegments; j++) { const thetaSegmentLevel = j * (thetaSegments + 1); for (let i = 0; i < thetaSegments; i++) { const segment = i + thetaSegmentLevel; const a = segment; const b = segment + thetaSegments + 1; const c = segment + thetaSegments + 2; const d = segment + 1; indices.push(a, b, d); indices.push(b, c, d); } } this.setIndex(indices); this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); this.setAttribute("normal", new Float32BufferAttribute(normals, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvs, 2)); } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } static fromJSON(data) { return new RingGeometry(data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength); } } class ShapeGeometry extends BufferGeometry { static { __name(this, "ShapeGeometry"); } constructor(shapes = new Shape([new Vector2(0, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), curveSegments = 12) { super(); this.type = "ShapeGeometry"; this.parameters = { shapes, curveSegments }; const indices = []; const vertices = []; const normals = []; const uvs = []; let groupStart = 0; let groupCount = 0; if (Array.isArray(shapes) === false) { addShape(shapes); } else { for (let i = 0; i < shapes.length; i++) { addShape(shapes[i]); this.addGroup(groupStart, groupCount, i); groupStart += groupCount; groupCount = 0; } } this.setIndex(indices); this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); this.setAttribute("normal", new Float32BufferAttribute(normals, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvs, 2)); function addShape(shape) { const indexOffset = vertices.length / 3; const points = shape.extractPoints(curveSegments); let shapeVertices = points.shape; const shapeHoles = points.holes; if (ShapeUtils.isClockWise(shapeVertices) === false) { shapeVertices = shapeVertices.reverse(); } for (let i = 0, l = shapeHoles.length; i < l; i++) { const shapeHole = shapeHoles[i]; if (ShapeUtils.isClockWise(shapeHole) === true) { shapeHoles[i] = shapeHole.reverse(); } } const faces = ShapeUtils.triangulateShape(shapeVertices, shapeHoles); for (let i = 0, l = shapeHoles.length; i < l; i++) { const shapeHole = shapeHoles[i]; shapeVertices = shapeVertices.concat(shapeHole); } for (let i = 0, l = shapeVertices.length; i < l; i++) { const vertex2 = shapeVertices[i]; vertices.push(vertex2.x, vertex2.y, 0); normals.push(0, 0, 1); uvs.push(vertex2.x, vertex2.y); } for (let i = 0, l = faces.length; i < l; i++) { const face = faces[i]; const a = face[0] + indexOffset; const b = face[1] + indexOffset; const c = face[2] + indexOffset; indices.push(a, b, c); groupCount += 3; } } __name(addShape, "addShape"); } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } toJSON() { const data = super.toJSON(); const shapes = this.parameters.shapes; return toJSON(shapes, data); } static fromJSON(data, shapes) { const geometryShapes = []; for (let j = 0, jl = data.shapes.length; j < jl; j++) { const shape = shapes[data.shapes[j]]; geometryShapes.push(shape); } return new ShapeGeometry(geometryShapes, data.curveSegments); } } function toJSON(shapes, data) { data.shapes = []; if (Array.isArray(shapes)) { for (let i = 0, l = shapes.length; i < l; i++) { const shape = shapes[i]; data.shapes.push(shape.uuid); } } else { data.shapes.push(shapes.uuid); } return data; } __name(toJSON, "toJSON"); class SphereGeometry extends BufferGeometry { static { __name(this, "SphereGeometry"); } constructor(radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI) { super(); this.type = "SphereGeometry"; this.parameters = { radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength }; widthSegments = Math.max(3, Math.floor(widthSegments)); heightSegments = Math.max(2, Math.floor(heightSegments)); const thetaEnd = Math.min(thetaStart + thetaLength, Math.PI); let index = 0; const grid = []; const vertex2 = new Vector3(); const normal = new Vector3(); const indices = []; const vertices = []; const normals = []; const uvs = []; for (let iy = 0; iy <= heightSegments; iy++) { const verticesRow = []; const v = iy / heightSegments; let uOffset = 0; if (iy === 0 && thetaStart === 0) { uOffset = 0.5 / widthSegments; } else if (iy === heightSegments && thetaEnd === Math.PI) { uOffset = -0.5 / widthSegments; } for (let ix = 0; ix <= widthSegments; ix++) { const u = ix / widthSegments; vertex2.x = -radius * Math.cos(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength); vertex2.y = radius * Math.cos(thetaStart + v * thetaLength); vertex2.z = radius * Math.sin(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength); vertices.push(vertex2.x, vertex2.y, vertex2.z); normal.copy(vertex2).normalize(); normals.push(normal.x, normal.y, normal.z); uvs.push(u + uOffset, 1 - v); verticesRow.push(index++); } grid.push(verticesRow); } for (let iy = 0; iy < heightSegments; iy++) { for (let ix = 0; ix < widthSegments; ix++) { const a = grid[iy][ix + 1]; const b = grid[iy][ix]; const c = grid[iy + 1][ix]; const d = grid[iy + 1][ix + 1]; if (iy !== 0 || thetaStart > 0) indices.push(a, b, d); if (iy !== heightSegments - 1 || thetaEnd < Math.PI) indices.push(b, c, d); } } this.setIndex(indices); this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); this.setAttribute("normal", new Float32BufferAttribute(normals, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvs, 2)); } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } static fromJSON(data) { return new SphereGeometry(data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength); } } class TetrahedronGeometry extends PolyhedronGeometry { static { __name(this, "TetrahedronGeometry"); } constructor(radius = 1, detail = 0) { const vertices = [ 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1 ]; const indices = [ 2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1 ]; super(vertices, indices, radius, detail); this.type = "TetrahedronGeometry"; this.parameters = { radius, detail }; } static fromJSON(data) { return new TetrahedronGeometry(data.radius, data.detail); } } class TorusGeometry extends BufferGeometry { static { __name(this, "TorusGeometry"); } constructor(radius = 1, tube = 0.4, radialSegments = 12, tubularSegments = 48, arc = Math.PI * 2) { super(); this.type = "TorusGeometry"; this.parameters = { radius, tube, radialSegments, tubularSegments, arc }; radialSegments = Math.floor(radialSegments); tubularSegments = Math.floor(tubularSegments); const indices = []; const vertices = []; const normals = []; const uvs = []; const center = new Vector3(); const vertex2 = new Vector3(); const normal = new Vector3(); for (let j = 0; j <= radialSegments; j++) { for (let i = 0; i <= tubularSegments; i++) { const u = i / tubularSegments * arc; const v = j / radialSegments * Math.PI * 2; vertex2.x = (radius + tube * Math.cos(v)) * Math.cos(u); vertex2.y = (radius + tube * Math.cos(v)) * Math.sin(u); vertex2.z = tube * Math.sin(v); vertices.push(vertex2.x, vertex2.y, vertex2.z); center.x = radius * Math.cos(u); center.y = radius * Math.sin(u); normal.subVectors(vertex2, center).normalize(); normals.push(normal.x, normal.y, normal.z); uvs.push(i / tubularSegments); uvs.push(j / radialSegments); } } for (let j = 1; j <= radialSegments; j++) { for (let i = 1; i <= tubularSegments; i++) { const a = (tubularSegments + 1) * j + i - 1; const b = (tubularSegments + 1) * (j - 1) + i - 1; const c = (tubularSegments + 1) * (j - 1) + i; const d = (tubularSegments + 1) * j + i; indices.push(a, b, d); indices.push(b, c, d); } } this.setIndex(indices); this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); this.setAttribute("normal", new Float32BufferAttribute(normals, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvs, 2)); } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } static fromJSON(data) { return new TorusGeometry(data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc); } } class TorusKnotGeometry extends BufferGeometry { static { __name(this, "TorusKnotGeometry"); } constructor(radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3) { super(); this.type = "TorusKnotGeometry"; this.parameters = { radius, tube, tubularSegments, radialSegments, p, q }; tubularSegments = Math.floor(tubularSegments); radialSegments = Math.floor(radialSegments); const indices = []; const vertices = []; const normals = []; const uvs = []; const vertex2 = new Vector3(); const normal = new Vector3(); const P1 = new Vector3(); const P2 = new Vector3(); const B = new Vector3(); const T = new Vector3(); const N = new Vector3(); for (let i = 0; i <= tubularSegments; ++i) { const u = i / tubularSegments * p * Math.PI * 2; calculatePositionOnCurve(u, p, q, radius, P1); calculatePositionOnCurve(u + 0.01, p, q, radius, P2); T.subVectors(P2, P1); N.addVectors(P2, P1); B.crossVectors(T, N); N.crossVectors(B, T); B.normalize(); N.normalize(); for (let j = 0; j <= radialSegments; ++j) { const v = j / radialSegments * Math.PI * 2; const cx = -tube * Math.cos(v); const cy = tube * Math.sin(v); vertex2.x = P1.x + (cx * N.x + cy * B.x); vertex2.y = P1.y + (cx * N.y + cy * B.y); vertex2.z = P1.z + (cx * N.z + cy * B.z); vertices.push(vertex2.x, vertex2.y, vertex2.z); normal.subVectors(vertex2, P1).normalize(); normals.push(normal.x, normal.y, normal.z); uvs.push(i / tubularSegments); uvs.push(j / radialSegments); } } for (let j = 1; j <= tubularSegments; j++) { for (let i = 1; i <= radialSegments; i++) { const a = (radialSegments + 1) * (j - 1) + (i - 1); const b = (radialSegments + 1) * j + (i - 1); const c = (radialSegments + 1) * j + i; const d = (radialSegments + 1) * (j - 1) + i; indices.push(a, b, d); indices.push(b, c, d); } } this.setIndex(indices); this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); this.setAttribute("normal", new Float32BufferAttribute(normals, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvs, 2)); function calculatePositionOnCurve(u, p2, q2, radius2, position) { const cu = Math.cos(u); const su = Math.sin(u); const quOverP = q2 / p2 * u; const cs = Math.cos(quOverP); position.x = radius2 * (2 + cs) * 0.5 * cu; position.y = radius2 * (2 + cs) * su * 0.5; position.z = radius2 * Math.sin(quOverP) * 0.5; } __name(calculatePositionOnCurve, "calculatePositionOnCurve"); } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } static fromJSON(data) { return new TorusKnotGeometry(data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q); } } class TubeGeometry extends BufferGeometry { static { __name(this, "TubeGeometry"); } constructor(path = new QuadraticBezierCurve3(new Vector3(-1, -1, 0), new Vector3(-1, 1, 0), new Vector3(1, 1, 0)), tubularSegments = 64, radius = 1, radialSegments = 8, closed = false) { super(); this.type = "TubeGeometry"; this.parameters = { path, tubularSegments, radius, radialSegments, closed }; const frames = path.computeFrenetFrames(tubularSegments, closed); this.tangents = frames.tangents; this.normals = frames.normals; this.binormals = frames.binormals; const vertex2 = new Vector3(); const normal = new Vector3(); const uv = new Vector2(); let P = new Vector3(); const vertices = []; const normals = []; const uvs = []; const indices = []; generateBufferData(); this.setIndex(indices); this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); this.setAttribute("normal", new Float32BufferAttribute(normals, 3)); this.setAttribute("uv", new Float32BufferAttribute(uvs, 2)); function generateBufferData() { for (let i = 0; i < tubularSegments; i++) { generateSegment(i); } generateSegment(closed === false ? tubularSegments : 0); generateUVs(); generateIndices(); } __name(generateBufferData, "generateBufferData"); function generateSegment(i) { P = path.getPointAt(i / tubularSegments, P); const N = frames.normals[i]; const B = frames.binormals[i]; for (let j = 0; j <= radialSegments; j++) { const v = j / radialSegments * Math.PI * 2; const sin = Math.sin(v); const cos = -Math.cos(v); normal.x = cos * N.x + sin * B.x; normal.y = cos * N.y + sin * B.y; normal.z = cos * N.z + sin * B.z; normal.normalize(); normals.push(normal.x, normal.y, normal.z); vertex2.x = P.x + radius * normal.x; vertex2.y = P.y + radius * normal.y; vertex2.z = P.z + radius * normal.z; vertices.push(vertex2.x, vertex2.y, vertex2.z); } } __name(generateSegment, "generateSegment"); function generateIndices() { for (let j = 1; j <= tubularSegments; j++) { for (let i = 1; i <= radialSegments; i++) { const a = (radialSegments + 1) * (j - 1) + (i - 1); const b = (radialSegments + 1) * j + (i - 1); const c = (radialSegments + 1) * j + i; const d = (radialSegments + 1) * (j - 1) + i; indices.push(a, b, d); indices.push(b, c, d); } } } __name(generateIndices, "generateIndices"); function generateUVs() { for (let i = 0; i <= tubularSegments; i++) { for (let j = 0; j <= radialSegments; j++) { uv.x = i / tubularSegments; uv.y = j / radialSegments; uvs.push(uv.x, uv.y); } } } __name(generateUVs, "generateUVs"); } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } toJSON() { const data = super.toJSON(); data.path = this.parameters.path.toJSON(); return data; } static fromJSON(data) { return new TubeGeometry( new Curves[data.path.type]().fromJSON(data.path), data.tubularSegments, data.radius, data.radialSegments, data.closed ); } } class WireframeGeometry extends BufferGeometry { static { __name(this, "WireframeGeometry"); } constructor(geometry = null) { super(); this.type = "WireframeGeometry"; this.parameters = { geometry }; if (geometry !== null) { const vertices = []; const edges = /* @__PURE__ */ new Set(); const start = new Vector3(); const end = new Vector3(); if (geometry.index !== null) { const position = geometry.attributes.position; const indices = geometry.index; let groups = geometry.groups; if (groups.length === 0) { groups = [{ start: 0, count: indices.count, materialIndex: 0 }]; } for (let o = 0, ol = groups.length; o < ol; ++o) { const group = groups[o]; const groupStart = group.start; const groupCount = group.count; for (let i = groupStart, l = groupStart + groupCount; i < l; i += 3) { for (let j = 0; j < 3; j++) { const index1 = indices.getX(i + j); const index2 = indices.getX(i + (j + 1) % 3); start.fromBufferAttribute(position, index1); end.fromBufferAttribute(position, index2); if (isUniqueEdge(start, end, edges) === true) { vertices.push(start.x, start.y, start.z); vertices.push(end.x, end.y, end.z); } } } } } else { const position = geometry.attributes.position; for (let i = 0, l = position.count / 3; i < l; i++) { for (let j = 0; j < 3; j++) { const index1 = 3 * i + j; const index2 = 3 * i + (j + 1) % 3; start.fromBufferAttribute(position, index1); end.fromBufferAttribute(position, index2); if (isUniqueEdge(start, end, edges) === true) { vertices.push(start.x, start.y, start.z); vertices.push(end.x, end.y, end.z); } } } } this.setAttribute("position", new Float32BufferAttribute(vertices, 3)); } } copy(source) { super.copy(source); this.parameters = Object.assign({}, source.parameters); return this; } } function isUniqueEdge(start, end, edges) { const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}`; const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}`; if (edges.has(hash1) === true || edges.has(hash2) === true) { return false; } else { edges.add(hash1); edges.add(hash2); return true; } } __name(isUniqueEdge, "isUniqueEdge"); var Geometries = /* @__PURE__ */ Object.freeze({ __proto__: null, BoxGeometry, CapsuleGeometry, CircleGeometry, ConeGeometry, CylinderGeometry, DodecahedronGeometry, EdgesGeometry, ExtrudeGeometry, IcosahedronGeometry, LatheGeometry, OctahedronGeometry, PlaneGeometry, PolyhedronGeometry, RingGeometry, ShapeGeometry, SphereGeometry, TetrahedronGeometry, TorusGeometry, TorusKnotGeometry, TubeGeometry, WireframeGeometry }); class ShadowMaterial extends Material { static { __name(this, "ShadowMaterial"); } static get type() { return "ShadowMaterial"; } constructor(parameters) { super(); this.isShadowMaterial = true; this.color = new Color(0); this.transparent = true; this.fog = true; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.fog = source.fog; return this; } } class RawShaderMaterial extends ShaderMaterial { static { __name(this, "RawShaderMaterial"); } static get type() { return "RawShaderMaterial"; } constructor(parameters) { super(parameters); this.isRawShaderMaterial = true; } } class MeshStandardMaterial extends Material { static { __name(this, "MeshStandardMaterial"); } static get type() { return "MeshStandardMaterial"; } constructor(parameters) { super(); this.isMeshStandardMaterial = true; this.defines = { "STANDARD": "" }; this.color = new Color(16777215); this.roughness = 1; this.metalness = 0; this.map = null; this.lightMap = null; this.lightMapIntensity = 1; this.aoMap = null; this.aoMapIntensity = 1; this.emissive = new Color(0); this.emissiveIntensity = 1; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2(1, 1); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.roughnessMap = null; this.metalnessMap = null; this.alphaMap = null; this.envMap = null; this.envMapRotation = new Euler(); this.envMapIntensity = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = "round"; this.wireframeLinejoin = "round"; this.flatShading = false; this.fog = true; this.setValues(parameters); } copy(source) { super.copy(source); this.defines = { "STANDARD": "" }; this.color.copy(source.color); this.roughness = source.roughness; this.metalness = source.metalness; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy(source.emissive); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy(source.normalScale); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.roughnessMap = source.roughnessMap; this.metalnessMap = source.metalnessMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapRotation.copy(source.envMapRotation); this.envMapIntensity = source.envMapIntensity; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.flatShading = source.flatShading; this.fog = source.fog; return this; } } class MeshPhysicalMaterial extends MeshStandardMaterial { static { __name(this, "MeshPhysicalMaterial"); } static get type() { return "MeshPhysicalMaterial"; } constructor(parameters) { super(); this.isMeshPhysicalMaterial = true; this.defines = { "STANDARD": "", "PHYSICAL": "" }; this.anisotropyRotation = 0; this.anisotropyMap = null; this.clearcoatMap = null; this.clearcoatRoughness = 0; this.clearcoatRoughnessMap = null; this.clearcoatNormalScale = new Vector2(1, 1); this.clearcoatNormalMap = null; this.ior = 1.5; Object.defineProperty(this, "reflectivity", { get: /* @__PURE__ */ __name(function() { return clamp(2.5 * (this.ior - 1) / (this.ior + 1), 0, 1); }, "get"), set: /* @__PURE__ */ __name(function(reflectivity) { this.ior = (1 + 0.4 * reflectivity) / (1 - 0.4 * reflectivity); }, "set") }); this.iridescenceMap = null; this.iridescenceIOR = 1.3; this.iridescenceThicknessRange = [100, 400]; this.iridescenceThicknessMap = null; this.sheenColor = new Color(0); this.sheenColorMap = null; this.sheenRoughness = 1; this.sheenRoughnessMap = null; this.transmissionMap = null; this.thickness = 0; this.thicknessMap = null; this.attenuationDistance = Infinity; this.attenuationColor = new Color(1, 1, 1); this.specularIntensity = 1; this.specularIntensityMap = null; this.specularColor = new Color(1, 1, 1); this.specularColorMap = null; this._anisotropy = 0; this._clearcoat = 0; this._dispersion = 0; this._iridescence = 0; this._sheen = 0; this._transmission = 0; this.setValues(parameters); } get anisotropy() { return this._anisotropy; } set anisotropy(value) { if (this._anisotropy > 0 !== value > 0) { this.version++; } this._anisotropy = value; } get clearcoat() { return this._clearcoat; } set clearcoat(value) { if (this._clearcoat > 0 !== value > 0) { this.version++; } this._clearcoat = value; } get iridescence() { return this._iridescence; } set iridescence(value) { if (this._iridescence > 0 !== value > 0) { this.version++; } this._iridescence = value; } get dispersion() { return this._dispersion; } set dispersion(value) { if (this._dispersion > 0 !== value > 0) { this.version++; } this._dispersion = value; } get sheen() { return this._sheen; } set sheen(value) { if (this._sheen > 0 !== value > 0) { this.version++; } this._sheen = value; } get transmission() { return this._transmission; } set transmission(value) { if (this._transmission > 0 !== value > 0) { this.version++; } this._transmission = value; } copy(source) { super.copy(source); this.defines = { "STANDARD": "", "PHYSICAL": "" }; this.anisotropy = source.anisotropy; this.anisotropyRotation = source.anisotropyRotation; this.anisotropyMap = source.anisotropyMap; this.clearcoat = source.clearcoat; this.clearcoatMap = source.clearcoatMap; this.clearcoatRoughness = source.clearcoatRoughness; this.clearcoatRoughnessMap = source.clearcoatRoughnessMap; this.clearcoatNormalMap = source.clearcoatNormalMap; this.clearcoatNormalScale.copy(source.clearcoatNormalScale); this.dispersion = source.dispersion; this.ior = source.ior; this.iridescence = source.iridescence; this.iridescenceMap = source.iridescenceMap; this.iridescenceIOR = source.iridescenceIOR; this.iridescenceThicknessRange = [...source.iridescenceThicknessRange]; this.iridescenceThicknessMap = source.iridescenceThicknessMap; this.sheen = source.sheen; this.sheenColor.copy(source.sheenColor); this.sheenColorMap = source.sheenColorMap; this.sheenRoughness = source.sheenRoughness; this.sheenRoughnessMap = source.sheenRoughnessMap; this.transmission = source.transmission; this.transmissionMap = source.transmissionMap; this.thickness = source.thickness; this.thicknessMap = source.thicknessMap; this.attenuationDistance = source.attenuationDistance; this.attenuationColor.copy(source.attenuationColor); this.specularIntensity = source.specularIntensity; this.specularIntensityMap = source.specularIntensityMap; this.specularColor.copy(source.specularColor); this.specularColorMap = source.specularColorMap; return this; } } class MeshPhongMaterial extends Material { static { __name(this, "MeshPhongMaterial"); } static get type() { return "MeshPhongMaterial"; } constructor(parameters) { super(); this.isMeshPhongMaterial = true; this.color = new Color(16777215); this.specular = new Color(1118481); this.shininess = 30; this.map = null; this.lightMap = null; this.lightMapIntensity = 1; this.aoMap = null; this.aoMapIntensity = 1; this.emissive = new Color(0); this.emissiveIntensity = 1; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2(1, 1); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.envMapRotation = new Euler(); this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = "round"; this.wireframeLinejoin = "round"; this.flatShading = false; this.fog = true; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.specular.copy(source.specular); this.shininess = source.shininess; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy(source.emissive); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy(source.normalScale); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapRotation.copy(source.envMapRotation); this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.flatShading = source.flatShading; this.fog = source.fog; return this; } } class MeshToonMaterial extends Material { static { __name(this, "MeshToonMaterial"); } static get type() { return "MeshToonMaterial"; } constructor(parameters) { super(); this.isMeshToonMaterial = true; this.defines = { "TOON": "" }; this.color = new Color(16777215); this.map = null; this.gradientMap = null; this.lightMap = null; this.lightMapIntensity = 1; this.aoMap = null; this.aoMapIntensity = 1; this.emissive = new Color(0); this.emissiveIntensity = 1; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2(1, 1); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.alphaMap = null; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = "round"; this.wireframeLinejoin = "round"; this.fog = true; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.map = source.map; this.gradientMap = source.gradientMap; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy(source.emissive); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy(source.normalScale); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.alphaMap = source.alphaMap; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.fog = source.fog; return this; } } class MeshNormalMaterial extends Material { static { __name(this, "MeshNormalMaterial"); } static get type() { return "MeshNormalMaterial"; } constructor(parameters) { super(); this.isMeshNormalMaterial = true; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2(1, 1); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.flatShading = false; this.setValues(parameters); } copy(source) { super.copy(source); this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy(source.normalScale); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.flatShading = source.flatShading; return this; } } class MeshLambertMaterial extends Material { static { __name(this, "MeshLambertMaterial"); } static get type() { return "MeshLambertMaterial"; } constructor(parameters) { super(); this.isMeshLambertMaterial = true; this.color = new Color(16777215); this.map = null; this.lightMap = null; this.lightMapIntensity = 1; this.aoMap = null; this.aoMapIntensity = 1; this.emissive = new Color(0); this.emissiveIntensity = 1; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2(1, 1); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.envMapRotation = new Euler(); this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = "round"; this.wireframeLinejoin = "round"; this.flatShading = false; this.fog = true; this.setValues(parameters); } copy(source) { super.copy(source); this.color.copy(source.color); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy(source.emissive); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy(source.normalScale); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapRotation.copy(source.envMapRotation); this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.flatShading = source.flatShading; this.fog = source.fog; return this; } } class MeshMatcapMaterial extends Material { static { __name(this, "MeshMatcapMaterial"); } static get type() { return "MeshMatcapMaterial"; } constructor(parameters) { super(); this.isMeshMatcapMaterial = true; this.defines = { "MATCAP": "" }; this.color = new Color(16777215); this.matcap = null; this.map = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2(1, 1); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.alphaMap = null; this.flatShading = false; this.fog = true; this.setValues(parameters); } copy(source) { super.copy(source); this.defines = { "MATCAP": "" }; this.color.copy(source.color); this.matcap = source.matcap; this.map = source.map; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy(source.normalScale); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.alphaMap = source.alphaMap; this.flatShading = source.flatShading; this.fog = source.fog; return this; } } class LineDashedMaterial extends LineBasicMaterial { static { __name(this, "LineDashedMaterial"); } static get type() { return "LineDashedMaterial"; } constructor(parameters) { super(); this.isLineDashedMaterial = true; this.scale = 1; this.dashSize = 3; this.gapSize = 1; this.setValues(parameters); } copy(source) { super.copy(source); this.scale = source.scale; this.dashSize = source.dashSize; this.gapSize = source.gapSize; return this; } } function convertArray(array, type, forceClone) { if (!array || // let 'undefined' and 'null' pass !forceClone && array.constructor === type) return array; if (typeof type.BYTES_PER_ELEMENT === "number") { return new type(array); } return Array.prototype.slice.call(array); } __name(convertArray, "convertArray"); function isTypedArray(object) { return ArrayBuffer.isView(object) && !(object instanceof DataView); } __name(isTypedArray, "isTypedArray"); function getKeyframeOrder(times) { function compareTime(i, j) { return times[i] - times[j]; } __name(compareTime, "compareTime"); const n = times.length; const result = new Array(n); for (let i = 0; i !== n; ++i) result[i] = i; result.sort(compareTime); return result; } __name(getKeyframeOrder, "getKeyframeOrder"); function sortedArray(values, stride, order) { const nValues = values.length; const result = new values.constructor(nValues); for (let i = 0, dstOffset = 0; dstOffset !== nValues; ++i) { const srcOffset = order[i] * stride; for (let j = 0; j !== stride; ++j) { result[dstOffset++] = values[srcOffset + j]; } } return result; } __name(sortedArray, "sortedArray"); function flattenJSON(jsonKeys, times, values, valuePropertyName) { let i = 1, key = jsonKeys[0]; while (key !== void 0 && key[valuePropertyName] === void 0) { key = jsonKeys[i++]; } if (key === void 0) return; let value = key[valuePropertyName]; if (value === void 0) return; if (Array.isArray(value)) { do { value = key[valuePropertyName]; if (value !== void 0) { times.push(key.time); values.push.apply(values, value); } key = jsonKeys[i++]; } while (key !== void 0); } else if (value.toArray !== void 0) { do { value = key[valuePropertyName]; if (value !== void 0) { times.push(key.time); value.toArray(values, values.length); } key = jsonKeys[i++]; } while (key !== void 0); } else { do { value = key[valuePropertyName]; if (value !== void 0) { times.push(key.time); values.push(value); } key = jsonKeys[i++]; } while (key !== void 0); } } __name(flattenJSON, "flattenJSON"); function subclip(sourceClip, name, startFrame, endFrame, fps = 30) { const clip = sourceClip.clone(); clip.name = name; const tracks = []; for (let i = 0; i < clip.tracks.length; ++i) { const track = clip.tracks[i]; const valueSize = track.getValueSize(); const times = []; const values = []; for (let j = 0; j < track.times.length; ++j) { const frame = track.times[j] * fps; if (frame < startFrame || frame >= endFrame) continue; times.push(track.times[j]); for (let k = 0; k < valueSize; ++k) { values.push(track.values[j * valueSize + k]); } } if (times.length === 0) continue; track.times = convertArray(times, track.times.constructor); track.values = convertArray(values, track.values.constructor); tracks.push(track); } clip.tracks = tracks; let minStartTime = Infinity; for (let i = 0; i < clip.tracks.length; ++i) { if (minStartTime > clip.tracks[i].times[0]) { minStartTime = clip.tracks[i].times[0]; } } for (let i = 0; i < clip.tracks.length; ++i) { clip.tracks[i].shift(-1 * minStartTime); } clip.resetDuration(); return clip; } __name(subclip, "subclip"); function makeClipAdditive(targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30) { if (fps <= 0) fps = 30; const numTracks = referenceClip.tracks.length; const referenceTime = referenceFrame / fps; for (let i = 0; i < numTracks; ++i) { const referenceTrack = referenceClip.tracks[i]; const referenceTrackType = referenceTrack.ValueTypeName; if (referenceTrackType === "bool" || referenceTrackType === "string") continue; const targetTrack = targetClip.tracks.find(function(track) { return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType; }); if (targetTrack === void 0) continue; let referenceOffset = 0; const referenceValueSize = referenceTrack.getValueSize(); if (referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) { referenceOffset = referenceValueSize / 3; } let targetOffset = 0; const targetValueSize = targetTrack.getValueSize(); if (targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) { targetOffset = targetValueSize / 3; } const lastIndex = referenceTrack.times.length - 1; let referenceValue; if (referenceTime <= referenceTrack.times[0]) { const startIndex = referenceOffset; const endIndex = referenceValueSize - referenceOffset; referenceValue = referenceTrack.values.slice(startIndex, endIndex); } else if (referenceTime >= referenceTrack.times[lastIndex]) { const startIndex = lastIndex * referenceValueSize + referenceOffset; const endIndex = startIndex + referenceValueSize - referenceOffset; referenceValue = referenceTrack.values.slice(startIndex, endIndex); } else { const interpolant = referenceTrack.createInterpolant(); const startIndex = referenceOffset; const endIndex = referenceValueSize - referenceOffset; interpolant.evaluate(referenceTime); referenceValue = interpolant.resultBuffer.slice(startIndex, endIndex); } if (referenceTrackType === "quaternion") { const referenceQuat = new Quaternion().fromArray(referenceValue).normalize().conjugate(); referenceQuat.toArray(referenceValue); } const numTimes = targetTrack.times.length; for (let j = 0; j < numTimes; ++j) { const valueStart = j * targetValueSize + targetOffset; if (referenceTrackType === "quaternion") { Quaternion.multiplyQuaternionsFlat( targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart ); } else { const valueEnd = targetValueSize - targetOffset * 2; for (let k = 0; k < valueEnd; ++k) { targetTrack.values[valueStart + k] -= referenceValue[k]; } } } } targetClip.blendMode = AdditiveAnimationBlendMode; return targetClip; } __name(makeClipAdditive, "makeClipAdditive"); const AnimationUtils = { convertArray, isTypedArray, getKeyframeOrder, sortedArray, flattenJSON, subclip, makeClipAdditive }; class Interpolant { static { __name(this, "Interpolant"); } constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { this.parameterPositions = parameterPositions; this._cachedIndex = 0; this.resultBuffer = resultBuffer !== void 0 ? resultBuffer : new sampleValues.constructor(sampleSize); this.sampleValues = sampleValues; this.valueSize = sampleSize; this.settings = null; this.DefaultSettings_ = {}; } evaluate(t) { const pp = this.parameterPositions; let i1 = this._cachedIndex, t1 = pp[i1], t0 = pp[i1 - 1]; validate_interval: { seek: { let right; linear_scan: { forward_scan: if (!(t < t1)) { for (let giveUpAt = i1 + 2; ; ) { if (t1 === void 0) { if (t < t0) break forward_scan; i1 = pp.length; this._cachedIndex = i1; return this.copySampleValue_(i1 - 1); } if (i1 === giveUpAt) break; t0 = t1; t1 = pp[++i1]; if (t < t1) { break seek; } } right = pp.length; break linear_scan; } if (!(t >= t0)) { const t1global = pp[1]; if (t < t1global) { i1 = 2; t0 = t1global; } for (let giveUpAt = i1 - 2; ; ) { if (t0 === void 0) { this._cachedIndex = 0; return this.copySampleValue_(0); } if (i1 === giveUpAt) break; t1 = t0; t0 = pp[--i1 - 1]; if (t >= t0) { break seek; } } right = i1; i1 = 0; break linear_scan; } break validate_interval; } while (i1 < right) { const mid = i1 + right >>> 1; if (t < pp[mid]) { right = mid; } else { i1 = mid + 1; } } t1 = pp[i1]; t0 = pp[i1 - 1]; if (t0 === void 0) { this._cachedIndex = 0; return this.copySampleValue_(0); } if (t1 === void 0) { i1 = pp.length; this._cachedIndex = i1; return this.copySampleValue_(i1 - 1); } } this._cachedIndex = i1; this.intervalChanged_(i1, t0, t1); } return this.interpolate_(i1, t0, t, t1); } getSettings_() { return this.settings || this.DefaultSettings_; } copySampleValue_(index) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = index * stride; for (let i = 0; i !== stride; ++i) { result[i] = values[offset + i]; } return result; } // Template methods for derived classes: interpolate_() { throw new Error("call to abstract method"); } intervalChanged_() { } } class CubicInterpolant extends Interpolant { static { __name(this, "CubicInterpolant"); } constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer); this._weightPrev = -0; this._offsetPrev = -0; this._weightNext = -0; this._offsetNext = -0; this.DefaultSettings_ = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }; } intervalChanged_(i1, t0, t1) { const pp = this.parameterPositions; let iPrev = i1 - 2, iNext = i1 + 1, tPrev = pp[iPrev], tNext = pp[iNext]; if (tPrev === void 0) { switch (this.getSettings_().endingStart) { case ZeroSlopeEnding: iPrev = i1; tPrev = 2 * t0 - t1; break; case WrapAroundEnding: iPrev = pp.length - 2; tPrev = t0 + pp[iPrev] - pp[iPrev + 1]; break; default: iPrev = i1; tPrev = t1; } } if (tNext === void 0) { switch (this.getSettings_().endingEnd) { case ZeroSlopeEnding: iNext = i1; tNext = 2 * t1 - t0; break; case WrapAroundEnding: iNext = 1; tNext = t1 + pp[1] - pp[0]; break; default: iNext = i1 - 1; tNext = t0; } } const halfDt = (t1 - t0) * 0.5, stride = this.valueSize; this._weightPrev = halfDt / (t0 - tPrev); this._weightNext = halfDt / (tNext - t1); this._offsetPrev = iPrev * stride; this._offsetNext = iNext * stride; } interpolate_(i1, t0, t, t1) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, o1 = i1 * stride, o0 = o1 - stride, oP = this._offsetPrev, oN = this._offsetNext, wP = this._weightPrev, wN = this._weightNext, p = (t - t0) / (t1 - t0), pp = p * p, ppp = pp * p; const sP = -wP * ppp + 2 * wP * pp - wP * p; const s0 = (1 + wP) * ppp + (-1.5 - 2 * wP) * pp + (-0.5 + wP) * p + 1; const s1 = (-1 - wN) * ppp + (1.5 + wN) * pp + 0.5 * p; const sN = wN * ppp - wN * pp; for (let i = 0; i !== stride; ++i) { result[i] = sP * values[oP + i] + s0 * values[o0 + i] + s1 * values[o1 + i] + sN * values[oN + i]; } return result; } } class LinearInterpolant extends Interpolant { static { __name(this, "LinearInterpolant"); } constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer); } interpolate_(i1, t0, t, t1) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset1 = i1 * stride, offset0 = offset1 - stride, weight1 = (t - t0) / (t1 - t0), weight0 = 1 - weight1; for (let i = 0; i !== stride; ++i) { result[i] = values[offset0 + i] * weight0 + values[offset1 + i] * weight1; } return result; } } class DiscreteInterpolant extends Interpolant { static { __name(this, "DiscreteInterpolant"); } constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer); } interpolate_(i1) { return this.copySampleValue_(i1 - 1); } } class KeyframeTrack { static { __name(this, "KeyframeTrack"); } constructor(name, times, values, interpolation) { if (name === void 0) throw new Error("THREE.KeyframeTrack: track name is undefined"); if (times === void 0 || times.length === 0) throw new Error("THREE.KeyframeTrack: no keyframes in track named " + name); this.name = name; this.times = convertArray(times, this.TimeBufferType); this.values = convertArray(values, this.ValueBufferType); this.setInterpolation(interpolation || this.DefaultInterpolation); } // Serialization (in static context, because of constructor invocation // and automatic invocation of .toJSON): static toJSON(track) { const trackType = track.constructor; let json; if (trackType.toJSON !== this.toJSON) { json = trackType.toJSON(track); } else { json = { "name": track.name, "times": convertArray(track.times, Array), "values": convertArray(track.values, Array) }; const interpolation = track.getInterpolation(); if (interpolation !== track.DefaultInterpolation) { json.interpolation = interpolation; } } json.type = track.ValueTypeName; return json; } InterpolantFactoryMethodDiscrete(result) { return new DiscreteInterpolant(this.times, this.values, this.getValueSize(), result); } InterpolantFactoryMethodLinear(result) { return new LinearInterpolant(this.times, this.values, this.getValueSize(), result); } InterpolantFactoryMethodSmooth(result) { return new CubicInterpolant(this.times, this.values, this.getValueSize(), result); } setInterpolation(interpolation) { let factoryMethod; switch (interpolation) { case InterpolateDiscrete: factoryMethod = this.InterpolantFactoryMethodDiscrete; break; case InterpolateLinear: factoryMethod = this.InterpolantFactoryMethodLinear; break; case InterpolateSmooth: factoryMethod = this.InterpolantFactoryMethodSmooth; break; } if (factoryMethod === void 0) { const message = "unsupported interpolation for " + this.ValueTypeName + " keyframe track named " + this.name; if (this.createInterpolant === void 0) { if (interpolation !== this.DefaultInterpolation) { this.setInterpolation(this.DefaultInterpolation); } else { throw new Error(message); } } console.warn("THREE.KeyframeTrack:", message); return this; } this.createInterpolant = factoryMethod; return this; } getInterpolation() { switch (this.createInterpolant) { case this.InterpolantFactoryMethodDiscrete: return InterpolateDiscrete; case this.InterpolantFactoryMethodLinear: return InterpolateLinear; case this.InterpolantFactoryMethodSmooth: return InterpolateSmooth; } } getValueSize() { return this.values.length / this.times.length; } // move all keyframes either forwards or backwards in time shift(timeOffset) { if (timeOffset !== 0) { const times = this.times; for (let i = 0, n = times.length; i !== n; ++i) { times[i] += timeOffset; } } return this; } // scale all keyframe times by a factor (useful for frame <-> seconds conversions) scale(timeScale) { if (timeScale !== 1) { const times = this.times; for (let i = 0, n = times.length; i !== n; ++i) { times[i] *= timeScale; } } return this; } // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values trim(startTime, endTime) { const times = this.times, nKeys = times.length; let from = 0, to = nKeys - 1; while (from !== nKeys && times[from] < startTime) { ++from; } while (to !== -1 && times[to] > endTime) { --to; } ++to; if (from !== 0 || to !== nKeys) { if (from >= to) { to = Math.max(to, 1); from = to - 1; } const stride = this.getValueSize(); this.times = times.slice(from, to); this.values = this.values.slice(from * stride, to * stride); } return this; } // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable validate() { let valid = true; const valueSize = this.getValueSize(); if (valueSize - Math.floor(valueSize) !== 0) { console.error("THREE.KeyframeTrack: Invalid value size in track.", this); valid = false; } const times = this.times, values = this.values, nKeys = times.length; if (nKeys === 0) { console.error("THREE.KeyframeTrack: Track is empty.", this); valid = false; } let prevTime = null; for (let i = 0; i !== nKeys; i++) { const currTime = times[i]; if (typeof currTime === "number" && isNaN(currTime)) { console.error("THREE.KeyframeTrack: Time is not a valid number.", this, i, currTime); valid = false; break; } if (prevTime !== null && prevTime > currTime) { console.error("THREE.KeyframeTrack: Out of order keys.", this, i, currTime, prevTime); valid = false; break; } prevTime = currTime; } if (values !== void 0) { if (isTypedArray(values)) { for (let i = 0, n = values.length; i !== n; ++i) { const value = values[i]; if (isNaN(value)) { console.error("THREE.KeyframeTrack: Value is not a valid number.", this, i, value); valid = false; break; } } } } return valid; } // removes equivalent sequential keys as common in morph target sequences // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) optimize() { const times = this.times.slice(), values = this.values.slice(), stride = this.getValueSize(), smoothInterpolation = this.getInterpolation() === InterpolateSmooth, lastIndex = times.length - 1; let writeIndex = 1; for (let i = 1; i < lastIndex; ++i) { let keep = false; const time = times[i]; const timeNext = times[i + 1]; if (time !== timeNext && (i !== 1 || time !== times[0])) { if (!smoothInterpolation) { const offset = i * stride, offsetP = offset - stride, offsetN = offset + stride; for (let j = 0; j !== stride; ++j) { const value = values[offset + j]; if (value !== values[offsetP + j] || value !== values[offsetN + j]) { keep = true; break; } } } else { keep = true; } } if (keep) { if (i !== writeIndex) { times[writeIndex] = times[i]; const readOffset = i * stride, writeOffset = writeIndex * stride; for (let j = 0; j !== stride; ++j) { values[writeOffset + j] = values[readOffset + j]; } } ++writeIndex; } } if (lastIndex > 0) { times[writeIndex] = times[lastIndex]; for (let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++j) { values[writeOffset + j] = values[readOffset + j]; } ++writeIndex; } if (writeIndex !== times.length) { this.times = times.slice(0, writeIndex); this.values = values.slice(0, writeIndex * stride); } else { this.times = times; this.values = values; } return this; } clone() { const times = this.times.slice(); const values = this.values.slice(); const TypedKeyframeTrack = this.constructor; const track = new TypedKeyframeTrack(this.name, times, values); track.createInterpolant = this.createInterpolant; return track; } } KeyframeTrack.prototype.TimeBufferType = Float32Array; KeyframeTrack.prototype.ValueBufferType = Float32Array; KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear; class BooleanKeyframeTrack extends KeyframeTrack { static { __name(this, "BooleanKeyframeTrack"); } // No interpolation parameter because only InterpolateDiscrete is valid. constructor(name, times, values) { super(name, times, values); } } BooleanKeyframeTrack.prototype.ValueTypeName = "bool"; BooleanKeyframeTrack.prototype.ValueBufferType = Array; BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = void 0; BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = void 0; class ColorKeyframeTrack extends KeyframeTrack { static { __name(this, "ColorKeyframeTrack"); } } ColorKeyframeTrack.prototype.ValueTypeName = "color"; class NumberKeyframeTrack extends KeyframeTrack { static { __name(this, "NumberKeyframeTrack"); } } NumberKeyframeTrack.prototype.ValueTypeName = "number"; class QuaternionLinearInterpolant extends Interpolant { static { __name(this, "QuaternionLinearInterpolant"); } constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer); } interpolate_(i1, t0, t, t1) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, alpha = (t - t0) / (t1 - t0); let offset = i1 * stride; for (let end = offset + stride; offset !== end; offset += 4) { Quaternion.slerpFlat(result, 0, values, offset - stride, values, offset, alpha); } return result; } } class QuaternionKeyframeTrack extends KeyframeTrack { static { __name(this, "QuaternionKeyframeTrack"); } InterpolantFactoryMethodLinear(result) { return new QuaternionLinearInterpolant(this.times, this.values, this.getValueSize(), result); } } QuaternionKeyframeTrack.prototype.ValueTypeName = "quaternion"; QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = void 0; class StringKeyframeTrack extends KeyframeTrack { static { __name(this, "StringKeyframeTrack"); } // No interpolation parameter because only InterpolateDiscrete is valid. constructor(name, times, values) { super(name, times, values); } } StringKeyframeTrack.prototype.ValueTypeName = "string"; StringKeyframeTrack.prototype.ValueBufferType = Array; StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = void 0; StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = void 0; class VectorKeyframeTrack extends KeyframeTrack { static { __name(this, "VectorKeyframeTrack"); } } VectorKeyframeTrack.prototype.ValueTypeName = "vector"; class AnimationClip { static { __name(this, "AnimationClip"); } constructor(name = "", duration = -1, tracks = [], blendMode = NormalAnimationBlendMode) { this.name = name; this.tracks = tracks; this.duration = duration; this.blendMode = blendMode; this.uuid = generateUUID(); if (this.duration < 0) { this.resetDuration(); } } static parse(json) { const tracks = [], jsonTracks = json.tracks, frameTime = 1 / (json.fps || 1); for (let i = 0, n = jsonTracks.length; i !== n; ++i) { tracks.push(parseKeyframeTrack(jsonTracks[i]).scale(frameTime)); } const clip = new this(json.name, json.duration, tracks, json.blendMode); clip.uuid = json.uuid; return clip; } static toJSON(clip) { const tracks = [], clipTracks = clip.tracks; const json = { "name": clip.name, "duration": clip.duration, "tracks": tracks, "uuid": clip.uuid, "blendMode": clip.blendMode }; for (let i = 0, n = clipTracks.length; i !== n; ++i) { tracks.push(KeyframeTrack.toJSON(clipTracks[i])); } return json; } static CreateFromMorphTargetSequence(name, morphTargetSequence, fps, noLoop) { const numMorphTargets = morphTargetSequence.length; const tracks = []; for (let i = 0; i < numMorphTargets; i++) { let times = []; let values = []; times.push( (i + numMorphTargets - 1) % numMorphTargets, i, (i + 1) % numMorphTargets ); values.push(0, 1, 0); const order = getKeyframeOrder(times); times = sortedArray(times, 1, order); values = sortedArray(values, 1, order); if (!noLoop && times[0] === 0) { times.push(numMorphTargets); values.push(values[0]); } tracks.push( new NumberKeyframeTrack( ".morphTargetInfluences[" + morphTargetSequence[i].name + "]", times, values ).scale(1 / fps) ); } return new this(name, -1, tracks); } static findByName(objectOrClipArray, name) { let clipArray = objectOrClipArray; if (!Array.isArray(objectOrClipArray)) { const o = objectOrClipArray; clipArray = o.geometry && o.geometry.animations || o.animations; } for (let i = 0; i < clipArray.length; i++) { if (clipArray[i].name === name) { return clipArray[i]; } } return null; } static CreateClipsFromMorphTargetSequences(morphTargets, fps, noLoop) { const animationToMorphTargets = {}; const pattern = /^([\w-]*?)([\d]+)$/; for (let i = 0, il = morphTargets.length; i < il; i++) { const morphTarget = morphTargets[i]; const parts = morphTarget.name.match(pattern); if (parts && parts.length > 1) { const name = parts[1]; let animationMorphTargets = animationToMorphTargets[name]; if (!animationMorphTargets) { animationToMorphTargets[name] = animationMorphTargets = []; } animationMorphTargets.push(morphTarget); } } const clips = []; for (const name in animationToMorphTargets) { clips.push(this.CreateFromMorphTargetSequence(name, animationToMorphTargets[name], fps, noLoop)); } return clips; } // parse the animation.hierarchy format static parseAnimation(animation, bones) { if (!animation) { console.error("THREE.AnimationClip: No animation in JSONLoader data."); return null; } const addNonemptyTrack = /* @__PURE__ */ __name(function(trackType, trackName, animationKeys, propertyName, destTracks) { if (animationKeys.length !== 0) { const times = []; const values = []; flattenJSON(animationKeys, times, values, propertyName); if (times.length !== 0) { destTracks.push(new trackType(trackName, times, values)); } } }, "addNonemptyTrack"); const tracks = []; const clipName = animation.name || "default"; const fps = animation.fps || 30; const blendMode = animation.blendMode; let duration = animation.length || -1; const hierarchyTracks = animation.hierarchy || []; for (let h = 0; h < hierarchyTracks.length; h++) { const animationKeys = hierarchyTracks[h].keys; if (!animationKeys || animationKeys.length === 0) continue; if (animationKeys[0].morphTargets) { const morphTargetNames = {}; let k; for (k = 0; k < animationKeys.length; k++) { if (animationKeys[k].morphTargets) { for (let m = 0; m < animationKeys[k].morphTargets.length; m++) { morphTargetNames[animationKeys[k].morphTargets[m]] = -1; } } } for (const morphTargetName in morphTargetNames) { const times = []; const values = []; for (let m = 0; m !== animationKeys[k].morphTargets.length; ++m) { const animationKey = animationKeys[k]; times.push(animationKey.time); values.push(animationKey.morphTarget === morphTargetName ? 1 : 0); } tracks.push(new NumberKeyframeTrack(".morphTargetInfluence[" + morphTargetName + "]", times, values)); } duration = morphTargetNames.length * fps; } else { const boneName = ".bones[" + bones[h].name + "]"; addNonemptyTrack( VectorKeyframeTrack, boneName + ".position", animationKeys, "pos", tracks ); addNonemptyTrack( QuaternionKeyframeTrack, boneName + ".quaternion", animationKeys, "rot", tracks ); addNonemptyTrack( VectorKeyframeTrack, boneName + ".scale", animationKeys, "scl", tracks ); } } if (tracks.length === 0) { return null; } const clip = new this(clipName, duration, tracks, blendMode); return clip; } resetDuration() { const tracks = this.tracks; let duration = 0; for (let i = 0, n = tracks.length; i !== n; ++i) { const track = this.tracks[i]; duration = Math.max(duration, track.times[track.times.length - 1]); } this.duration = duration; return this; } trim() { for (let i = 0; i < this.tracks.length; i++) { this.tracks[i].trim(0, this.duration); } return this; } validate() { let valid = true; for (let i = 0; i < this.tracks.length; i++) { valid = valid && this.tracks[i].validate(); } return valid; } optimize() { for (let i = 0; i < this.tracks.length; i++) { this.tracks[i].optimize(); } return this; } clone() { const tracks = []; for (let i = 0; i < this.tracks.length; i++) { tracks.push(this.tracks[i].clone()); } return new this.constructor(this.name, this.duration, tracks, this.blendMode); } toJSON() { return this.constructor.toJSON(this); } } function getTrackTypeForValueTypeName(typeName) { switch (typeName.toLowerCase()) { case "scalar": case "double": case "float": case "number": case "integer": return NumberKeyframeTrack; case "vector": case "vector2": case "vector3": case "vector4": return VectorKeyframeTrack; case "color": return ColorKeyframeTrack; case "quaternion": return QuaternionKeyframeTrack; case "bool": case "boolean": return BooleanKeyframeTrack; case "string": return StringKeyframeTrack; } throw new Error("THREE.KeyframeTrack: Unsupported typeName: " + typeName); } __name(getTrackTypeForValueTypeName, "getTrackTypeForValueTypeName"); function parseKeyframeTrack(json) { if (json.type === void 0) { throw new Error("THREE.KeyframeTrack: track type undefined, can not parse"); } const trackType = getTrackTypeForValueTypeName(json.type); if (json.times === void 0) { const times = [], values = []; flattenJSON(json.keys, times, values, "value"); json.times = times; json.values = values; } if (trackType.parse !== void 0) { return trackType.parse(json); } else { return new trackType(json.name, json.times, json.values, json.interpolation); } } __name(parseKeyframeTrack, "parseKeyframeTrack"); const Cache = { enabled: false, files: {}, add: /* @__PURE__ */ __name(function(key, file2) { if (this.enabled === false) return; this.files[key] = file2; }, "add"), get: /* @__PURE__ */ __name(function(key) { if (this.enabled === false) return; return this.files[key]; }, "get"), remove: /* @__PURE__ */ __name(function(key) { delete this.files[key]; }, "remove"), clear: /* @__PURE__ */ __name(function() { this.files = {}; }, "clear") }; class LoadingManager { static { __name(this, "LoadingManager"); } constructor(onLoad, onProgress, onError) { const scope = this; let isLoading = false; let itemsLoaded = 0; let itemsTotal = 0; let urlModifier = void 0; const handlers = []; this.onStart = void 0; this.onLoad = onLoad; this.onProgress = onProgress; this.onError = onError; this.itemStart = function(url) { itemsTotal++; if (isLoading === false) { if (scope.onStart !== void 0) { scope.onStart(url, itemsLoaded, itemsTotal); } } isLoading = true; }; this.itemEnd = function(url) { itemsLoaded++; if (scope.onProgress !== void 0) { scope.onProgress(url, itemsLoaded, itemsTotal); } if (itemsLoaded === itemsTotal) { isLoading = false; if (scope.onLoad !== void 0) { scope.onLoad(); } } }; this.itemError = function(url) { if (scope.onError !== void 0) { scope.onError(url); } }; this.resolveURL = function(url) { if (urlModifier) { return urlModifier(url); } return url; }; this.setURLModifier = function(transform) { urlModifier = transform; return this; }; this.addHandler = function(regex, loader) { handlers.push(regex, loader); return this; }; this.removeHandler = function(regex) { const index = handlers.indexOf(regex); if (index !== -1) { handlers.splice(index, 2); } return this; }; this.getHandler = function(file2) { for (let i = 0, l = handlers.length; i < l; i += 2) { const regex = handlers[i]; const loader = handlers[i + 1]; if (regex.global) regex.lastIndex = 0; if (regex.test(file2)) { return loader; } } return null; }; } } const DefaultLoadingManager = /* @__PURE__ */ new LoadingManager(); class Loader { static { __name(this, "Loader"); } constructor(manager) { this.manager = manager !== void 0 ? manager : DefaultLoadingManager; this.crossOrigin = "anonymous"; this.withCredentials = false; this.path = ""; this.resourcePath = ""; this.requestHeader = {}; } load() { } loadAsync(url, onProgress) { const scope = this; return new Promise(function(resolve, reject) { scope.load(url, resolve, onProgress, reject); }); } parse() { } setCrossOrigin(crossOrigin) { this.crossOrigin = crossOrigin; return this; } setWithCredentials(value) { this.withCredentials = value; return this; } setPath(path) { this.path = path; return this; } setResourcePath(resourcePath) { this.resourcePath = resourcePath; return this; } setRequestHeader(requestHeader) { this.requestHeader = requestHeader; return this; } } Loader.DEFAULT_MATERIAL_NAME = "__DEFAULT"; const loading = {}; class HttpError extends Error { static { __name(this, "HttpError"); } constructor(message, response) { super(message); this.response = response; } } class FileLoader extends Loader { static { __name(this, "FileLoader"); } constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { if (url === void 0) url = ""; if (this.path !== void 0) url = this.path + url; url = this.manager.resolveURL(url); const cached = Cache.get(url); if (cached !== void 0) { this.manager.itemStart(url); setTimeout(() => { if (onLoad) onLoad(cached); this.manager.itemEnd(url); }, 0); return cached; } if (loading[url] !== void 0) { loading[url].push({ onLoad, onProgress, onError }); return; } loading[url] = []; loading[url].push({ onLoad, onProgress, onError }); const req = new Request(url, { headers: new Headers(this.requestHeader), credentials: this.withCredentials ? "include" : "same-origin" // An abort controller could be added within a future PR }); const mimeType = this.mimeType; const responseType = this.responseType; fetch(req).then((response) => { if (response.status === 200 || response.status === 0) { if (response.status === 0) { console.warn("THREE.FileLoader: HTTP Status 0 received."); } if (typeof ReadableStream === "undefined" || response.body === void 0 || response.body.getReader === void 0) { return response; } const callbacks = loading[url]; const reader = response.body.getReader(); const contentLength = response.headers.get("X-File-Size") || response.headers.get("Content-Length"); const total = contentLength ? parseInt(contentLength) : 0; const lengthComputable = total !== 0; let loaded = 0; const stream = new ReadableStream({ start(controller) { readData(); function readData() { reader.read().then(({ done, value }) => { if (done) { controller.close(); } else { loaded += value.byteLength; const event = new ProgressEvent("progress", { lengthComputable, loaded, total }); for (let i = 0, il = callbacks.length; i < il; i++) { const callback = callbacks[i]; if (callback.onProgress) callback.onProgress(event); } controller.enqueue(value); readData(); } }, (e) => { controller.error(e); }); } __name(readData, "readData"); } }); return new Response(stream); } else { throw new HttpError(`fetch for "${response.url}" responded with ${response.status}: ${response.statusText}`, response); } }).then((response) => { switch (responseType) { case "arraybuffer": return response.arrayBuffer(); case "blob": return response.blob(); case "document": return response.text().then((text) => { const parser = new DOMParser(); return parser.parseFromString(text, mimeType); }); case "json": return response.json(); default: if (mimeType === void 0) { return response.text(); } else { const re = /charset="?([^;"\s]*)"?/i; const exec = re.exec(mimeType); const label = exec && exec[1] ? exec[1].toLowerCase() : void 0; const decoder = new TextDecoder(label); return response.arrayBuffer().then((ab) => decoder.decode(ab)); } } }).then((data) => { Cache.add(url, data); const callbacks = loading[url]; delete loading[url]; for (let i = 0, il = callbacks.length; i < il; i++) { const callback = callbacks[i]; if (callback.onLoad) callback.onLoad(data); } }).catch((err2) => { const callbacks = loading[url]; if (callbacks === void 0) { this.manager.itemError(url); throw err2; } delete loading[url]; for (let i = 0, il = callbacks.length; i < il; i++) { const callback = callbacks[i]; if (callback.onError) callback.onError(err2); } this.manager.itemError(url); }).finally(() => { this.manager.itemEnd(url); }); this.manager.itemStart(url); } setResponseType(value) { this.responseType = value; return this; } setMimeType(value) { this.mimeType = value; return this; } } class AnimationLoader extends Loader { static { __name(this, "AnimationLoader"); } constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const loader = new FileLoader(this.manager); loader.setPath(this.path); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(this.withCredentials); loader.load(url, function(text) { try { onLoad(scope.parse(JSON.parse(text))); } catch (e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } }, onProgress, onError); } parse(json) { const animations = []; for (let i = 0; i < json.length; i++) { const clip = AnimationClip.parse(json[i]); animations.push(clip); } return animations; } } class CompressedTextureLoader extends Loader { static { __name(this, "CompressedTextureLoader"); } constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const images = []; const texture = new CompressedTexture(); const loader = new FileLoader(this.manager); loader.setPath(this.path); loader.setResponseType("arraybuffer"); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(scope.withCredentials); let loaded = 0; function loadTexture(i) { loader.load(url[i], function(buffer) { const texDatas = scope.parse(buffer, true); images[i] = { width: texDatas.width, height: texDatas.height, format: texDatas.format, mipmaps: texDatas.mipmaps }; loaded += 1; if (loaded === 6) { if (texDatas.mipmapCount === 1) texture.minFilter = LinearFilter; texture.image = images; texture.format = texDatas.format; texture.needsUpdate = true; if (onLoad) onLoad(texture); } }, onProgress, onError); } __name(loadTexture, "loadTexture"); if (Array.isArray(url)) { for (let i = 0, il = url.length; i < il; ++i) { loadTexture(i); } } else { loader.load(url, function(buffer) { const texDatas = scope.parse(buffer, true); if (texDatas.isCubemap) { const faces = texDatas.mipmaps.length / texDatas.mipmapCount; for (let f = 0; f < faces; f++) { images[f] = { mipmaps: [] }; for (let i = 0; i < texDatas.mipmapCount; i++) { images[f].mipmaps.push(texDatas.mipmaps[f * texDatas.mipmapCount + i]); images[f].format = texDatas.format; images[f].width = texDatas.width; images[f].height = texDatas.height; } } texture.image = images; } else { texture.image.width = texDatas.width; texture.image.height = texDatas.height; texture.mipmaps = texDatas.mipmaps; } if (texDatas.mipmapCount === 1) { texture.minFilter = LinearFilter; } texture.format = texDatas.format; texture.needsUpdate = true; if (onLoad) onLoad(texture); }, onProgress, onError); } return texture; } } class ImageLoader extends Loader { static { __name(this, "ImageLoader"); } constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { if (this.path !== void 0) url = this.path + url; url = this.manager.resolveURL(url); const scope = this; const cached = Cache.get(url); if (cached !== void 0) { scope.manager.itemStart(url); setTimeout(function() { if (onLoad) onLoad(cached); scope.manager.itemEnd(url); }, 0); return cached; } const image = createElementNS("img"); function onImageLoad() { removeEventListeners(); Cache.add(url, this); if (onLoad) onLoad(this); scope.manager.itemEnd(url); } __name(onImageLoad, "onImageLoad"); function onImageError(event) { removeEventListeners(); if (onError) onError(event); scope.manager.itemError(url); scope.manager.itemEnd(url); } __name(onImageError, "onImageError"); function removeEventListeners() { image.removeEventListener("load", onImageLoad, false); image.removeEventListener("error", onImageError, false); } __name(removeEventListeners, "removeEventListeners"); image.addEventListener("load", onImageLoad, false); image.addEventListener("error", onImageError, false); if (url.slice(0, 5) !== "data:") { if (this.crossOrigin !== void 0) image.crossOrigin = this.crossOrigin; } scope.manager.itemStart(url); image.src = url; return image; } } class CubeTextureLoader extends Loader { static { __name(this, "CubeTextureLoader"); } constructor(manager) { super(manager); } load(urls, onLoad, onProgress, onError) { const texture = new CubeTexture(); texture.colorSpace = SRGBColorSpace; const loader = new ImageLoader(this.manager); loader.setCrossOrigin(this.crossOrigin); loader.setPath(this.path); let loaded = 0; function loadTexture(i) { loader.load(urls[i], function(image) { texture.images[i] = image; loaded++; if (loaded === 6) { texture.needsUpdate = true; if (onLoad) onLoad(texture); } }, void 0, onError); } __name(loadTexture, "loadTexture"); for (let i = 0; i < urls.length; ++i) { loadTexture(i); } return texture; } } class DataTextureLoader extends Loader { static { __name(this, "DataTextureLoader"); } constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const texture = new DataTexture(); const loader = new FileLoader(this.manager); loader.setResponseType("arraybuffer"); loader.setRequestHeader(this.requestHeader); loader.setPath(this.path); loader.setWithCredentials(scope.withCredentials); loader.load(url, function(buffer) { let texData; try { texData = scope.parse(buffer); } catch (error) { if (onError !== void 0) { onError(error); } else { console.error(error); return; } } if (texData.image !== void 0) { texture.image = texData.image; } else if (texData.data !== void 0) { texture.image.width = texData.width; texture.image.height = texData.height; texture.image.data = texData.data; } texture.wrapS = texData.wrapS !== void 0 ? texData.wrapS : ClampToEdgeWrapping; texture.wrapT = texData.wrapT !== void 0 ? texData.wrapT : ClampToEdgeWrapping; texture.magFilter = texData.magFilter !== void 0 ? texData.magFilter : LinearFilter; texture.minFilter = texData.minFilter !== void 0 ? texData.minFilter : LinearFilter; texture.anisotropy = texData.anisotropy !== void 0 ? texData.anisotropy : 1; if (texData.colorSpace !== void 0) { texture.colorSpace = texData.colorSpace; } if (texData.flipY !== void 0) { texture.flipY = texData.flipY; } if (texData.format !== void 0) { texture.format = texData.format; } if (texData.type !== void 0) { texture.type = texData.type; } if (texData.mipmaps !== void 0) { texture.mipmaps = texData.mipmaps; texture.minFilter = LinearMipmapLinearFilter; } if (texData.mipmapCount === 1) { texture.minFilter = LinearFilter; } if (texData.generateMipmaps !== void 0) { texture.generateMipmaps = texData.generateMipmaps; } texture.needsUpdate = true; if (onLoad) onLoad(texture, texData); }, onProgress, onError); return texture; } } class TextureLoader extends Loader { static { __name(this, "TextureLoader"); } constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const texture = new Texture(); const loader = new ImageLoader(this.manager); loader.setCrossOrigin(this.crossOrigin); loader.setPath(this.path); loader.load(url, function(image) { texture.image = image; texture.needsUpdate = true; if (onLoad !== void 0) { onLoad(texture); } }, onProgress, onError); return texture; } } class Light extends Object3D { static { __name(this, "Light"); } constructor(color, intensity = 1) { super(); this.isLight = true; this.type = "Light"; this.color = new Color(color); this.intensity = intensity; } dispose() { } copy(source, recursive) { super.copy(source, recursive); this.color.copy(source.color); this.intensity = source.intensity; return this; } toJSON(meta) { const data = super.toJSON(meta); data.object.color = this.color.getHex(); data.object.intensity = this.intensity; if (this.groundColor !== void 0) data.object.groundColor = this.groundColor.getHex(); if (this.distance !== void 0) data.object.distance = this.distance; if (this.angle !== void 0) data.object.angle = this.angle; if (this.decay !== void 0) data.object.decay = this.decay; if (this.penumbra !== void 0) data.object.penumbra = this.penumbra; if (this.shadow !== void 0) data.object.shadow = this.shadow.toJSON(); if (this.target !== void 0) data.object.target = this.target.uuid; return data; } } class HemisphereLight extends Light { static { __name(this, "HemisphereLight"); } constructor(skyColor, groundColor, intensity) { super(skyColor, intensity); this.isHemisphereLight = true; this.type = "HemisphereLight"; this.position.copy(Object3D.DEFAULT_UP); this.updateMatrix(); this.groundColor = new Color(groundColor); } copy(source, recursive) { super.copy(source, recursive); this.groundColor.copy(source.groundColor); return this; } } const _projScreenMatrix$1 = /* @__PURE__ */ new Matrix4(); const _lightPositionWorld$1 = /* @__PURE__ */ new Vector3(); const _lookTarget$1 = /* @__PURE__ */ new Vector3(); class LightShadow { static { __name(this, "LightShadow"); } constructor(camera) { this.camera = camera; this.intensity = 1; this.bias = 0; this.normalBias = 0; this.radius = 1; this.blurSamples = 8; this.mapSize = new Vector2(512, 512); this.map = null; this.mapPass = null; this.matrix = new Matrix4(); this.autoUpdate = true; this.needsUpdate = false; this._frustum = new Frustum(); this._frameExtents = new Vector2(1, 1); this._viewportCount = 1; this._viewports = [ new Vector4(0, 0, 1, 1) ]; } getViewportCount() { return this._viewportCount; } getFrustum() { return this._frustum; } updateMatrices(light) { const shadowCamera = this.camera; const shadowMatrix = this.matrix; _lightPositionWorld$1.setFromMatrixPosition(light.matrixWorld); shadowCamera.position.copy(_lightPositionWorld$1); _lookTarget$1.setFromMatrixPosition(light.target.matrixWorld); shadowCamera.lookAt(_lookTarget$1); shadowCamera.updateMatrixWorld(); _projScreenMatrix$1.multiplyMatrices(shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse); this._frustum.setFromProjectionMatrix(_projScreenMatrix$1); shadowMatrix.set( 0.5, 0, 0, 0.5, 0, 0.5, 0, 0.5, 0, 0, 0.5, 0.5, 0, 0, 0, 1 ); shadowMatrix.multiply(_projScreenMatrix$1); } getViewport(viewportIndex) { return this._viewports[viewportIndex]; } getFrameExtents() { return this._frameExtents; } dispose() { if (this.map) { this.map.dispose(); } if (this.mapPass) { this.mapPass.dispose(); } } copy(source) { this.camera = source.camera.clone(); this.intensity = source.intensity; this.bias = source.bias; this.radius = source.radius; this.mapSize.copy(source.mapSize); return this; } clone() { return new this.constructor().copy(this); } toJSON() { const object = {}; if (this.intensity !== 1) object.intensity = this.intensity; if (this.bias !== 0) object.bias = this.bias; if (this.normalBias !== 0) object.normalBias = this.normalBias; if (this.radius !== 1) object.radius = this.radius; if (this.mapSize.x !== 512 || this.mapSize.y !== 512) object.mapSize = this.mapSize.toArray(); object.camera = this.camera.toJSON(false).object; delete object.camera.matrix; return object; } } class SpotLightShadow extends LightShadow { static { __name(this, "SpotLightShadow"); } constructor() { super(new PerspectiveCamera(50, 1, 0.5, 500)); this.isSpotLightShadow = true; this.focus = 1; } updateMatrices(light) { const camera = this.camera; const fov2 = RAD2DEG * 2 * light.angle * this.focus; const aspect2 = this.mapSize.width / this.mapSize.height; const far = light.distance || camera.far; if (fov2 !== camera.fov || aspect2 !== camera.aspect || far !== camera.far) { camera.fov = fov2; camera.aspect = aspect2; camera.far = far; camera.updateProjectionMatrix(); } super.updateMatrices(light); } copy(source) { super.copy(source); this.focus = source.focus; return this; } } class SpotLight extends Light { static { __name(this, "SpotLight"); } constructor(color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 2) { super(color, intensity); this.isSpotLight = true; this.type = "SpotLight"; this.position.copy(Object3D.DEFAULT_UP); this.updateMatrix(); this.target = new Object3D(); this.distance = distance; this.angle = angle; this.penumbra = penumbra; this.decay = decay; this.map = null; this.shadow = new SpotLightShadow(); } get power() { return this.intensity * Math.PI; } set power(power) { this.intensity = power / Math.PI; } dispose() { this.shadow.dispose(); } copy(source, recursive) { super.copy(source, recursive); this.distance = source.distance; this.angle = source.angle; this.penumbra = source.penumbra; this.decay = source.decay; this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } const _projScreenMatrix = /* @__PURE__ */ new Matrix4(); const _lightPositionWorld = /* @__PURE__ */ new Vector3(); const _lookTarget = /* @__PURE__ */ new Vector3(); class PointLightShadow extends LightShadow { static { __name(this, "PointLightShadow"); } constructor() { super(new PerspectiveCamera(90, 1, 0.5, 500)); this.isPointLightShadow = true; this._frameExtents = new Vector2(4, 2); this._viewportCount = 6; this._viewports = [ // These viewports map a cube-map onto a 2D texture with the // following orientation: // // xzXZ // y Y // // X - Positive x direction // x - Negative x direction // Y - Positive y direction // y - Negative y direction // Z - Positive z direction // z - Negative z direction // positive X new Vector4(2, 1, 1, 1), // negative X new Vector4(0, 1, 1, 1), // positive Z new Vector4(3, 1, 1, 1), // negative Z new Vector4(1, 1, 1, 1), // positive Y new Vector4(3, 0, 1, 1), // negative Y new Vector4(1, 0, 1, 1) ]; this._cubeDirections = [ new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(0, 1, 0), new Vector3(0, -1, 0) ]; this._cubeUps = [ new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1) ]; } updateMatrices(light, viewportIndex = 0) { const camera = this.camera; const shadowMatrix = this.matrix; const far = light.distance || camera.far; if (far !== camera.far) { camera.far = far; camera.updateProjectionMatrix(); } _lightPositionWorld.setFromMatrixPosition(light.matrixWorld); camera.position.copy(_lightPositionWorld); _lookTarget.copy(camera.position); _lookTarget.add(this._cubeDirections[viewportIndex]); camera.up.copy(this._cubeUps[viewportIndex]); camera.lookAt(_lookTarget); camera.updateMatrixWorld(); shadowMatrix.makeTranslation(-_lightPositionWorld.x, -_lightPositionWorld.y, -_lightPositionWorld.z); _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse); this._frustum.setFromProjectionMatrix(_projScreenMatrix); } } class PointLight extends Light { static { __name(this, "PointLight"); } constructor(color, intensity, distance = 0, decay = 2) { super(color, intensity); this.isPointLight = true; this.type = "PointLight"; this.distance = distance; this.decay = decay; this.shadow = new PointLightShadow(); } get power() { return this.intensity * 4 * Math.PI; } set power(power) { this.intensity = power / (4 * Math.PI); } dispose() { this.shadow.dispose(); } copy(source, recursive) { super.copy(source, recursive); this.distance = source.distance; this.decay = source.decay; this.shadow = source.shadow.clone(); return this; } } class DirectionalLightShadow extends LightShadow { static { __name(this, "DirectionalLightShadow"); } constructor() { super(new OrthographicCamera(-5, 5, 5, -5, 0.5, 500)); this.isDirectionalLightShadow = true; } } class DirectionalLight extends Light { static { __name(this, "DirectionalLight"); } constructor(color, intensity) { super(color, intensity); this.isDirectionalLight = true; this.type = "DirectionalLight"; this.position.copy(Object3D.DEFAULT_UP); this.updateMatrix(); this.target = new Object3D(); this.shadow = new DirectionalLightShadow(); } dispose() { this.shadow.dispose(); } copy(source) { super.copy(source); this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } class AmbientLight extends Light { static { __name(this, "AmbientLight"); } constructor(color, intensity) { super(color, intensity); this.isAmbientLight = true; this.type = "AmbientLight"; } } class RectAreaLight extends Light { static { __name(this, "RectAreaLight"); } constructor(color, intensity, width = 10, height = 10) { super(color, intensity); this.isRectAreaLight = true; this.type = "RectAreaLight"; this.width = width; this.height = height; } get power() { return this.intensity * this.width * this.height * Math.PI; } set power(power) { this.intensity = power / (this.width * this.height * Math.PI); } copy(source) { super.copy(source); this.width = source.width; this.height = source.height; return this; } toJSON(meta) { const data = super.toJSON(meta); data.object.width = this.width; data.object.height = this.height; return data; } } class SphericalHarmonics3 { static { __name(this, "SphericalHarmonics3"); } constructor() { this.isSphericalHarmonics3 = true; this.coefficients = []; for (let i = 0; i < 9; i++) { this.coefficients.push(new Vector3()); } } set(coefficients) { for (let i = 0; i < 9; i++) { this.coefficients[i].copy(coefficients[i]); } return this; } zero() { for (let i = 0; i < 9; i++) { this.coefficients[i].set(0, 0, 0); } return this; } // get the radiance in the direction of the normal // target is a Vector3 getAt(normal, target) { const x = normal.x, y = normal.y, z = normal.z; const coeff = this.coefficients; target.copy(coeff[0]).multiplyScalar(0.282095); target.addScaledVector(coeff[1], 0.488603 * y); target.addScaledVector(coeff[2], 0.488603 * z); target.addScaledVector(coeff[3], 0.488603 * x); target.addScaledVector(coeff[4], 1.092548 * (x * y)); target.addScaledVector(coeff[5], 1.092548 * (y * z)); target.addScaledVector(coeff[6], 0.315392 * (3 * z * z - 1)); target.addScaledVector(coeff[7], 1.092548 * (x * z)); target.addScaledVector(coeff[8], 0.546274 * (x * x - y * y)); return target; } // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal // target is a Vector3 // https://graphics.stanford.edu/papers/envmap/envmap.pdf getIrradianceAt(normal, target) { const x = normal.x, y = normal.y, z = normal.z; const coeff = this.coefficients; target.copy(coeff[0]).multiplyScalar(0.886227); target.addScaledVector(coeff[1], 2 * 0.511664 * y); target.addScaledVector(coeff[2], 2 * 0.511664 * z); target.addScaledVector(coeff[3], 2 * 0.511664 * x); target.addScaledVector(coeff[4], 2 * 0.429043 * x * y); target.addScaledVector(coeff[5], 2 * 0.429043 * y * z); target.addScaledVector(coeff[6], 0.743125 * z * z - 0.247708); target.addScaledVector(coeff[7], 2 * 0.429043 * x * z); target.addScaledVector(coeff[8], 0.429043 * (x * x - y * y)); return target; } add(sh) { for (let i = 0; i < 9; i++) { this.coefficients[i].add(sh.coefficients[i]); } return this; } addScaledSH(sh, s) { for (let i = 0; i < 9; i++) { this.coefficients[i].addScaledVector(sh.coefficients[i], s); } return this; } scale(s) { for (let i = 0; i < 9; i++) { this.coefficients[i].multiplyScalar(s); } return this; } lerp(sh, alpha) { for (let i = 0; i < 9; i++) { this.coefficients[i].lerp(sh.coefficients[i], alpha); } return this; } equals(sh) { for (let i = 0; i < 9; i++) { if (!this.coefficients[i].equals(sh.coefficients[i])) { return false; } } return true; } copy(sh) { return this.set(sh.coefficients); } clone() { return new this.constructor().copy(this); } fromArray(array, offset = 0) { const coefficients = this.coefficients; for (let i = 0; i < 9; i++) { coefficients[i].fromArray(array, offset + i * 3); } return this; } toArray(array = [], offset = 0) { const coefficients = this.coefficients; for (let i = 0; i < 9; i++) { coefficients[i].toArray(array, offset + i * 3); } return array; } // evaluate the basis functions // shBasis is an Array[ 9 ] static getBasisAt(normal, shBasis) { const x = normal.x, y = normal.y, z = normal.z; shBasis[0] = 0.282095; shBasis[1] = 0.488603 * y; shBasis[2] = 0.488603 * z; shBasis[3] = 0.488603 * x; shBasis[4] = 1.092548 * x * y; shBasis[5] = 1.092548 * y * z; shBasis[6] = 0.315392 * (3 * z * z - 1); shBasis[7] = 1.092548 * x * z; shBasis[8] = 0.546274 * (x * x - y * y); } } class LightProbe extends Light { static { __name(this, "LightProbe"); } constructor(sh = new SphericalHarmonics3(), intensity = 1) { super(void 0, intensity); this.isLightProbe = true; this.sh = sh; } copy(source) { super.copy(source); this.sh.copy(source.sh); return this; } fromJSON(json) { this.intensity = json.intensity; this.sh.fromArray(json.sh); return this; } toJSON(meta) { const data = super.toJSON(meta); data.object.sh = this.sh.toArray(); return data; } } class MaterialLoader extends Loader { static { __name(this, "MaterialLoader"); } constructor(manager) { super(manager); this.textures = {}; } load(url, onLoad, onProgress, onError) { const scope = this; const loader = new FileLoader(scope.manager); loader.setPath(scope.path); loader.setRequestHeader(scope.requestHeader); loader.setWithCredentials(scope.withCredentials); loader.load(url, function(text) { try { onLoad(scope.parse(JSON.parse(text))); } catch (e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } }, onProgress, onError); } parse(json) { const textures = this.textures; function getTexture(name) { if (textures[name] === void 0) { console.warn("THREE.MaterialLoader: Undefined texture", name); } return textures[name]; } __name(getTexture, "getTexture"); const material = this.createMaterialFromType(json.type); if (json.uuid !== void 0) material.uuid = json.uuid; if (json.name !== void 0) material.name = json.name; if (json.color !== void 0 && material.color !== void 0) material.color.setHex(json.color); if (json.roughness !== void 0) material.roughness = json.roughness; if (json.metalness !== void 0) material.metalness = json.metalness; if (json.sheen !== void 0) material.sheen = json.sheen; if (json.sheenColor !== void 0) material.sheenColor = new Color().setHex(json.sheenColor); if (json.sheenRoughness !== void 0) material.sheenRoughness = json.sheenRoughness; if (json.emissive !== void 0 && material.emissive !== void 0) material.emissive.setHex(json.emissive); if (json.specular !== void 0 && material.specular !== void 0) material.specular.setHex(json.specular); if (json.specularIntensity !== void 0) material.specularIntensity = json.specularIntensity; if (json.specularColor !== void 0 && material.specularColor !== void 0) material.specularColor.setHex(json.specularColor); if (json.shininess !== void 0) material.shininess = json.shininess; if (json.clearcoat !== void 0) material.clearcoat = json.clearcoat; if (json.clearcoatRoughness !== void 0) material.clearcoatRoughness = json.clearcoatRoughness; if (json.dispersion !== void 0) material.dispersion = json.dispersion; if (json.iridescence !== void 0) material.iridescence = json.iridescence; if (json.iridescenceIOR !== void 0) material.iridescenceIOR = json.iridescenceIOR; if (json.iridescenceThicknessRange !== void 0) material.iridescenceThicknessRange = json.iridescenceThicknessRange; if (json.transmission !== void 0) material.transmission = json.transmission; if (json.thickness !== void 0) material.thickness = json.thickness; if (json.attenuationDistance !== void 0) material.attenuationDistance = json.attenuationDistance; if (json.attenuationColor !== void 0 && material.attenuationColor !== void 0) material.attenuationColor.setHex(json.attenuationColor); if (json.anisotropy !== void 0) material.anisotropy = json.anisotropy; if (json.anisotropyRotation !== void 0) material.anisotropyRotation = json.anisotropyRotation; if (json.fog !== void 0) material.fog = json.fog; if (json.flatShading !== void 0) material.flatShading = json.flatShading; if (json.blending !== void 0) material.blending = json.blending; if (json.combine !== void 0) material.combine = json.combine; if (json.side !== void 0) material.side = json.side; if (json.shadowSide !== void 0) material.shadowSide = json.shadowSide; if (json.opacity !== void 0) material.opacity = json.opacity; if (json.transparent !== void 0) material.transparent = json.transparent; if (json.alphaTest !== void 0) material.alphaTest = json.alphaTest; if (json.alphaHash !== void 0) material.alphaHash = json.alphaHash; if (json.depthFunc !== void 0) material.depthFunc = json.depthFunc; if (json.depthTest !== void 0) material.depthTest = json.depthTest; if (json.depthWrite !== void 0) material.depthWrite = json.depthWrite; if (json.colorWrite !== void 0) material.colorWrite = json.colorWrite; if (json.blendSrc !== void 0) material.blendSrc = json.blendSrc; if (json.blendDst !== void 0) material.blendDst = json.blendDst; if (json.blendEquation !== void 0) material.blendEquation = json.blendEquation; if (json.blendSrcAlpha !== void 0) material.blendSrcAlpha = json.blendSrcAlpha; if (json.blendDstAlpha !== void 0) material.blendDstAlpha = json.blendDstAlpha; if (json.blendEquationAlpha !== void 0) material.blendEquationAlpha = json.blendEquationAlpha; if (json.blendColor !== void 0 && material.blendColor !== void 0) material.blendColor.setHex(json.blendColor); if (json.blendAlpha !== void 0) material.blendAlpha = json.blendAlpha; if (json.stencilWriteMask !== void 0) material.stencilWriteMask = json.stencilWriteMask; if (json.stencilFunc !== void 0) material.stencilFunc = json.stencilFunc; if (json.stencilRef !== void 0) material.stencilRef = json.stencilRef; if (json.stencilFuncMask !== void 0) material.stencilFuncMask = json.stencilFuncMask; if (json.stencilFail !== void 0) material.stencilFail = json.stencilFail; if (json.stencilZFail !== void 0) material.stencilZFail = json.stencilZFail; if (json.stencilZPass !== void 0) material.stencilZPass = json.stencilZPass; if (json.stencilWrite !== void 0) material.stencilWrite = json.stencilWrite; if (json.wireframe !== void 0) material.wireframe = json.wireframe; if (json.wireframeLinewidth !== void 0) material.wireframeLinewidth = json.wireframeLinewidth; if (json.wireframeLinecap !== void 0) material.wireframeLinecap = json.wireframeLinecap; if (json.wireframeLinejoin !== void 0) material.wireframeLinejoin = json.wireframeLinejoin; if (json.rotation !== void 0) material.rotation = json.rotation; if (json.linewidth !== void 0) material.linewidth = json.linewidth; if (json.dashSize !== void 0) material.dashSize = json.dashSize; if (json.gapSize !== void 0) material.gapSize = json.gapSize; if (json.scale !== void 0) material.scale = json.scale; if (json.polygonOffset !== void 0) material.polygonOffset = json.polygonOffset; if (json.polygonOffsetFactor !== void 0) material.polygonOffsetFactor = json.polygonOffsetFactor; if (json.polygonOffsetUnits !== void 0) material.polygonOffsetUnits = json.polygonOffsetUnits; if (json.dithering !== void 0) material.dithering = json.dithering; if (json.alphaToCoverage !== void 0) material.alphaToCoverage = json.alphaToCoverage; if (json.premultipliedAlpha !== void 0) material.premultipliedAlpha = json.premultipliedAlpha; if (json.forceSinglePass !== void 0) material.forceSinglePass = json.forceSinglePass; if (json.visible !== void 0) material.visible = json.visible; if (json.toneMapped !== void 0) material.toneMapped = json.toneMapped; if (json.userData !== void 0) material.userData = json.userData; if (json.vertexColors !== void 0) { if (typeof json.vertexColors === "number") { material.vertexColors = json.vertexColors > 0 ? true : false; } else { material.vertexColors = json.vertexColors; } } if (json.uniforms !== void 0) { for (const name in json.uniforms) { const uniform = json.uniforms[name]; material.uniforms[name] = {}; switch (uniform.type) { case "t": material.uniforms[name].value = getTexture(uniform.value); break; case "c": material.uniforms[name].value = new Color().setHex(uniform.value); break; case "v2": material.uniforms[name].value = new Vector2().fromArray(uniform.value); break; case "v3": material.uniforms[name].value = new Vector3().fromArray(uniform.value); break; case "v4": material.uniforms[name].value = new Vector4().fromArray(uniform.value); break; case "m3": material.uniforms[name].value = new Matrix3().fromArray(uniform.value); break; case "m4": material.uniforms[name].value = new Matrix4().fromArray(uniform.value); break; default: material.uniforms[name].value = uniform.value; } } } if (json.defines !== void 0) material.defines = json.defines; if (json.vertexShader !== void 0) material.vertexShader = json.vertexShader; if (json.fragmentShader !== void 0) material.fragmentShader = json.fragmentShader; if (json.glslVersion !== void 0) material.glslVersion = json.glslVersion; if (json.extensions !== void 0) { for (const key in json.extensions) { material.extensions[key] = json.extensions[key]; } } if (json.lights !== void 0) material.lights = json.lights; if (json.clipping !== void 0) material.clipping = json.clipping; if (json.size !== void 0) material.size = json.size; if (json.sizeAttenuation !== void 0) material.sizeAttenuation = json.sizeAttenuation; if (json.map !== void 0) material.map = getTexture(json.map); if (json.matcap !== void 0) material.matcap = getTexture(json.matcap); if (json.alphaMap !== void 0) material.alphaMap = getTexture(json.alphaMap); if (json.bumpMap !== void 0) material.bumpMap = getTexture(json.bumpMap); if (json.bumpScale !== void 0) material.bumpScale = json.bumpScale; if (json.normalMap !== void 0) material.normalMap = getTexture(json.normalMap); if (json.normalMapType !== void 0) material.normalMapType = json.normalMapType; if (json.normalScale !== void 0) { let normalScale = json.normalScale; if (Array.isArray(normalScale) === false) { normalScale = [normalScale, normalScale]; } material.normalScale = new Vector2().fromArray(normalScale); } if (json.displacementMap !== void 0) material.displacementMap = getTexture(json.displacementMap); if (json.displacementScale !== void 0) material.displacementScale = json.displacementScale; if (json.displacementBias !== void 0) material.displacementBias = json.displacementBias; if (json.roughnessMap !== void 0) material.roughnessMap = getTexture(json.roughnessMap); if (json.metalnessMap !== void 0) material.metalnessMap = getTexture(json.metalnessMap); if (json.emissiveMap !== void 0) material.emissiveMap = getTexture(json.emissiveMap); if (json.emissiveIntensity !== void 0) material.emissiveIntensity = json.emissiveIntensity; if (json.specularMap !== void 0) material.specularMap = getTexture(json.specularMap); if (json.specularIntensityMap !== void 0) material.specularIntensityMap = getTexture(json.specularIntensityMap); if (json.specularColorMap !== void 0) material.specularColorMap = getTexture(json.specularColorMap); if (json.envMap !== void 0) material.envMap = getTexture(json.envMap); if (json.envMapRotation !== void 0) material.envMapRotation.fromArray(json.envMapRotation); if (json.envMapIntensity !== void 0) material.envMapIntensity = json.envMapIntensity; if (json.reflectivity !== void 0) material.reflectivity = json.reflectivity; if (json.refractionRatio !== void 0) material.refractionRatio = json.refractionRatio; if (json.lightMap !== void 0) material.lightMap = getTexture(json.lightMap); if (json.lightMapIntensity !== void 0) material.lightMapIntensity = json.lightMapIntensity; if (json.aoMap !== void 0) material.aoMap = getTexture(json.aoMap); if (json.aoMapIntensity !== void 0) material.aoMapIntensity = json.aoMapIntensity; if (json.gradientMap !== void 0) material.gradientMap = getTexture(json.gradientMap); if (json.clearcoatMap !== void 0) material.clearcoatMap = getTexture(json.clearcoatMap); if (json.clearcoatRoughnessMap !== void 0) material.clearcoatRoughnessMap = getTexture(json.clearcoatRoughnessMap); if (json.clearcoatNormalMap !== void 0) material.clearcoatNormalMap = getTexture(json.clearcoatNormalMap); if (json.clearcoatNormalScale !== void 0) material.clearcoatNormalScale = new Vector2().fromArray(json.clearcoatNormalScale); if (json.iridescenceMap !== void 0) material.iridescenceMap = getTexture(json.iridescenceMap); if (json.iridescenceThicknessMap !== void 0) material.iridescenceThicknessMap = getTexture(json.iridescenceThicknessMap); if (json.transmissionMap !== void 0) material.transmissionMap = getTexture(json.transmissionMap); if (json.thicknessMap !== void 0) material.thicknessMap = getTexture(json.thicknessMap); if (json.anisotropyMap !== void 0) material.anisotropyMap = getTexture(json.anisotropyMap); if (json.sheenColorMap !== void 0) material.sheenColorMap = getTexture(json.sheenColorMap); if (json.sheenRoughnessMap !== void 0) material.sheenRoughnessMap = getTexture(json.sheenRoughnessMap); return material; } setTextures(value) { this.textures = value; return this; } createMaterialFromType(type) { return MaterialLoader.createMaterialFromType(type); } static createMaterialFromType(type) { const materialLib = { ShadowMaterial, SpriteMaterial, RawShaderMaterial, ShaderMaterial, PointsMaterial, MeshPhysicalMaterial, MeshStandardMaterial, MeshPhongMaterial, MeshToonMaterial, MeshNormalMaterial, MeshLambertMaterial, MeshDepthMaterial, MeshDistanceMaterial, MeshBasicMaterial, MeshMatcapMaterial, LineDashedMaterial, LineBasicMaterial, Material }; return new materialLib[type](); } } class LoaderUtils { static { __name(this, "LoaderUtils"); } static decodeText(array) { console.warn("THREE.LoaderUtils: decodeText() has been deprecated with r165 and will be removed with r175. Use TextDecoder instead."); if (typeof TextDecoder !== "undefined") { return new TextDecoder().decode(array); } let s = ""; for (let i = 0, il = array.length; i < il; i++) { s += String.fromCharCode(array[i]); } try { return decodeURIComponent(escape(s)); } catch (e) { return s; } } static extractUrlBase(url) { const index = url.lastIndexOf("/"); if (index === -1) return "./"; return url.slice(0, index + 1); } static resolveURL(url, path) { if (typeof url !== "string" || url === "") return ""; if (/^https?:\/\//i.test(path) && /^\//.test(url)) { path = path.replace(/(^https?:\/\/[^\/]+).*/i, "$1"); } if (/^(https?:)?\/\//i.test(url)) return url; if (/^data:.*,.*$/i.test(url)) return url; if (/^blob:.*$/i.test(url)) return url; return path + url; } } class InstancedBufferGeometry extends BufferGeometry { static { __name(this, "InstancedBufferGeometry"); } constructor() { super(); this.isInstancedBufferGeometry = true; this.type = "InstancedBufferGeometry"; this.instanceCount = Infinity; } copy(source) { super.copy(source); this.instanceCount = source.instanceCount; return this; } toJSON() { const data = super.toJSON(); data.instanceCount = this.instanceCount; data.isInstancedBufferGeometry = true; return data; } } class BufferGeometryLoader extends Loader { static { __name(this, "BufferGeometryLoader"); } constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const loader = new FileLoader(scope.manager); loader.setPath(scope.path); loader.setRequestHeader(scope.requestHeader); loader.setWithCredentials(scope.withCredentials); loader.load(url, function(text) { try { onLoad(scope.parse(JSON.parse(text))); } catch (e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } }, onProgress, onError); } parse(json) { const interleavedBufferMap = {}; const arrayBufferMap = {}; function getInterleavedBuffer(json2, uuid) { if (interleavedBufferMap[uuid] !== void 0) return interleavedBufferMap[uuid]; const interleavedBuffers = json2.interleavedBuffers; const interleavedBuffer = interleavedBuffers[uuid]; const buffer = getArrayBuffer(json2, interleavedBuffer.buffer); const array = getTypedArray(interleavedBuffer.type, buffer); const ib = new InterleavedBuffer(array, interleavedBuffer.stride); ib.uuid = interleavedBuffer.uuid; interleavedBufferMap[uuid] = ib; return ib; } __name(getInterleavedBuffer, "getInterleavedBuffer"); function getArrayBuffer(json2, uuid) { if (arrayBufferMap[uuid] !== void 0) return arrayBufferMap[uuid]; const arrayBuffers = json2.arrayBuffers; const arrayBuffer = arrayBuffers[uuid]; const ab = new Uint32Array(arrayBuffer).buffer; arrayBufferMap[uuid] = ab; return ab; } __name(getArrayBuffer, "getArrayBuffer"); const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry(); const index = json.data.index; if (index !== void 0) { const typedArray = getTypedArray(index.type, index.array); geometry.setIndex(new BufferAttribute(typedArray, 1)); } const attributes = json.data.attributes; for (const key in attributes) { const attribute = attributes[key]; let bufferAttribute; if (attribute.isInterleavedBufferAttribute) { const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data); bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized); } else { const typedArray = getTypedArray(attribute.type, attribute.array); const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute; bufferAttribute = new bufferAttributeConstr(typedArray, attribute.itemSize, attribute.normalized); } if (attribute.name !== void 0) bufferAttribute.name = attribute.name; if (attribute.usage !== void 0) bufferAttribute.setUsage(attribute.usage); geometry.setAttribute(key, bufferAttribute); } const morphAttributes = json.data.morphAttributes; if (morphAttributes) { for (const key in morphAttributes) { const attributeArray = morphAttributes[key]; const array = []; for (let i = 0, il = attributeArray.length; i < il; i++) { const attribute = attributeArray[i]; let bufferAttribute; if (attribute.isInterleavedBufferAttribute) { const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data); bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized); } else { const typedArray = getTypedArray(attribute.type, attribute.array); bufferAttribute = new BufferAttribute(typedArray, attribute.itemSize, attribute.normalized); } if (attribute.name !== void 0) bufferAttribute.name = attribute.name; array.push(bufferAttribute); } geometry.morphAttributes[key] = array; } } const morphTargetsRelative = json.data.morphTargetsRelative; if (morphTargetsRelative) { geometry.morphTargetsRelative = true; } const groups = json.data.groups || json.data.drawcalls || json.data.offsets; if (groups !== void 0) { for (let i = 0, n = groups.length; i !== n; ++i) { const group = groups[i]; geometry.addGroup(group.start, group.count, group.materialIndex); } } const boundingSphere = json.data.boundingSphere; if (boundingSphere !== void 0) { const center = new Vector3(); if (boundingSphere.center !== void 0) { center.fromArray(boundingSphere.center); } geometry.boundingSphere = new Sphere(center, boundingSphere.radius); } if (json.name) geometry.name = json.name; if (json.userData) geometry.userData = json.userData; return geometry; } } class ObjectLoader extends Loader { static { __name(this, "ObjectLoader"); } constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const path = this.path === "" ? LoaderUtils.extractUrlBase(url) : this.path; this.resourcePath = this.resourcePath || path; const loader = new FileLoader(this.manager); loader.setPath(this.path); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(this.withCredentials); loader.load(url, function(text) { let json = null; try { json = JSON.parse(text); } catch (error) { if (onError !== void 0) onError(error); console.error("THREE:ObjectLoader: Can't parse " + url + ".", error.message); return; } const metadata = json.metadata; if (metadata === void 0 || metadata.type === void 0 || metadata.type.toLowerCase() === "geometry") { if (onError !== void 0) onError(new Error("THREE.ObjectLoader: Can't load " + url)); console.error("THREE.ObjectLoader: Can't load " + url); return; } scope.parse(json, onLoad); }, onProgress, onError); } async loadAsync(url, onProgress) { const scope = this; const path = this.path === "" ? LoaderUtils.extractUrlBase(url) : this.path; this.resourcePath = this.resourcePath || path; const loader = new FileLoader(this.manager); loader.setPath(this.path); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(this.withCredentials); const text = await loader.loadAsync(url, onProgress); const json = JSON.parse(text); const metadata = json.metadata; if (metadata === void 0 || metadata.type === void 0 || metadata.type.toLowerCase() === "geometry") { throw new Error("THREE.ObjectLoader: Can't load " + url); } return await scope.parseAsync(json); } parse(json, onLoad) { const animations = this.parseAnimations(json.animations); const shapes = this.parseShapes(json.shapes); const geometries = this.parseGeometries(json.geometries, shapes); const images = this.parseImages(json.images, function() { if (onLoad !== void 0) onLoad(object); }); const textures = this.parseTextures(json.textures, images); const materials = this.parseMaterials(json.materials, textures); const object = this.parseObject(json.object, geometries, materials, textures, animations); const skeletons = this.parseSkeletons(json.skeletons, object); this.bindSkeletons(object, skeletons); this.bindLightTargets(object); if (onLoad !== void 0) { let hasImages = false; for (const uuid in images) { if (images[uuid].data instanceof HTMLImageElement) { hasImages = true; break; } } if (hasImages === false) onLoad(object); } return object; } async parseAsync(json) { const animations = this.parseAnimations(json.animations); const shapes = this.parseShapes(json.shapes); const geometries = this.parseGeometries(json.geometries, shapes); const images = await this.parseImagesAsync(json.images); const textures = this.parseTextures(json.textures, images); const materials = this.parseMaterials(json.materials, textures); const object = this.parseObject(json.object, geometries, materials, textures, animations); const skeletons = this.parseSkeletons(json.skeletons, object); this.bindSkeletons(object, skeletons); this.bindLightTargets(object); return object; } parseShapes(json) { const shapes = {}; if (json !== void 0) { for (let i = 0, l = json.length; i < l; i++) { const shape = new Shape().fromJSON(json[i]); shapes[shape.uuid] = shape; } } return shapes; } parseSkeletons(json, object) { const skeletons = {}; const bones = {}; object.traverse(function(child) { if (child.isBone) bones[child.uuid] = child; }); if (json !== void 0) { for (let i = 0, l = json.length; i < l; i++) { const skeleton = new Skeleton().fromJSON(json[i], bones); skeletons[skeleton.uuid] = skeleton; } } return skeletons; } parseGeometries(json, shapes) { const geometries = {}; if (json !== void 0) { const bufferGeometryLoader = new BufferGeometryLoader(); for (let i = 0, l = json.length; i < l; i++) { let geometry; const data = json[i]; switch (data.type) { case "BufferGeometry": case "InstancedBufferGeometry": geometry = bufferGeometryLoader.parse(data); break; default: if (data.type in Geometries) { geometry = Geometries[data.type].fromJSON(data, shapes); } else { console.warn(`THREE.ObjectLoader: Unsupported geometry type "${data.type}"`); } } geometry.uuid = data.uuid; if (data.name !== void 0) geometry.name = data.name; if (data.userData !== void 0) geometry.userData = data.userData; geometries[data.uuid] = geometry; } } return geometries; } parseMaterials(json, textures) { const cache = {}; const materials = {}; if (json !== void 0) { const loader = new MaterialLoader(); loader.setTextures(textures); for (let i = 0, l = json.length; i < l; i++) { const data = json[i]; if (cache[data.uuid] === void 0) { cache[data.uuid] = loader.parse(data); } materials[data.uuid] = cache[data.uuid]; } } return materials; } parseAnimations(json) { const animations = {}; if (json !== void 0) { for (let i = 0; i < json.length; i++) { const data = json[i]; const clip = AnimationClip.parse(data); animations[clip.uuid] = clip; } } return animations; } parseImages(json, onLoad) { const scope = this; const images = {}; let loader; function loadImage2(url) { scope.manager.itemStart(url); return loader.load(url, function() { scope.manager.itemEnd(url); }, void 0, function() { scope.manager.itemError(url); scope.manager.itemEnd(url); }); } __name(loadImage2, "loadImage"); function deserializeImage(image) { if (typeof image === "string") { const url = image; const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url; return loadImage2(path); } else { if (image.data) { return { data: getTypedArray(image.type, image.data), width: image.width, height: image.height }; } else { return null; } } } __name(deserializeImage, "deserializeImage"); if (json !== void 0 && json.length > 0) { const manager = new LoadingManager(onLoad); loader = new ImageLoader(manager); loader.setCrossOrigin(this.crossOrigin); for (let i = 0, il = json.length; i < il; i++) { const image = json[i]; const url = image.url; if (Array.isArray(url)) { const imageArray = []; for (let j = 0, jl = url.length; j < jl; j++) { const currentUrl = url[j]; const deserializedImage = deserializeImage(currentUrl); if (deserializedImage !== null) { if (deserializedImage instanceof HTMLImageElement) { imageArray.push(deserializedImage); } else { imageArray.push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height)); } } } images[image.uuid] = new Source(imageArray); } else { const deserializedImage = deserializeImage(image.url); images[image.uuid] = new Source(deserializedImage); } } } return images; } async parseImagesAsync(json) { const scope = this; const images = {}; let loader; async function deserializeImage(image) { if (typeof image === "string") { const url = image; const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url; return await loader.loadAsync(path); } else { if (image.data) { return { data: getTypedArray(image.type, image.data), width: image.width, height: image.height }; } else { return null; } } } __name(deserializeImage, "deserializeImage"); if (json !== void 0 && json.length > 0) { loader = new ImageLoader(this.manager); loader.setCrossOrigin(this.crossOrigin); for (let i = 0, il = json.length; i < il; i++) { const image = json[i]; const url = image.url; if (Array.isArray(url)) { const imageArray = []; for (let j = 0, jl = url.length; j < jl; j++) { const currentUrl = url[j]; const deserializedImage = await deserializeImage(currentUrl); if (deserializedImage !== null) { if (deserializedImage instanceof HTMLImageElement) { imageArray.push(deserializedImage); } else { imageArray.push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height)); } } } images[image.uuid] = new Source(imageArray); } else { const deserializedImage = await deserializeImage(image.url); images[image.uuid] = new Source(deserializedImage); } } } return images; } parseTextures(json, images) { function parseConstant(value, type) { if (typeof value === "number") return value; console.warn("THREE.ObjectLoader.parseTexture: Constant should be in numeric form.", value); return type[value]; } __name(parseConstant, "parseConstant"); const textures = {}; if (json !== void 0) { for (let i = 0, l = json.length; i < l; i++) { const data = json[i]; if (data.image === void 0) { console.warn('THREE.ObjectLoader: No "image" specified for', data.uuid); } if (images[data.image] === void 0) { console.warn("THREE.ObjectLoader: Undefined image", data.image); } const source = images[data.image]; const image = source.data; let texture; if (Array.isArray(image)) { texture = new CubeTexture(); if (image.length === 6) texture.needsUpdate = true; } else { if (image && image.data) { texture = new DataTexture(); } else { texture = new Texture(); } if (image) texture.needsUpdate = true; } texture.source = source; texture.uuid = data.uuid; if (data.name !== void 0) texture.name = data.name; if (data.mapping !== void 0) texture.mapping = parseConstant(data.mapping, TEXTURE_MAPPING); if (data.channel !== void 0) texture.channel = data.channel; if (data.offset !== void 0) texture.offset.fromArray(data.offset); if (data.repeat !== void 0) texture.repeat.fromArray(data.repeat); if (data.center !== void 0) texture.center.fromArray(data.center); if (data.rotation !== void 0) texture.rotation = data.rotation; if (data.wrap !== void 0) { texture.wrapS = parseConstant(data.wrap[0], TEXTURE_WRAPPING); texture.wrapT = parseConstant(data.wrap[1], TEXTURE_WRAPPING); } if (data.format !== void 0) texture.format = data.format; if (data.internalFormat !== void 0) texture.internalFormat = data.internalFormat; if (data.type !== void 0) texture.type = data.type; if (data.colorSpace !== void 0) texture.colorSpace = data.colorSpace; if (data.minFilter !== void 0) texture.minFilter = parseConstant(data.minFilter, TEXTURE_FILTER); if (data.magFilter !== void 0) texture.magFilter = parseConstant(data.magFilter, TEXTURE_FILTER); if (data.anisotropy !== void 0) texture.anisotropy = data.anisotropy; if (data.flipY !== void 0) texture.flipY = data.flipY; if (data.generateMipmaps !== void 0) texture.generateMipmaps = data.generateMipmaps; if (data.premultiplyAlpha !== void 0) texture.premultiplyAlpha = data.premultiplyAlpha; if (data.unpackAlignment !== void 0) texture.unpackAlignment = data.unpackAlignment; if (data.compareFunction !== void 0) texture.compareFunction = data.compareFunction; if (data.userData !== void 0) texture.userData = data.userData; textures[data.uuid] = texture; } } return textures; } parseObject(data, geometries, materials, textures, animations) { let object; function getGeometry(name) { if (geometries[name] === void 0) { console.warn("THREE.ObjectLoader: Undefined geometry", name); } return geometries[name]; } __name(getGeometry, "getGeometry"); function getMaterial(name) { if (name === void 0) return void 0; if (Array.isArray(name)) { const array = []; for (let i = 0, l = name.length; i < l; i++) { const uuid = name[i]; if (materials[uuid] === void 0) { console.warn("THREE.ObjectLoader: Undefined material", uuid); } array.push(materials[uuid]); } return array; } if (materials[name] === void 0) { console.warn("THREE.ObjectLoader: Undefined material", name); } return materials[name]; } __name(getMaterial, "getMaterial"); function getTexture(uuid) { if (textures[uuid] === void 0) { console.warn("THREE.ObjectLoader: Undefined texture", uuid); } return textures[uuid]; } __name(getTexture, "getTexture"); let geometry, material; switch (data.type) { case "Scene": object = new Scene(); if (data.background !== void 0) { if (Number.isInteger(data.background)) { object.background = new Color(data.background); } else { object.background = getTexture(data.background); } } if (data.environment !== void 0) { object.environment = getTexture(data.environment); } if (data.fog !== void 0) { if (data.fog.type === "Fog") { object.fog = new Fog(data.fog.color, data.fog.near, data.fog.far); } else if (data.fog.type === "FogExp2") { object.fog = new FogExp2(data.fog.color, data.fog.density); } if (data.fog.name !== "") { object.fog.name = data.fog.name; } } if (data.backgroundBlurriness !== void 0) object.backgroundBlurriness = data.backgroundBlurriness; if (data.backgroundIntensity !== void 0) object.backgroundIntensity = data.backgroundIntensity; if (data.backgroundRotation !== void 0) object.backgroundRotation.fromArray(data.backgroundRotation); if (data.environmentIntensity !== void 0) object.environmentIntensity = data.environmentIntensity; if (data.environmentRotation !== void 0) object.environmentRotation.fromArray(data.environmentRotation); break; case "PerspectiveCamera": object = new PerspectiveCamera(data.fov, data.aspect, data.near, data.far); if (data.focus !== void 0) object.focus = data.focus; if (data.zoom !== void 0) object.zoom = data.zoom; if (data.filmGauge !== void 0) object.filmGauge = data.filmGauge; if (data.filmOffset !== void 0) object.filmOffset = data.filmOffset; if (data.view !== void 0) object.view = Object.assign({}, data.view); break; case "OrthographicCamera": object = new OrthographicCamera(data.left, data.right, data.top, data.bottom, data.near, data.far); if (data.zoom !== void 0) object.zoom = data.zoom; if (data.view !== void 0) object.view = Object.assign({}, data.view); break; case "AmbientLight": object = new AmbientLight(data.color, data.intensity); break; case "DirectionalLight": object = new DirectionalLight(data.color, data.intensity); object.target = data.target || ""; break; case "PointLight": object = new PointLight(data.color, data.intensity, data.distance, data.decay); break; case "RectAreaLight": object = new RectAreaLight(data.color, data.intensity, data.width, data.height); break; case "SpotLight": object = new SpotLight(data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay); object.target = data.target || ""; break; case "HemisphereLight": object = new HemisphereLight(data.color, data.groundColor, data.intensity); break; case "LightProbe": object = new LightProbe().fromJSON(data); break; case "SkinnedMesh": geometry = getGeometry(data.geometry); material = getMaterial(data.material); object = new SkinnedMesh(geometry, material); if (data.bindMode !== void 0) object.bindMode = data.bindMode; if (data.bindMatrix !== void 0) object.bindMatrix.fromArray(data.bindMatrix); if (data.skeleton !== void 0) object.skeleton = data.skeleton; break; case "Mesh": geometry = getGeometry(data.geometry); material = getMaterial(data.material); object = new Mesh(geometry, material); break; case "InstancedMesh": geometry = getGeometry(data.geometry); material = getMaterial(data.material); const count = data.count; const instanceMatrix = data.instanceMatrix; const instanceColor = data.instanceColor; object = new InstancedMesh(geometry, material, count); object.instanceMatrix = new InstancedBufferAttribute(new Float32Array(instanceMatrix.array), 16); if (instanceColor !== void 0) object.instanceColor = new InstancedBufferAttribute(new Float32Array(instanceColor.array), instanceColor.itemSize); break; case "BatchedMesh": geometry = getGeometry(data.geometry); material = getMaterial(data.material); object = new BatchedMesh(data.maxInstanceCount, data.maxVertexCount, data.maxIndexCount, material); object.geometry = geometry; object.perObjectFrustumCulled = data.perObjectFrustumCulled; object.sortObjects = data.sortObjects; object._drawRanges = data.drawRanges; object._reservedRanges = data.reservedRanges; object._visibility = data.visibility; object._active = data.active; object._bounds = data.bounds.map((bound) => { const box = new Box3(); box.min.fromArray(bound.boxMin); box.max.fromArray(bound.boxMax); const sphere = new Sphere(); sphere.radius = bound.sphereRadius; sphere.center.fromArray(bound.sphereCenter); return { boxInitialized: bound.boxInitialized, box, sphereInitialized: bound.sphereInitialized, sphere }; }); object._maxInstanceCount = data.maxInstanceCount; object._maxVertexCount = data.maxVertexCount; object._maxIndexCount = data.maxIndexCount; object._geometryInitialized = data.geometryInitialized; object._geometryCount = data.geometryCount; object._matricesTexture = getTexture(data.matricesTexture.uuid); if (data.colorsTexture !== void 0) object._colorsTexture = getTexture(data.colorsTexture.uuid); break; case "LOD": object = new LOD(); break; case "Line": object = new Line(getGeometry(data.geometry), getMaterial(data.material)); break; case "LineLoop": object = new LineLoop(getGeometry(data.geometry), getMaterial(data.material)); break; case "LineSegments": object = new LineSegments(getGeometry(data.geometry), getMaterial(data.material)); break; case "PointCloud": case "Points": object = new Points(getGeometry(data.geometry), getMaterial(data.material)); break; case "Sprite": object = new Sprite(getMaterial(data.material)); break; case "Group": object = new Group(); break; case "Bone": object = new Bone(); break; default: object = new Object3D(); } object.uuid = data.uuid; if (data.name !== void 0) object.name = data.name; if (data.matrix !== void 0) { object.matrix.fromArray(data.matrix); if (data.matrixAutoUpdate !== void 0) object.matrixAutoUpdate = data.matrixAutoUpdate; if (object.matrixAutoUpdate) object.matrix.decompose(object.position, object.quaternion, object.scale); } else { if (data.position !== void 0) object.position.fromArray(data.position); if (data.rotation !== void 0) object.rotation.fromArray(data.rotation); if (data.quaternion !== void 0) object.quaternion.fromArray(data.quaternion); if (data.scale !== void 0) object.scale.fromArray(data.scale); } if (data.up !== void 0) object.up.fromArray(data.up); if (data.castShadow !== void 0) object.castShadow = data.castShadow; if (data.receiveShadow !== void 0) object.receiveShadow = data.receiveShadow; if (data.shadow) { if (data.shadow.intensity !== void 0) object.shadow.intensity = data.shadow.intensity; if (data.shadow.bias !== void 0) object.shadow.bias = data.shadow.bias; if (data.shadow.normalBias !== void 0) object.shadow.normalBias = data.shadow.normalBias; if (data.shadow.radius !== void 0) object.shadow.radius = data.shadow.radius; if (data.shadow.mapSize !== void 0) object.shadow.mapSize.fromArray(data.shadow.mapSize); if (data.shadow.camera !== void 0) object.shadow.camera = this.parseObject(data.shadow.camera); } if (data.visible !== void 0) object.visible = data.visible; if (data.frustumCulled !== void 0) object.frustumCulled = data.frustumCulled; if (data.renderOrder !== void 0) object.renderOrder = data.renderOrder; if (data.userData !== void 0) object.userData = data.userData; if (data.layers !== void 0) object.layers.mask = data.layers; if (data.children !== void 0) { const children = data.children; for (let i = 0; i < children.length; i++) { object.add(this.parseObject(children[i], geometries, materials, textures, animations)); } } if (data.animations !== void 0) { const objectAnimations = data.animations; for (let i = 0; i < objectAnimations.length; i++) { const uuid = objectAnimations[i]; object.animations.push(animations[uuid]); } } if (data.type === "LOD") { if (data.autoUpdate !== void 0) object.autoUpdate = data.autoUpdate; const levels = data.levels; for (let l = 0; l < levels.length; l++) { const level = levels[l]; const child = object.getObjectByProperty("uuid", level.object); if (child !== void 0) { object.addLevel(child, level.distance, level.hysteresis); } } } return object; } bindSkeletons(object, skeletons) { if (Object.keys(skeletons).length === 0) return; object.traverse(function(child) { if (child.isSkinnedMesh === true && child.skeleton !== void 0) { const skeleton = skeletons[child.skeleton]; if (skeleton === void 0) { console.warn("THREE.ObjectLoader: No skeleton found with UUID:", child.skeleton); } else { child.bind(skeleton, child.bindMatrix); } } }); } bindLightTargets(object) { object.traverse(function(child) { if (child.isDirectionalLight || child.isSpotLight) { const uuid = child.target; const target = object.getObjectByProperty("uuid", uuid); if (target !== void 0) { child.target = target; } else { child.target = new Object3D(); } } }); } } const TEXTURE_MAPPING = { UVMapping, CubeReflectionMapping, CubeRefractionMapping, EquirectangularReflectionMapping, EquirectangularRefractionMapping, CubeUVReflectionMapping }; const TEXTURE_WRAPPING = { RepeatWrapping, ClampToEdgeWrapping, MirroredRepeatWrapping }; const TEXTURE_FILTER = { NearestFilter, NearestMipmapNearestFilter, NearestMipmapLinearFilter, LinearFilter, LinearMipmapNearestFilter, LinearMipmapLinearFilter }; class ImageBitmapLoader extends Loader { static { __name(this, "ImageBitmapLoader"); } constructor(manager) { super(manager); this.isImageBitmapLoader = true; if (typeof createImageBitmap === "undefined") { console.warn("THREE.ImageBitmapLoader: createImageBitmap() not supported."); } if (typeof fetch === "undefined") { console.warn("THREE.ImageBitmapLoader: fetch() not supported."); } this.options = { premultiplyAlpha: "none" }; } setOptions(options) { this.options = options; return this; } load(url, onLoad, onProgress, onError) { if (url === void 0) url = ""; if (this.path !== void 0) url = this.path + url; url = this.manager.resolveURL(url); const scope = this; const cached = Cache.get(url); if (cached !== void 0) { scope.manager.itemStart(url); if (cached.then) { cached.then((imageBitmap) => { if (onLoad) onLoad(imageBitmap); scope.manager.itemEnd(url); }).catch((e) => { if (onError) onError(e); }); return; } setTimeout(function() { if (onLoad) onLoad(cached); scope.manager.itemEnd(url); }, 0); return cached; } const fetchOptions = {}; fetchOptions.credentials = this.crossOrigin === "anonymous" ? "same-origin" : "include"; fetchOptions.headers = this.requestHeader; const promise = fetch(url, fetchOptions).then(function(res) { return res.blob(); }).then(function(blob) { return createImageBitmap(blob, Object.assign(scope.options, { colorSpaceConversion: "none" })); }).then(function(imageBitmap) { Cache.add(url, imageBitmap); if (onLoad) onLoad(imageBitmap); scope.manager.itemEnd(url); return imageBitmap; }).catch(function(e) { if (onError) onError(e); Cache.remove(url); scope.manager.itemError(url); scope.manager.itemEnd(url); }); Cache.add(url, promise); scope.manager.itemStart(url); } } let _context; class AudioContext { static { __name(this, "AudioContext"); } static getContext() { if (_context === void 0) { _context = new (window.AudioContext || window.webkitAudioContext)(); } return _context; } static setContext(value) { _context = value; } } class AudioLoader extends Loader { static { __name(this, "AudioLoader"); } constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const loader = new FileLoader(this.manager); loader.setResponseType("arraybuffer"); loader.setPath(this.path); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(this.withCredentials); loader.load(url, function(buffer) { try { const bufferCopy = buffer.slice(0); const context = AudioContext.getContext(); context.decodeAudioData(bufferCopy, function(audioBuffer) { onLoad(audioBuffer); }).catch(handleError); } catch (e) { handleError(e); } }, onProgress, onError); function handleError(e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } __name(handleError, "handleError"); } } const _eyeRight = /* @__PURE__ */ new Matrix4(); const _eyeLeft = /* @__PURE__ */ new Matrix4(); const _projectionMatrix = /* @__PURE__ */ new Matrix4(); class StereoCamera { static { __name(this, "StereoCamera"); } constructor() { this.type = "StereoCamera"; this.aspect = 1; this.eyeSep = 0.064; this.cameraL = new PerspectiveCamera(); this.cameraL.layers.enable(1); this.cameraL.matrixAutoUpdate = false; this.cameraR = new PerspectiveCamera(); this.cameraR.layers.enable(2); this.cameraR.matrixAutoUpdate = false; this._cache = { focus: null, fov: null, aspect: null, near: null, far: null, zoom: null, eyeSep: null }; } update(camera) { const cache = this._cache; const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep; if (needsUpdate) { cache.focus = camera.focus; cache.fov = camera.fov; cache.aspect = camera.aspect * this.aspect; cache.near = camera.near; cache.far = camera.far; cache.zoom = camera.zoom; cache.eyeSep = this.eyeSep; _projectionMatrix.copy(camera.projectionMatrix); const eyeSepHalf = cache.eyeSep / 2; const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus; const ymax = cache.near * Math.tan(DEG2RAD * cache.fov * 0.5) / cache.zoom; let xmin, xmax; _eyeLeft.elements[12] = -eyeSepHalf; _eyeRight.elements[12] = eyeSepHalf; xmin = -ymax * cache.aspect + eyeSepOnProjection; xmax = ymax * cache.aspect + eyeSepOnProjection; _projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin); _projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin); this.cameraL.projectionMatrix.copy(_projectionMatrix); xmin = -ymax * cache.aspect - eyeSepOnProjection; xmax = ymax * cache.aspect - eyeSepOnProjection; _projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin); _projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin); this.cameraR.projectionMatrix.copy(_projectionMatrix); } this.cameraL.matrixWorld.copy(camera.matrixWorld).multiply(_eyeLeft); this.cameraR.matrixWorld.copy(camera.matrixWorld).multiply(_eyeRight); } } class Clock { static { __name(this, "Clock"); } constructor(autoStart = true) { this.autoStart = autoStart; this.startTime = 0; this.oldTime = 0; this.elapsedTime = 0; this.running = false; } start() { this.startTime = now(); this.oldTime = this.startTime; this.elapsedTime = 0; this.running = true; } stop() { this.getElapsedTime(); this.running = false; this.autoStart = false; } getElapsedTime() { this.getDelta(); return this.elapsedTime; } getDelta() { let diff = 0; if (this.autoStart && !this.running) { this.start(); return 0; } if (this.running) { const newTime = now(); diff = (newTime - this.oldTime) / 1e3; this.oldTime = newTime; this.elapsedTime += diff; } return diff; } } function now() { return performance.now(); } __name(now, "now"); const _position$1 = /* @__PURE__ */ new Vector3(); const _quaternion$1 = /* @__PURE__ */ new Quaternion(); const _scale$1 = /* @__PURE__ */ new Vector3(); const _orientation$1 = /* @__PURE__ */ new Vector3(); class AudioListener extends Object3D { static { __name(this, "AudioListener"); } constructor() { super(); this.type = "AudioListener"; this.context = AudioContext.getContext(); this.gain = this.context.createGain(); this.gain.connect(this.context.destination); this.filter = null; this.timeDelta = 0; this._clock = new Clock(); } getInput() { return this.gain; } removeFilter() { if (this.filter !== null) { this.gain.disconnect(this.filter); this.filter.disconnect(this.context.destination); this.gain.connect(this.context.destination); this.filter = null; } return this; } getFilter() { return this.filter; } setFilter(value) { if (this.filter !== null) { this.gain.disconnect(this.filter); this.filter.disconnect(this.context.destination); } else { this.gain.disconnect(this.context.destination); } this.filter = value; this.gain.connect(this.filter); this.filter.connect(this.context.destination); return this; } getMasterVolume() { return this.gain.gain.value; } setMasterVolume(value) { this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01); return this; } updateMatrixWorld(force) { super.updateMatrixWorld(force); const listener = this.context.listener; const up = this.up; this.timeDelta = this._clock.getDelta(); this.matrixWorld.decompose(_position$1, _quaternion$1, _scale$1); _orientation$1.set(0, 0, -1).applyQuaternion(_quaternion$1); if (listener.positionX) { const endTime = this.context.currentTime + this.timeDelta; listener.positionX.linearRampToValueAtTime(_position$1.x, endTime); listener.positionY.linearRampToValueAtTime(_position$1.y, endTime); listener.positionZ.linearRampToValueAtTime(_position$1.z, endTime); listener.forwardX.linearRampToValueAtTime(_orientation$1.x, endTime); listener.forwardY.linearRampToValueAtTime(_orientation$1.y, endTime); listener.forwardZ.linearRampToValueAtTime(_orientation$1.z, endTime); listener.upX.linearRampToValueAtTime(up.x, endTime); listener.upY.linearRampToValueAtTime(up.y, endTime); listener.upZ.linearRampToValueAtTime(up.z, endTime); } else { listener.setPosition(_position$1.x, _position$1.y, _position$1.z); listener.setOrientation(_orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z); } } } class Audio extends Object3D { static { __name(this, "Audio"); } constructor(listener) { super(); this.type = "Audio"; this.listener = listener; this.context = listener.context; this.gain = this.context.createGain(); this.gain.connect(listener.getInput()); this.autoplay = false; this.buffer = null; this.detune = 0; this.loop = false; this.loopStart = 0; this.loopEnd = 0; this.offset = 0; this.duration = void 0; this.playbackRate = 1; this.isPlaying = false; this.hasPlaybackControl = true; this.source = null; this.sourceType = "empty"; this._startedAt = 0; this._progress = 0; this._connected = false; this.filters = []; } getOutput() { return this.gain; } setNodeSource(audioNode) { this.hasPlaybackControl = false; this.sourceType = "audioNode"; this.source = audioNode; this.connect(); return this; } setMediaElementSource(mediaElement) { this.hasPlaybackControl = false; this.sourceType = "mediaNode"; this.source = this.context.createMediaElementSource(mediaElement); this.connect(); return this; } setMediaStreamSource(mediaStream) { this.hasPlaybackControl = false; this.sourceType = "mediaStreamNode"; this.source = this.context.createMediaStreamSource(mediaStream); this.connect(); return this; } setBuffer(audioBuffer) { this.buffer = audioBuffer; this.sourceType = "buffer"; if (this.autoplay) this.play(); return this; } play(delay = 0) { if (this.isPlaying === true) { console.warn("THREE.Audio: Audio is already playing."); return; } if (this.hasPlaybackControl === false) { console.warn("THREE.Audio: this Audio has no playback control."); return; } this._startedAt = this.context.currentTime + delay; const source = this.context.createBufferSource(); source.buffer = this.buffer; source.loop = this.loop; source.loopStart = this.loopStart; source.loopEnd = this.loopEnd; source.onended = this.onEnded.bind(this); source.start(this._startedAt, this._progress + this.offset, this.duration); this.isPlaying = true; this.source = source; this.setDetune(this.detune); this.setPlaybackRate(this.playbackRate); return this.connect(); } pause() { if (this.hasPlaybackControl === false) { console.warn("THREE.Audio: this Audio has no playback control."); return; } if (this.isPlaying === true) { this._progress += Math.max(this.context.currentTime - this._startedAt, 0) * this.playbackRate; if (this.loop === true) { this._progress = this._progress % (this.duration || this.buffer.duration); } this.source.stop(); this.source.onended = null; this.isPlaying = false; } return this; } stop(delay = 0) { if (this.hasPlaybackControl === false) { console.warn("THREE.Audio: this Audio has no playback control."); return; } this._progress = 0; if (this.source !== null) { this.source.stop(this.context.currentTime + delay); this.source.onended = null; } this.isPlaying = false; return this; } connect() { if (this.filters.length > 0) { this.source.connect(this.filters[0]); for (let i = 1, l = this.filters.length; i < l; i++) { this.filters[i - 1].connect(this.filters[i]); } this.filters[this.filters.length - 1].connect(this.getOutput()); } else { this.source.connect(this.getOutput()); } this._connected = true; return this; } disconnect() { if (this._connected === false) { return; } if (this.filters.length > 0) { this.source.disconnect(this.filters[0]); for (let i = 1, l = this.filters.length; i < l; i++) { this.filters[i - 1].disconnect(this.filters[i]); } this.filters[this.filters.length - 1].disconnect(this.getOutput()); } else { this.source.disconnect(this.getOutput()); } this._connected = false; return this; } getFilters() { return this.filters; } setFilters(value) { if (!value) value = []; if (this._connected === true) { this.disconnect(); this.filters = value.slice(); this.connect(); } else { this.filters = value.slice(); } return this; } setDetune(value) { this.detune = value; if (this.isPlaying === true && this.source.detune !== void 0) { this.source.detune.setTargetAtTime(this.detune, this.context.currentTime, 0.01); } return this; } getDetune() { return this.detune; } getFilter() { return this.getFilters()[0]; } setFilter(filter) { return this.setFilters(filter ? [filter] : []); } setPlaybackRate(value) { if (this.hasPlaybackControl === false) { console.warn("THREE.Audio: this Audio has no playback control."); return; } this.playbackRate = value; if (this.isPlaying === true) { this.source.playbackRate.setTargetAtTime(this.playbackRate, this.context.currentTime, 0.01); } return this; } getPlaybackRate() { return this.playbackRate; } onEnded() { this.isPlaying = false; } getLoop() { if (this.hasPlaybackControl === false) { console.warn("THREE.Audio: this Audio has no playback control."); return false; } return this.loop; } setLoop(value) { if (this.hasPlaybackControl === false) { console.warn("THREE.Audio: this Audio has no playback control."); return; } this.loop = value; if (this.isPlaying === true) { this.source.loop = this.loop; } return this; } setLoopStart(value) { this.loopStart = value; return this; } setLoopEnd(value) { this.loopEnd = value; return this; } getVolume() { return this.gain.gain.value; } setVolume(value) { this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01); return this; } } const _position = /* @__PURE__ */ new Vector3(); const _quaternion = /* @__PURE__ */ new Quaternion(); const _scale = /* @__PURE__ */ new Vector3(); const _orientation = /* @__PURE__ */ new Vector3(); class PositionalAudio extends Audio { static { __name(this, "PositionalAudio"); } constructor(listener) { super(listener); this.panner = this.context.createPanner(); this.panner.panningModel = "HRTF"; this.panner.connect(this.gain); } connect() { super.connect(); this.panner.connect(this.gain); } disconnect() { super.disconnect(); this.panner.disconnect(this.gain); } getOutput() { return this.panner; } getRefDistance() { return this.panner.refDistance; } setRefDistance(value) { this.panner.refDistance = value; return this; } getRolloffFactor() { return this.panner.rolloffFactor; } setRolloffFactor(value) { this.panner.rolloffFactor = value; return this; } getDistanceModel() { return this.panner.distanceModel; } setDistanceModel(value) { this.panner.distanceModel = value; return this; } getMaxDistance() { return this.panner.maxDistance; } setMaxDistance(value) { this.panner.maxDistance = value; return this; } setDirectionalCone(coneInnerAngle, coneOuterAngle, coneOuterGain) { this.panner.coneInnerAngle = coneInnerAngle; this.panner.coneOuterAngle = coneOuterAngle; this.panner.coneOuterGain = coneOuterGain; return this; } updateMatrixWorld(force) { super.updateMatrixWorld(force); if (this.hasPlaybackControl === true && this.isPlaying === false) return; this.matrixWorld.decompose(_position, _quaternion, _scale); _orientation.set(0, 0, 1).applyQuaternion(_quaternion); const panner = this.panner; if (panner.positionX) { const endTime = this.context.currentTime + this.listener.timeDelta; panner.positionX.linearRampToValueAtTime(_position.x, endTime); panner.positionY.linearRampToValueAtTime(_position.y, endTime); panner.positionZ.linearRampToValueAtTime(_position.z, endTime); panner.orientationX.linearRampToValueAtTime(_orientation.x, endTime); panner.orientationY.linearRampToValueAtTime(_orientation.y, endTime); panner.orientationZ.linearRampToValueAtTime(_orientation.z, endTime); } else { panner.setPosition(_position.x, _position.y, _position.z); panner.setOrientation(_orientation.x, _orientation.y, _orientation.z); } } } class AudioAnalyser { static { __name(this, "AudioAnalyser"); } constructor(audio, fftSize = 2048) { this.analyser = audio.context.createAnalyser(); this.analyser.fftSize = fftSize; this.data = new Uint8Array(this.analyser.frequencyBinCount); audio.getOutput().connect(this.analyser); } getFrequencyData() { this.analyser.getByteFrequencyData(this.data); return this.data; } getAverageFrequency() { let value = 0; const data = this.getFrequencyData(); for (let i = 0; i < data.length; i++) { value += data[i]; } return value / data.length; } } class PropertyMixer { static { __name(this, "PropertyMixer"); } constructor(binding, typeName, valueSize) { this.binding = binding; this.valueSize = valueSize; let mixFunction, mixFunctionAdditive, setIdentity; switch (typeName) { case "quaternion": mixFunction = this._slerp; mixFunctionAdditive = this._slerpAdditive; setIdentity = this._setAdditiveIdentityQuaternion; this.buffer = new Float64Array(valueSize * 6); this._workIndex = 5; break; case "string": case "bool": mixFunction = this._select; mixFunctionAdditive = this._select; setIdentity = this._setAdditiveIdentityOther; this.buffer = new Array(valueSize * 5); break; default: mixFunction = this._lerp; mixFunctionAdditive = this._lerpAdditive; setIdentity = this._setAdditiveIdentityNumeric; this.buffer = new Float64Array(valueSize * 5); } this._mixBufferRegion = mixFunction; this._mixBufferRegionAdditive = mixFunctionAdditive; this._setIdentity = setIdentity; this._origIndex = 3; this._addIndex = 4; this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; this.useCount = 0; this.referenceCount = 0; } // accumulate data in the 'incoming' region into 'accu' accumulate(accuIndex, weight) { const buffer = this.buffer, stride = this.valueSize, offset = accuIndex * stride + stride; let currentWeight = this.cumulativeWeight; if (currentWeight === 0) { for (let i = 0; i !== stride; ++i) { buffer[offset + i] = buffer[i]; } currentWeight = weight; } else { currentWeight += weight; const mix = weight / currentWeight; this._mixBufferRegion(buffer, offset, 0, mix, stride); } this.cumulativeWeight = currentWeight; } // accumulate data in the 'incoming' region into 'add' accumulateAdditive(weight) { const buffer = this.buffer, stride = this.valueSize, offset = stride * this._addIndex; if (this.cumulativeWeightAdditive === 0) { this._setIdentity(); } this._mixBufferRegionAdditive(buffer, offset, 0, weight, stride); this.cumulativeWeightAdditive += weight; } // apply the state of 'accu' to the binding when accus differ apply(accuIndex) { const stride = this.valueSize, buffer = this.buffer, offset = accuIndex * stride + stride, weight = this.cumulativeWeight, weightAdditive = this.cumulativeWeightAdditive, binding = this.binding; this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; if (weight < 1) { const originalValueOffset = stride * this._origIndex; this._mixBufferRegion( buffer, offset, originalValueOffset, 1 - weight, stride ); } if (weightAdditive > 0) { this._mixBufferRegionAdditive(buffer, offset, this._addIndex * stride, 1, stride); } for (let i = stride, e = stride + stride; i !== e; ++i) { if (buffer[i] !== buffer[i + stride]) { binding.setValue(buffer, offset); break; } } } // remember the state of the bound property and copy it to both accus saveOriginalState() { const binding = this.binding; const buffer = this.buffer, stride = this.valueSize, originalValueOffset = stride * this._origIndex; binding.getValue(buffer, originalValueOffset); for (let i = stride, e = originalValueOffset; i !== e; ++i) { buffer[i] = buffer[originalValueOffset + i % stride]; } this._setIdentity(); this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; } // apply the state previously taken via 'saveOriginalState' to the binding restoreOriginalState() { const originalValueOffset = this.valueSize * 3; this.binding.setValue(this.buffer, originalValueOffset); } _setAdditiveIdentityNumeric() { const startIndex = this._addIndex * this.valueSize; const endIndex = startIndex + this.valueSize; for (let i = startIndex; i < endIndex; i++) { this.buffer[i] = 0; } } _setAdditiveIdentityQuaternion() { this._setAdditiveIdentityNumeric(); this.buffer[this._addIndex * this.valueSize + 3] = 1; } _setAdditiveIdentityOther() { const startIndex = this._origIndex * this.valueSize; const targetIndex = this._addIndex * this.valueSize; for (let i = 0; i < this.valueSize; i++) { this.buffer[targetIndex + i] = this.buffer[startIndex + i]; } } // mix functions _select(buffer, dstOffset, srcOffset, t, stride) { if (t >= 0.5) { for (let i = 0; i !== stride; ++i) { buffer[dstOffset + i] = buffer[srcOffset + i]; } } } _slerp(buffer, dstOffset, srcOffset, t) { Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t); } _slerpAdditive(buffer, dstOffset, srcOffset, t, stride) { const workOffset = this._workIndex * stride; Quaternion.multiplyQuaternionsFlat(buffer, workOffset, buffer, dstOffset, buffer, srcOffset); Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t); } _lerp(buffer, dstOffset, srcOffset, t, stride) { const s = 1 - t; for (let i = 0; i !== stride; ++i) { const j = dstOffset + i; buffer[j] = buffer[j] * s + buffer[srcOffset + i] * t; } } _lerpAdditive(buffer, dstOffset, srcOffset, t, stride) { for (let i = 0; i !== stride; ++i) { const j = dstOffset + i; buffer[j] = buffer[j] + buffer[srcOffset + i] * t; } } } const _RESERVED_CHARS_RE = "\\[\\]\\.:\\/"; const _reservedRe = new RegExp("[" + _RESERVED_CHARS_RE + "]", "g"); const _wordChar = "[^" + _RESERVED_CHARS_RE + "]"; const _wordCharOrDot = "[^" + _RESERVED_CHARS_RE.replace("\\.", "") + "]"; const _directoryRe = /* @__PURE__ */ /((?:WC+[\/:])*)/.source.replace("WC", _wordChar); const _nodeRe = /* @__PURE__ */ /(WCOD+)?/.source.replace("WCOD", _wordCharOrDot); const _objectRe = /* @__PURE__ */ /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace("WC", _wordChar); const _propertyRe = /* @__PURE__ */ /\.(WC+)(?:\[(.+)\])?/.source.replace("WC", _wordChar); const _trackRe = new RegExp( "^" + _directoryRe + _nodeRe + _objectRe + _propertyRe + "$" ); const _supportedObjectNames = ["material", "materials", "bones", "map"]; class Composite { static { __name(this, "Composite"); } constructor(targetGroup, path, optionalParsedPath) { const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName(path); this._targetGroup = targetGroup; this._bindings = targetGroup.subscribe_(path, parsedPath); } getValue(array, offset) { this.bind(); const firstValidIndex = this._targetGroup.nCachedObjects_, binding = this._bindings[firstValidIndex]; if (binding !== void 0) binding.getValue(array, offset); } setValue(array, offset) { const bindings = this._bindings; for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { bindings[i].setValue(array, offset); } } bind() { const bindings = this._bindings; for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { bindings[i].bind(); } } unbind() { const bindings = this._bindings; for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { bindings[i].unbind(); } } } class PropertyBinding { static { __name(this, "PropertyBinding"); } constructor(rootNode, path, parsedPath) { this.path = path; this.parsedPath = parsedPath || PropertyBinding.parseTrackName(path); this.node = PropertyBinding.findNode(rootNode, this.parsedPath.nodeName); this.rootNode = rootNode; this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } static create(root, path, parsedPath) { if (!(root && root.isAnimationObjectGroup)) { return new PropertyBinding(root, path, parsedPath); } else { return new PropertyBinding.Composite(root, path, parsedPath); } } /** * Replaces spaces with underscores and removes unsupported characters from * node names, to ensure compatibility with parseTrackName(). * * @param {string} name Node name to be sanitized. * @return {string} */ static sanitizeNodeName(name) { return name.replace(/\s/g, "_").replace(_reservedRe, ""); } static parseTrackName(trackName) { const matches = _trackRe.exec(trackName); if (matches === null) { throw new Error("PropertyBinding: Cannot parse trackName: " + trackName); } const results = { // directoryName: matches[ 1 ], // (tschw) currently unused nodeName: matches[2], objectName: matches[3], objectIndex: matches[4], propertyName: matches[5], // required propertyIndex: matches[6] }; const lastDot = results.nodeName && results.nodeName.lastIndexOf("."); if (lastDot !== void 0 && lastDot !== -1) { const objectName = results.nodeName.substring(lastDot + 1); if (_supportedObjectNames.indexOf(objectName) !== -1) { results.nodeName = results.nodeName.substring(0, lastDot); results.objectName = objectName; } } if (results.propertyName === null || results.propertyName.length === 0) { throw new Error("PropertyBinding: can not parse propertyName from trackName: " + trackName); } return results; } static findNode(root, nodeName) { if (nodeName === void 0 || nodeName === "" || nodeName === "." || nodeName === -1 || nodeName === root.name || nodeName === root.uuid) { return root; } if (root.skeleton) { const bone = root.skeleton.getBoneByName(nodeName); if (bone !== void 0) { return bone; } } if (root.children) { const searchNodeSubtree = /* @__PURE__ */ __name(function(children) { for (let i = 0; i < children.length; i++) { const childNode = children[i]; if (childNode.name === nodeName || childNode.uuid === nodeName) { return childNode; } const result = searchNodeSubtree(childNode.children); if (result) return result; } return null; }, "searchNodeSubtree"); const subTreeNode = searchNodeSubtree(root.children); if (subTreeNode) { return subTreeNode; } } return null; } // these are used to "bind" a nonexistent property _getValue_unavailable() { } _setValue_unavailable() { } // Getters _getValue_direct(buffer, offset) { buffer[offset] = this.targetObject[this.propertyName]; } _getValue_array(buffer, offset) { const source = this.resolvedProperty; for (let i = 0, n = source.length; i !== n; ++i) { buffer[offset++] = source[i]; } } _getValue_arrayElement(buffer, offset) { buffer[offset] = this.resolvedProperty[this.propertyIndex]; } _getValue_toArray(buffer, offset) { this.resolvedProperty.toArray(buffer, offset); } // Direct _setValue_direct(buffer, offset) { this.targetObject[this.propertyName] = buffer[offset]; } _setValue_direct_setNeedsUpdate(buffer, offset) { this.targetObject[this.propertyName] = buffer[offset]; this.targetObject.needsUpdate = true; } _setValue_direct_setMatrixWorldNeedsUpdate(buffer, offset) { this.targetObject[this.propertyName] = buffer[offset]; this.targetObject.matrixWorldNeedsUpdate = true; } // EntireArray _setValue_array(buffer, offset) { const dest = this.resolvedProperty; for (let i = 0, n = dest.length; i !== n; ++i) { dest[i] = buffer[offset++]; } } _setValue_array_setNeedsUpdate(buffer, offset) { const dest = this.resolvedProperty; for (let i = 0, n = dest.length; i !== n; ++i) { dest[i] = buffer[offset++]; } this.targetObject.needsUpdate = true; } _setValue_array_setMatrixWorldNeedsUpdate(buffer, offset) { const dest = this.resolvedProperty; for (let i = 0, n = dest.length; i !== n; ++i) { dest[i] = buffer[offset++]; } this.targetObject.matrixWorldNeedsUpdate = true; } // ArrayElement _setValue_arrayElement(buffer, offset) { this.resolvedProperty[this.propertyIndex] = buffer[offset]; } _setValue_arrayElement_setNeedsUpdate(buffer, offset) { this.resolvedProperty[this.propertyIndex] = buffer[offset]; this.targetObject.needsUpdate = true; } _setValue_arrayElement_setMatrixWorldNeedsUpdate(buffer, offset) { this.resolvedProperty[this.propertyIndex] = buffer[offset]; this.targetObject.matrixWorldNeedsUpdate = true; } // HasToFromArray _setValue_fromArray(buffer, offset) { this.resolvedProperty.fromArray(buffer, offset); } _setValue_fromArray_setNeedsUpdate(buffer, offset) { this.resolvedProperty.fromArray(buffer, offset); this.targetObject.needsUpdate = true; } _setValue_fromArray_setMatrixWorldNeedsUpdate(buffer, offset) { this.resolvedProperty.fromArray(buffer, offset); this.targetObject.matrixWorldNeedsUpdate = true; } _getValue_unbound(targetArray, offset) { this.bind(); this.getValue(targetArray, offset); } _setValue_unbound(sourceArray, offset) { this.bind(); this.setValue(sourceArray, offset); } // create getter / setter pair for a property in the scene graph bind() { let targetObject = this.node; const parsedPath = this.parsedPath; const objectName = parsedPath.objectName; const propertyName = parsedPath.propertyName; let propertyIndex = parsedPath.propertyIndex; if (!targetObject) { targetObject = PropertyBinding.findNode(this.rootNode, parsedPath.nodeName); this.node = targetObject; } this.getValue = this._getValue_unavailable; this.setValue = this._setValue_unavailable; if (!targetObject) { console.warn("THREE.PropertyBinding: No target node found for track: " + this.path + "."); return; } if (objectName) { let objectIndex = parsedPath.objectIndex; switch (objectName) { case "materials": if (!targetObject.material) { console.error("THREE.PropertyBinding: Can not bind to material as node does not have a material.", this); return; } if (!targetObject.material.materials) { console.error("THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.", this); return; } targetObject = targetObject.material.materials; break; case "bones": if (!targetObject.skeleton) { console.error("THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.", this); return; } targetObject = targetObject.skeleton.bones; for (let i = 0; i < targetObject.length; i++) { if (targetObject[i].name === objectIndex) { objectIndex = i; break; } } break; case "map": if ("map" in targetObject) { targetObject = targetObject.map; break; } if (!targetObject.material) { console.error("THREE.PropertyBinding: Can not bind to material as node does not have a material.", this); return; } if (!targetObject.material.map) { console.error("THREE.PropertyBinding: Can not bind to material.map as node.material does not have a map.", this); return; } targetObject = targetObject.material.map; break; default: if (targetObject[objectName] === void 0) { console.error("THREE.PropertyBinding: Can not bind to objectName of node undefined.", this); return; } targetObject = targetObject[objectName]; } if (objectIndex !== void 0) { if (targetObject[objectIndex] === void 0) { console.error("THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.", this, targetObject); return; } targetObject = targetObject[objectIndex]; } } const nodeProperty = targetObject[propertyName]; if (nodeProperty === void 0) { const nodeName = parsedPath.nodeName; console.error("THREE.PropertyBinding: Trying to update property for track: " + nodeName + "." + propertyName + " but it wasn't found.", targetObject); return; } let versioning = this.Versioning.None; this.targetObject = targetObject; if (targetObject.needsUpdate !== void 0) { versioning = this.Versioning.NeedsUpdate; } else if (targetObject.matrixWorldNeedsUpdate !== void 0) { versioning = this.Versioning.MatrixWorldNeedsUpdate; } let bindingType = this.BindingType.Direct; if (propertyIndex !== void 0) { if (propertyName === "morphTargetInfluences") { if (!targetObject.geometry) { console.error("THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.", this); return; } if (!targetObject.geometry.morphAttributes) { console.error("THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.", this); return; } if (targetObject.morphTargetDictionary[propertyIndex] !== void 0) { propertyIndex = targetObject.morphTargetDictionary[propertyIndex]; } } bindingType = this.BindingType.ArrayElement; this.resolvedProperty = nodeProperty; this.propertyIndex = propertyIndex; } else if (nodeProperty.fromArray !== void 0 && nodeProperty.toArray !== void 0) { bindingType = this.BindingType.HasFromToArray; this.resolvedProperty = nodeProperty; } else if (Array.isArray(nodeProperty)) { bindingType = this.BindingType.EntireArray; this.resolvedProperty = nodeProperty; } else { this.propertyName = propertyName; } this.getValue = this.GetterByBindingType[bindingType]; this.setValue = this.SetterByBindingTypeAndVersioning[bindingType][versioning]; } unbind() { this.node = null; this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } } PropertyBinding.Composite = Composite; PropertyBinding.prototype.BindingType = { Direct: 0, EntireArray: 1, ArrayElement: 2, HasFromToArray: 3 }; PropertyBinding.prototype.Versioning = { None: 0, NeedsUpdate: 1, MatrixWorldNeedsUpdate: 2 }; PropertyBinding.prototype.GetterByBindingType = [ PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray ]; PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [ [ // Direct PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate ], [ // EntireArray PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate ], [ // ArrayElement PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate ], [ // HasToFromArray PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate ] ]; class AnimationObjectGroup { static { __name(this, "AnimationObjectGroup"); } constructor() { this.isAnimationObjectGroup = true; this.uuid = generateUUID(); this._objects = Array.prototype.slice.call(arguments); this.nCachedObjects_ = 0; const indices = {}; this._indicesByUUID = indices; for (let i = 0, n = arguments.length; i !== n; ++i) { indices[arguments[i].uuid] = i; } this._paths = []; this._parsedPaths = []; this._bindings = []; this._bindingsIndicesByPath = {}; const scope = this; this.stats = { objects: { get total() { return scope._objects.length; }, get inUse() { return this.total - scope.nCachedObjects_; } }, get bindingsPerObject() { return scope._bindings.length; } }; } add() { const objects = this._objects, indicesByUUID = this._indicesByUUID, paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, nBindings = bindings.length; let knownObject = void 0, nObjects = objects.length, nCachedObjects = this.nCachedObjects_; for (let i = 0, n = arguments.length; i !== n; ++i) { const object = arguments[i], uuid = object.uuid; let index = indicesByUUID[uuid]; if (index === void 0) { index = nObjects++; indicesByUUID[uuid] = index; objects.push(object); for (let j = 0, m = nBindings; j !== m; ++j) { bindings[j].push(new PropertyBinding(object, paths[j], parsedPaths[j])); } } else if (index < nCachedObjects) { knownObject = objects[index]; const firstActiveIndex = --nCachedObjects, lastCachedObject = objects[firstActiveIndex]; indicesByUUID[lastCachedObject.uuid] = index; objects[index] = lastCachedObject; indicesByUUID[uuid] = firstActiveIndex; objects[firstActiveIndex] = object; for (let j = 0, m = nBindings; j !== m; ++j) { const bindingsForPath = bindings[j], lastCached = bindingsForPath[firstActiveIndex]; let binding = bindingsForPath[index]; bindingsForPath[index] = lastCached; if (binding === void 0) { binding = new PropertyBinding(object, paths[j], parsedPaths[j]); } bindingsForPath[firstActiveIndex] = binding; } } else if (objects[index] !== knownObject) { console.error("THREE.AnimationObjectGroup: Different objects with the same UUID detected. Clean the caches or recreate your infrastructure when reloading scenes."); } } this.nCachedObjects_ = nCachedObjects; } remove() { const objects = this._objects, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; let nCachedObjects = this.nCachedObjects_; for (let i = 0, n = arguments.length; i !== n; ++i) { const object = arguments[i], uuid = object.uuid, index = indicesByUUID[uuid]; if (index !== void 0 && index >= nCachedObjects) { const lastCachedIndex = nCachedObjects++, firstActiveObject = objects[lastCachedIndex]; indicesByUUID[firstActiveObject.uuid] = index; objects[index] = firstActiveObject; indicesByUUID[uuid] = lastCachedIndex; objects[lastCachedIndex] = object; for (let j = 0, m = nBindings; j !== m; ++j) { const bindingsForPath = bindings[j], firstActive = bindingsForPath[lastCachedIndex], binding = bindingsForPath[index]; bindingsForPath[index] = firstActive; bindingsForPath[lastCachedIndex] = binding; } } } this.nCachedObjects_ = nCachedObjects; } // remove & forget uncache() { const objects = this._objects, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; let nCachedObjects = this.nCachedObjects_, nObjects = objects.length; for (let i = 0, n = arguments.length; i !== n; ++i) { const object = arguments[i], uuid = object.uuid, index = indicesByUUID[uuid]; if (index !== void 0) { delete indicesByUUID[uuid]; if (index < nCachedObjects) { const firstActiveIndex = --nCachedObjects, lastCachedObject = objects[firstActiveIndex], lastIndex = --nObjects, lastObject = objects[lastIndex]; indicesByUUID[lastCachedObject.uuid] = index; objects[index] = lastCachedObject; indicesByUUID[lastObject.uuid] = firstActiveIndex; objects[firstActiveIndex] = lastObject; objects.pop(); for (let j = 0, m = nBindings; j !== m; ++j) { const bindingsForPath = bindings[j], lastCached = bindingsForPath[firstActiveIndex], last = bindingsForPath[lastIndex]; bindingsForPath[index] = lastCached; bindingsForPath[firstActiveIndex] = last; bindingsForPath.pop(); } } else { const lastIndex = --nObjects, lastObject = objects[lastIndex]; if (lastIndex > 0) { indicesByUUID[lastObject.uuid] = index; } objects[index] = lastObject; objects.pop(); for (let j = 0, m = nBindings; j !== m; ++j) { const bindingsForPath = bindings[j]; bindingsForPath[index] = bindingsForPath[lastIndex]; bindingsForPath.pop(); } } } } this.nCachedObjects_ = nCachedObjects; } // Internal interface used by befriended PropertyBinding.Composite: subscribe_(path, parsedPath) { const indicesByPath = this._bindingsIndicesByPath; let index = indicesByPath[path]; const bindings = this._bindings; if (index !== void 0) return bindings[index]; const paths = this._paths, parsedPaths = this._parsedPaths, objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, bindingsForPath = new Array(nObjects); index = bindings.length; indicesByPath[path] = index; paths.push(path); parsedPaths.push(parsedPath); bindings.push(bindingsForPath); for (let i = nCachedObjects, n = objects.length; i !== n; ++i) { const object = objects[i]; bindingsForPath[i] = new PropertyBinding(object, path, parsedPath); } return bindingsForPath; } unsubscribe_(path) { const indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[path]; if (index !== void 0) { const paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, lastBindingsIndex = bindings.length - 1, lastBindings = bindings[lastBindingsIndex], lastBindingsPath = path[lastBindingsIndex]; indicesByPath[lastBindingsPath] = index; bindings[index] = lastBindings; bindings.pop(); parsedPaths[index] = parsedPaths[lastBindingsIndex]; parsedPaths.pop(); paths[index] = paths[lastBindingsIndex]; paths.pop(); } } } class AnimationAction { static { __name(this, "AnimationAction"); } constructor(mixer, clip, localRoot = null, blendMode = clip.blendMode) { this._mixer = mixer; this._clip = clip; this._localRoot = localRoot; this.blendMode = blendMode; const tracks = clip.tracks, nTracks = tracks.length, interpolants = new Array(nTracks); const interpolantSettings = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }; for (let i = 0; i !== nTracks; ++i) { const interpolant = tracks[i].createInterpolant(null); interpolants[i] = interpolant; interpolant.settings = interpolantSettings; } this._interpolantSettings = interpolantSettings; this._interpolants = interpolants; this._propertyBindings = new Array(nTracks); this._cacheIndex = null; this._byClipCacheIndex = null; this._timeScaleInterpolant = null; this._weightInterpolant = null; this.loop = LoopRepeat; this._loopCount = -1; this._startTime = null; this.time = 0; this.timeScale = 1; this._effectiveTimeScale = 1; this.weight = 1; this._effectiveWeight = 1; this.repetitions = Infinity; this.paused = false; this.enabled = true; this.clampWhenFinished = false; this.zeroSlopeAtStart = true; this.zeroSlopeAtEnd = true; } // State & Scheduling play() { this._mixer._activateAction(this); return this; } stop() { this._mixer._deactivateAction(this); return this.reset(); } reset() { this.paused = false; this.enabled = true; this.time = 0; this._loopCount = -1; this._startTime = null; return this.stopFading().stopWarping(); } isRunning() { return this.enabled && !this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction(this); } // return true when play has been called isScheduled() { return this._mixer._isActiveAction(this); } startAt(time) { this._startTime = time; return this; } setLoop(mode, repetitions) { this.loop = mode; this.repetitions = repetitions; return this; } // Weight // set the weight stopping any scheduled fading // although .enabled = false yields an effective weight of zero, this // method does *not* change .enabled, because it would be confusing setEffectiveWeight(weight) { this.weight = weight; this._effectiveWeight = this.enabled ? weight : 0; return this.stopFading(); } // return the weight considering fading and .enabled getEffectiveWeight() { return this._effectiveWeight; } fadeIn(duration) { return this._scheduleFading(duration, 0, 1); } fadeOut(duration) { return this._scheduleFading(duration, 1, 0); } crossFadeFrom(fadeOutAction, duration, warp) { fadeOutAction.fadeOut(duration); this.fadeIn(duration); if (warp) { const fadeInDuration = this._clip.duration, fadeOutDuration = fadeOutAction._clip.duration, startEndRatio = fadeOutDuration / fadeInDuration, endStartRatio = fadeInDuration / fadeOutDuration; fadeOutAction.warp(1, startEndRatio, duration); this.warp(endStartRatio, 1, duration); } return this; } crossFadeTo(fadeInAction, duration, warp) { return fadeInAction.crossFadeFrom(this, duration, warp); } stopFading() { const weightInterpolant = this._weightInterpolant; if (weightInterpolant !== null) { this._weightInterpolant = null; this._mixer._takeBackControlInterpolant(weightInterpolant); } return this; } // Time Scale Control // set the time scale stopping any scheduled warping // although .paused = true yields an effective time scale of zero, this // method does *not* change .paused, because it would be confusing setEffectiveTimeScale(timeScale) { this.timeScale = timeScale; this._effectiveTimeScale = this.paused ? 0 : timeScale; return this.stopWarping(); } // return the time scale considering warping and .paused getEffectiveTimeScale() { return this._effectiveTimeScale; } setDuration(duration) { this.timeScale = this._clip.duration / duration; return this.stopWarping(); } syncWith(action) { this.time = action.time; this.timeScale = action.timeScale; return this.stopWarping(); } halt(duration) { return this.warp(this._effectiveTimeScale, 0, duration); } warp(startTimeScale, endTimeScale, duration) { const mixer = this._mixer, now2 = mixer.time, timeScale = this.timeScale; let interpolant = this._timeScaleInterpolant; if (interpolant === null) { interpolant = mixer._lendControlInterpolant(); this._timeScaleInterpolant = interpolant; } const times = interpolant.parameterPositions, values = interpolant.sampleValues; times[0] = now2; times[1] = now2 + duration; values[0] = startTimeScale / timeScale; values[1] = endTimeScale / timeScale; return this; } stopWarping() { const timeScaleInterpolant = this._timeScaleInterpolant; if (timeScaleInterpolant !== null) { this._timeScaleInterpolant = null; this._mixer._takeBackControlInterpolant(timeScaleInterpolant); } return this; } // Object Accessors getMixer() { return this._mixer; } getClip() { return this._clip; } getRoot() { return this._localRoot || this._mixer._root; } // Interna _update(time, deltaTime, timeDirection, accuIndex) { if (!this.enabled) { this._updateWeight(time); return; } const startTime = this._startTime; if (startTime !== null) { const timeRunning = (time - startTime) * timeDirection; if (timeRunning < 0 || timeDirection === 0) { deltaTime = 0; } else { this._startTime = null; deltaTime = timeDirection * timeRunning; } } deltaTime *= this._updateTimeScale(time); const clipTime = this._updateTime(deltaTime); const weight = this._updateWeight(time); if (weight > 0) { const interpolants = this._interpolants; const propertyMixers = this._propertyBindings; switch (this.blendMode) { case AdditiveAnimationBlendMode: for (let j = 0, m = interpolants.length; j !== m; ++j) { interpolants[j].evaluate(clipTime); propertyMixers[j].accumulateAdditive(weight); } break; case NormalAnimationBlendMode: default: for (let j = 0, m = interpolants.length; j !== m; ++j) { interpolants[j].evaluate(clipTime); propertyMixers[j].accumulate(accuIndex, weight); } } } } _updateWeight(time) { let weight = 0; if (this.enabled) { weight = this.weight; const interpolant = this._weightInterpolant; if (interpolant !== null) { const interpolantValue = interpolant.evaluate(time)[0]; weight *= interpolantValue; if (time > interpolant.parameterPositions[1]) { this.stopFading(); if (interpolantValue === 0) { this.enabled = false; } } } } this._effectiveWeight = weight; return weight; } _updateTimeScale(time) { let timeScale = 0; if (!this.paused) { timeScale = this.timeScale; const interpolant = this._timeScaleInterpolant; if (interpolant !== null) { const interpolantValue = interpolant.evaluate(time)[0]; timeScale *= interpolantValue; if (time > interpolant.parameterPositions[1]) { this.stopWarping(); if (timeScale === 0) { this.paused = true; } else { this.timeScale = timeScale; } } } } this._effectiveTimeScale = timeScale; return timeScale; } _updateTime(deltaTime) { const duration = this._clip.duration; const loop = this.loop; let time = this.time + deltaTime; let loopCount = this._loopCount; const pingPong = loop === LoopPingPong; if (deltaTime === 0) { if (loopCount === -1) return time; return pingPong && (loopCount & 1) === 1 ? duration - time : time; } if (loop === LoopOnce) { if (loopCount === -1) { this._loopCount = 0; this._setEndings(true, true, false); } handle_stop: { if (time >= duration) { time = duration; } else if (time < 0) { time = 0; } else { this.time = time; break handle_stop; } if (this.clampWhenFinished) this.paused = true; else this.enabled = false; this.time = time; this._mixer.dispatchEvent({ type: "finished", action: this, direction: deltaTime < 0 ? -1 : 1 }); } } else { if (loopCount === -1) { if (deltaTime >= 0) { loopCount = 0; this._setEndings(true, this.repetitions === 0, pingPong); } else { this._setEndings(this.repetitions === 0, true, pingPong); } } if (time >= duration || time < 0) { const loopDelta = Math.floor(time / duration); time -= duration * loopDelta; loopCount += Math.abs(loopDelta); const pending = this.repetitions - loopCount; if (pending <= 0) { if (this.clampWhenFinished) this.paused = true; else this.enabled = false; time = deltaTime > 0 ? duration : 0; this.time = time; this._mixer.dispatchEvent({ type: "finished", action: this, direction: deltaTime > 0 ? 1 : -1 }); } else { if (pending === 1) { const atStart = deltaTime < 0; this._setEndings(atStart, !atStart, pingPong); } else { this._setEndings(false, false, pingPong); } this._loopCount = loopCount; this.time = time; this._mixer.dispatchEvent({ type: "loop", action: this, loopDelta }); } } else { this.time = time; } if (pingPong && (loopCount & 1) === 1) { return duration - time; } } return time; } _setEndings(atStart, atEnd, pingPong) { const settings = this._interpolantSettings; if (pingPong) { settings.endingStart = ZeroSlopeEnding; settings.endingEnd = ZeroSlopeEnding; } else { if (atStart) { settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingStart = WrapAroundEnding; } if (atEnd) { settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingEnd = WrapAroundEnding; } } } _scheduleFading(duration, weightNow, weightThen) { const mixer = this._mixer, now2 = mixer.time; let interpolant = this._weightInterpolant; if (interpolant === null) { interpolant = mixer._lendControlInterpolant(); this._weightInterpolant = interpolant; } const times = interpolant.parameterPositions, values = interpolant.sampleValues; times[0] = now2; values[0] = weightNow; times[1] = now2 + duration; values[1] = weightThen; return this; } } const _controlInterpolantsResultBuffer = new Float32Array(1); class AnimationMixer extends EventDispatcher { static { __name(this, "AnimationMixer"); } constructor(root) { super(); this._root = root; this._initMemoryManager(); this._accuIndex = 0; this.time = 0; this.timeScale = 1; } _bindAction(action, prototypeAction) { const root = action._localRoot || this._root, tracks = action._clip.tracks, nTracks = tracks.length, bindings = action._propertyBindings, interpolants = action._interpolants, rootUuid = root.uuid, bindingsByRoot = this._bindingsByRootAndName; let bindingsByName = bindingsByRoot[rootUuid]; if (bindingsByName === void 0) { bindingsByName = {}; bindingsByRoot[rootUuid] = bindingsByName; } for (let i = 0; i !== nTracks; ++i) { const track = tracks[i], trackName = track.name; let binding = bindingsByName[trackName]; if (binding !== void 0) { ++binding.referenceCount; bindings[i] = binding; } else { binding = bindings[i]; if (binding !== void 0) { if (binding._cacheIndex === null) { ++binding.referenceCount; this._addInactiveBinding(binding, rootUuid, trackName); } continue; } const path = prototypeAction && prototypeAction._propertyBindings[i].binding.parsedPath; binding = new PropertyMixer( PropertyBinding.create(root, trackName, path), track.ValueTypeName, track.getValueSize() ); ++binding.referenceCount; this._addInactiveBinding(binding, rootUuid, trackName); bindings[i] = binding; } interpolants[i].resultBuffer = binding.buffer; } } _activateAction(action) { if (!this._isActiveAction(action)) { if (action._cacheIndex === null) { const rootUuid = (action._localRoot || this._root).uuid, clipUuid = action._clip.uuid, actionsForClip = this._actionsByClip[clipUuid]; this._bindAction( action, actionsForClip && actionsForClip.knownActions[0] ); this._addInactiveAction(action, clipUuid, rootUuid); } const bindings = action._propertyBindings; for (let i = 0, n = bindings.length; i !== n; ++i) { const binding = bindings[i]; if (binding.useCount++ === 0) { this._lendBinding(binding); binding.saveOriginalState(); } } this._lendAction(action); } } _deactivateAction(action) { if (this._isActiveAction(action)) { const bindings = action._propertyBindings; for (let i = 0, n = bindings.length; i !== n; ++i) { const binding = bindings[i]; if (--binding.useCount === 0) { binding.restoreOriginalState(); this._takeBackBinding(binding); } } this._takeBackAction(action); } } // Memory manager _initMemoryManager() { this._actions = []; this._nActiveActions = 0; this._actionsByClip = {}; this._bindings = []; this._nActiveBindings = 0; this._bindingsByRootAndName = {}; this._controlInterpolants = []; this._nActiveControlInterpolants = 0; const scope = this; this.stats = { actions: { get total() { return scope._actions.length; }, get inUse() { return scope._nActiveActions; } }, bindings: { get total() { return scope._bindings.length; }, get inUse() { return scope._nActiveBindings; } }, controlInterpolants: { get total() { return scope._controlInterpolants.length; }, get inUse() { return scope._nActiveControlInterpolants; } } }; } // Memory management for AnimationAction objects _isActiveAction(action) { const index = action._cacheIndex; return index !== null && index < this._nActiveActions; } _addInactiveAction(action, clipUuid, rootUuid) { const actions = this._actions, actionsByClip = this._actionsByClip; let actionsForClip = actionsByClip[clipUuid]; if (actionsForClip === void 0) { actionsForClip = { knownActions: [action], actionByRoot: {} }; action._byClipCacheIndex = 0; actionsByClip[clipUuid] = actionsForClip; } else { const knownActions = actionsForClip.knownActions; action._byClipCacheIndex = knownActions.length; knownActions.push(action); } action._cacheIndex = actions.length; actions.push(action); actionsForClip.actionByRoot[rootUuid] = action; } _removeInactiveAction(action) { const actions = this._actions, lastInactiveAction = actions[actions.length - 1], cacheIndex = action._cacheIndex; lastInactiveAction._cacheIndex = cacheIndex; actions[cacheIndex] = lastInactiveAction; actions.pop(); action._cacheIndex = null; const clipUuid = action._clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[clipUuid], knownActionsForClip = actionsForClip.knownActions, lastKnownAction = knownActionsForClip[knownActionsForClip.length - 1], byClipCacheIndex = action._byClipCacheIndex; lastKnownAction._byClipCacheIndex = byClipCacheIndex; knownActionsForClip[byClipCacheIndex] = lastKnownAction; knownActionsForClip.pop(); action._byClipCacheIndex = null; const actionByRoot = actionsForClip.actionByRoot, rootUuid = (action._localRoot || this._root).uuid; delete actionByRoot[rootUuid]; if (knownActionsForClip.length === 0) { delete actionsByClip[clipUuid]; } this._removeInactiveBindingsForAction(action); } _removeInactiveBindingsForAction(action) { const bindings = action._propertyBindings; for (let i = 0, n = bindings.length; i !== n; ++i) { const binding = bindings[i]; if (--binding.referenceCount === 0) { this._removeInactiveBinding(binding); } } } _lendAction(action) { const actions = this._actions, prevIndex = action._cacheIndex, lastActiveIndex = this._nActiveActions++, firstInactiveAction = actions[lastActiveIndex]; action._cacheIndex = lastActiveIndex; actions[lastActiveIndex] = action; firstInactiveAction._cacheIndex = prevIndex; actions[prevIndex] = firstInactiveAction; } _takeBackAction(action) { const actions = this._actions, prevIndex = action._cacheIndex, firstInactiveIndex = --this._nActiveActions, lastActiveAction = actions[firstInactiveIndex]; action._cacheIndex = firstInactiveIndex; actions[firstInactiveIndex] = action; lastActiveAction._cacheIndex = prevIndex; actions[prevIndex] = lastActiveAction; } // Memory management for PropertyMixer objects _addInactiveBinding(binding, rootUuid, trackName) { const bindingsByRoot = this._bindingsByRootAndName, bindings = this._bindings; let bindingByName = bindingsByRoot[rootUuid]; if (bindingByName === void 0) { bindingByName = {}; bindingsByRoot[rootUuid] = bindingByName; } bindingByName[trackName] = binding; binding._cacheIndex = bindings.length; bindings.push(binding); } _removeInactiveBinding(binding) { const bindings = this._bindings, propBinding = binding.binding, rootUuid = propBinding.rootNode.uuid, trackName = propBinding.path, bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[rootUuid], lastInactiveBinding = bindings[bindings.length - 1], cacheIndex = binding._cacheIndex; lastInactiveBinding._cacheIndex = cacheIndex; bindings[cacheIndex] = lastInactiveBinding; bindings.pop(); delete bindingByName[trackName]; if (Object.keys(bindingByName).length === 0) { delete bindingsByRoot[rootUuid]; } } _lendBinding(binding) { const bindings = this._bindings, prevIndex = binding._cacheIndex, lastActiveIndex = this._nActiveBindings++, firstInactiveBinding = bindings[lastActiveIndex]; binding._cacheIndex = lastActiveIndex; bindings[lastActiveIndex] = binding; firstInactiveBinding._cacheIndex = prevIndex; bindings[prevIndex] = firstInactiveBinding; } _takeBackBinding(binding) { const bindings = this._bindings, prevIndex = binding._cacheIndex, firstInactiveIndex = --this._nActiveBindings, lastActiveBinding = bindings[firstInactiveIndex]; binding._cacheIndex = firstInactiveIndex; bindings[firstInactiveIndex] = binding; lastActiveBinding._cacheIndex = prevIndex; bindings[prevIndex] = lastActiveBinding; } // Memory management of Interpolants for weight and time scale _lendControlInterpolant() { const interpolants = this._controlInterpolants, lastActiveIndex = this._nActiveControlInterpolants++; let interpolant = interpolants[lastActiveIndex]; if (interpolant === void 0) { interpolant = new LinearInterpolant( new Float32Array(2), new Float32Array(2), 1, _controlInterpolantsResultBuffer ); interpolant.__cacheIndex = lastActiveIndex; interpolants[lastActiveIndex] = interpolant; } return interpolant; } _takeBackControlInterpolant(interpolant) { const interpolants = this._controlInterpolants, prevIndex = interpolant.__cacheIndex, firstInactiveIndex = --this._nActiveControlInterpolants, lastActiveInterpolant = interpolants[firstInactiveIndex]; interpolant.__cacheIndex = firstInactiveIndex; interpolants[firstInactiveIndex] = interpolant; lastActiveInterpolant.__cacheIndex = prevIndex; interpolants[prevIndex] = lastActiveInterpolant; } // return an action for a clip optionally using a custom root target // object (this method allocates a lot of dynamic memory in case a // previously unknown clip/root combination is specified) clipAction(clip, optionalRoot, blendMode) { const root = optionalRoot || this._root, rootUuid = root.uuid; let clipObject = typeof clip === "string" ? AnimationClip.findByName(root, clip) : clip; const clipUuid = clipObject !== null ? clipObject.uuid : clip; const actionsForClip = this._actionsByClip[clipUuid]; let prototypeAction = null; if (blendMode === void 0) { if (clipObject !== null) { blendMode = clipObject.blendMode; } else { blendMode = NormalAnimationBlendMode; } } if (actionsForClip !== void 0) { const existingAction = actionsForClip.actionByRoot[rootUuid]; if (existingAction !== void 0 && existingAction.blendMode === blendMode) { return existingAction; } prototypeAction = actionsForClip.knownActions[0]; if (clipObject === null) clipObject = prototypeAction._clip; } if (clipObject === null) return null; const newAction = new AnimationAction(this, clipObject, optionalRoot, blendMode); this._bindAction(newAction, prototypeAction); this._addInactiveAction(newAction, clipUuid, rootUuid); return newAction; } // get an existing action existingAction(clip, optionalRoot) { const root = optionalRoot || this._root, rootUuid = root.uuid, clipObject = typeof clip === "string" ? AnimationClip.findByName(root, clip) : clip, clipUuid = clipObject ? clipObject.uuid : clip, actionsForClip = this._actionsByClip[clipUuid]; if (actionsForClip !== void 0) { return actionsForClip.actionByRoot[rootUuid] || null; } return null; } // deactivates all previously scheduled actions stopAllAction() { const actions = this._actions, nActions = this._nActiveActions; for (let i = nActions - 1; i >= 0; --i) { actions[i].stop(); } return this; } // advance the time and update apply the animation update(deltaTime) { deltaTime *= this.timeScale; const actions = this._actions, nActions = this._nActiveActions, time = this.time += deltaTime, timeDirection = Math.sign(deltaTime), accuIndex = this._accuIndex ^= 1; for (let i = 0; i !== nActions; ++i) { const action = actions[i]; action._update(time, deltaTime, timeDirection, accuIndex); } const bindings = this._bindings, nBindings = this._nActiveBindings; for (let i = 0; i !== nBindings; ++i) { bindings[i].apply(accuIndex); } return this; } // Allows you to seek to a specific time in an animation. setTime(timeInSeconds) { this.time = 0; for (let i = 0; i < this._actions.length; i++) { this._actions[i].time = 0; } return this.update(timeInSeconds); } // return this mixer's root target object getRoot() { return this._root; } // free all resources specific to a particular clip uncacheClip(clip) { const actions = this._actions, clipUuid = clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[clipUuid]; if (actionsForClip !== void 0) { const actionsToRemove = actionsForClip.knownActions; for (let i = 0, n = actionsToRemove.length; i !== n; ++i) { const action = actionsToRemove[i]; this._deactivateAction(action); const cacheIndex = action._cacheIndex, lastInactiveAction = actions[actions.length - 1]; action._cacheIndex = null; action._byClipCacheIndex = null; lastInactiveAction._cacheIndex = cacheIndex; actions[cacheIndex] = lastInactiveAction; actions.pop(); this._removeInactiveBindingsForAction(action); } delete actionsByClip[clipUuid]; } } // free all resources specific to a particular root target object uncacheRoot(root) { const rootUuid = root.uuid, actionsByClip = this._actionsByClip; for (const clipUuid in actionsByClip) { const actionByRoot = actionsByClip[clipUuid].actionByRoot, action = actionByRoot[rootUuid]; if (action !== void 0) { this._deactivateAction(action); this._removeInactiveAction(action); } } const bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[rootUuid]; if (bindingByName !== void 0) { for (const trackName in bindingByName) { const binding = bindingByName[trackName]; binding.restoreOriginalState(); this._removeInactiveBinding(binding); } } } // remove a targeted clip from the cache uncacheAction(clip, optionalRoot) { const action = this.existingAction(clip, optionalRoot); if (action !== null) { this._deactivateAction(action); this._removeInactiveAction(action); } } } class Uniform { static { __name(this, "Uniform"); } constructor(value) { this.value = value; } clone() { return new Uniform(this.value.clone === void 0 ? this.value : this.value.clone()); } } let _id = 0; class UniformsGroup extends EventDispatcher { static { __name(this, "UniformsGroup"); } constructor() { super(); this.isUniformsGroup = true; Object.defineProperty(this, "id", { value: _id++ }); this.name = ""; this.usage = StaticDrawUsage; this.uniforms = []; } add(uniform) { this.uniforms.push(uniform); return this; } remove(uniform) { const index = this.uniforms.indexOf(uniform); if (index !== -1) this.uniforms.splice(index, 1); return this; } setName(name) { this.name = name; return this; } setUsage(value) { this.usage = value; return this; } dispose() { this.dispatchEvent({ type: "dispose" }); return this; } copy(source) { this.name = source.name; this.usage = source.usage; const uniformsSource = source.uniforms; this.uniforms.length = 0; for (let i = 0, l = uniformsSource.length; i < l; i++) { const uniforms = Array.isArray(uniformsSource[i]) ? uniformsSource[i] : [uniformsSource[i]]; for (let j = 0; j < uniforms.length; j++) { this.uniforms.push(uniforms[j].clone()); } } return this; } clone() { return new this.constructor().copy(this); } } class InstancedInterleavedBuffer extends InterleavedBuffer { static { __name(this, "InstancedInterleavedBuffer"); } constructor(array, stride, meshPerAttribute = 1) { super(array, stride); this.isInstancedInterleavedBuffer = true; this.meshPerAttribute = meshPerAttribute; } copy(source) { super.copy(source); this.meshPerAttribute = source.meshPerAttribute; return this; } clone(data) { const ib = super.clone(data); ib.meshPerAttribute = this.meshPerAttribute; return ib; } toJSON(data) { const json = super.toJSON(data); json.isInstancedInterleavedBuffer = true; json.meshPerAttribute = this.meshPerAttribute; return json; } } class GLBufferAttribute { static { __name(this, "GLBufferAttribute"); } constructor(buffer, type, itemSize, elementSize, count) { this.isGLBufferAttribute = true; this.name = ""; this.buffer = buffer; this.type = type; this.itemSize = itemSize; this.elementSize = elementSize; this.count = count; this.version = 0; } set needsUpdate(value) { if (value === true) this.version++; } setBuffer(buffer) { this.buffer = buffer; return this; } setType(type, elementSize) { this.type = type; this.elementSize = elementSize; return this; } setItemSize(itemSize) { this.itemSize = itemSize; return this; } setCount(count) { this.count = count; return this; } } const _matrix = /* @__PURE__ */ new Matrix4(); class Raycaster { static { __name(this, "Raycaster"); } constructor(origin, direction, near = 0, far = Infinity) { this.ray = new Ray(origin, direction); this.near = near; this.far = far; this.camera = null; this.layers = new Layers(); this.params = { Mesh: {}, Line: { threshold: 1 }, LOD: {}, Points: { threshold: 1 }, Sprite: {} }; } set(origin, direction) { this.ray.set(origin, direction); } setFromCamera(coords, camera) { if (camera.isPerspectiveCamera) { this.ray.origin.setFromMatrixPosition(camera.matrixWorld); this.ray.direction.set(coords.x, coords.y, 0.5).unproject(camera).sub(this.ray.origin).normalize(); this.camera = camera; } else if (camera.isOrthographicCamera) { this.ray.origin.set(coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far)).unproject(camera); this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld); this.camera = camera; } else { console.error("THREE.Raycaster: Unsupported camera type: " + camera.type); } } setFromXRController(controller) { _matrix.identity().extractRotation(controller.matrixWorld); this.ray.origin.setFromMatrixPosition(controller.matrixWorld); this.ray.direction.set(0, 0, -1).applyMatrix4(_matrix); return this; } intersectObject(object, recursive = true, intersects2 = []) { intersect(object, this, intersects2, recursive); intersects2.sort(ascSort); return intersects2; } intersectObjects(objects, recursive = true, intersects2 = []) { for (let i = 0, l = objects.length; i < l; i++) { intersect(objects[i], this, intersects2, recursive); } intersects2.sort(ascSort); return intersects2; } } function ascSort(a, b) { return a.distance - b.distance; } __name(ascSort, "ascSort"); function intersect(object, raycaster, intersects2, recursive) { let propagate = true; if (object.layers.test(raycaster.layers)) { const result = object.raycast(raycaster, intersects2); if (result === false) propagate = false; } if (propagate === true && recursive === true) { const children = object.children; for (let i = 0, l = children.length; i < l; i++) { intersect(children[i], raycaster, intersects2, true); } } } __name(intersect, "intersect"); class Spherical { static { __name(this, "Spherical"); } constructor(radius = 1, phi = 0, theta = 0) { this.radius = radius; this.phi = phi; this.theta = theta; return this; } set(radius, phi, theta) { this.radius = radius; this.phi = phi; this.theta = theta; return this; } copy(other) { this.radius = other.radius; this.phi = other.phi; this.theta = other.theta; return this; } // restrict phi to be between EPS and PI-EPS makeSafe() { const EPS = 1e-6; this.phi = Math.max(EPS, Math.min(Math.PI - EPS, this.phi)); return this; } setFromVector3(v) { return this.setFromCartesianCoords(v.x, v.y, v.z); } setFromCartesianCoords(x, y, z) { this.radius = Math.sqrt(x * x + y * y + z * z); if (this.radius === 0) { this.theta = 0; this.phi = 0; } else { this.theta = Math.atan2(x, z); this.phi = Math.acos(clamp(y / this.radius, -1, 1)); } return this; } clone() { return new this.constructor().copy(this); } } class Cylindrical { static { __name(this, "Cylindrical"); } constructor(radius = 1, theta = 0, y = 0) { this.radius = radius; this.theta = theta; this.y = y; return this; } set(radius, theta, y) { this.radius = radius; this.theta = theta; this.y = y; return this; } copy(other) { this.radius = other.radius; this.theta = other.theta; this.y = other.y; return this; } setFromVector3(v) { return this.setFromCartesianCoords(v.x, v.y, v.z); } setFromCartesianCoords(x, y, z) { this.radius = Math.sqrt(x * x + z * z); this.theta = Math.atan2(x, z); this.y = y; return this; } clone() { return new this.constructor().copy(this); } } class Matrix2 { static { __name(this, "Matrix2"); } constructor(n11, n12, n21, n22) { Matrix2.prototype.isMatrix2 = true; this.elements = [ 1, 0, 0, 1 ]; if (n11 !== void 0) { this.set(n11, n12, n21, n22); } } identity() { this.set( 1, 0, 0, 1 ); return this; } fromArray(array, offset = 0) { for (let i = 0; i < 4; i++) { this.elements[i] = array[i + offset]; } return this; } set(n11, n12, n21, n22) { const te2 = this.elements; te2[0] = n11; te2[2] = n12; te2[1] = n21; te2[3] = n22; return this; } } const _vector$4 = /* @__PURE__ */ new Vector2(); class Box2 { static { __name(this, "Box2"); } constructor(min = new Vector2(Infinity, Infinity), max2 = new Vector2(-Infinity, -Infinity)) { this.isBox2 = true; this.min = min; this.max = max2; } set(min, max2) { this.min.copy(min); this.max.copy(max2); return this; } setFromPoints(points) { this.makeEmpty(); for (let i = 0, il = points.length; i < il; i++) { this.expandByPoint(points[i]); } return this; } setFromCenterAndSize(center, size) { const halfSize = _vector$4.copy(size).multiplyScalar(0.5); this.min.copy(center).sub(halfSize); this.max.copy(center).add(halfSize); return this; } clone() { return new this.constructor().copy(this); } copy(box) { this.min.copy(box.min); this.max.copy(box.max); return this; } makeEmpty() { this.min.x = this.min.y = Infinity; this.max.x = this.max.y = -Infinity; return this; } isEmpty() { return this.max.x < this.min.x || this.max.y < this.min.y; } getCenter(target) { return this.isEmpty() ? target.set(0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5); } getSize(target) { return this.isEmpty() ? target.set(0, 0) : target.subVectors(this.max, this.min); } expandByPoint(point) { this.min.min(point); this.max.max(point); return this; } expandByVector(vector) { this.min.sub(vector); this.max.add(vector); return this; } expandByScalar(scalar) { this.min.addScalar(-scalar); this.max.addScalar(scalar); return this; } containsPoint(point) { return point.x >= this.min.x && point.x <= this.max.x && point.y >= this.min.y && point.y <= this.max.y; } containsBox(box) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y; } getParameter(point, target) { return target.set( (point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y) ); } intersectsBox(box) { return box.max.x >= this.min.x && box.min.x <= this.max.x && box.max.y >= this.min.y && box.min.y <= this.max.y; } clampPoint(point, target) { return target.copy(point).clamp(this.min, this.max); } distanceToPoint(point) { return this.clampPoint(point, _vector$4).distanceTo(point); } intersect(box) { this.min.max(box.min); this.max.min(box.max); if (this.isEmpty()) this.makeEmpty(); return this; } union(box) { this.min.min(box.min); this.max.max(box.max); return this; } translate(offset) { this.min.add(offset); this.max.add(offset); return this; } equals(box) { return box.min.equals(this.min) && box.max.equals(this.max); } } const _startP = /* @__PURE__ */ new Vector3(); const _startEnd = /* @__PURE__ */ new Vector3(); class Line3 { static { __name(this, "Line3"); } constructor(start = new Vector3(), end = new Vector3()) { this.start = start; this.end = end; } set(start, end) { this.start.copy(start); this.end.copy(end); return this; } copy(line) { this.start.copy(line.start); this.end.copy(line.end); return this; } getCenter(target) { return target.addVectors(this.start, this.end).multiplyScalar(0.5); } delta(target) { return target.subVectors(this.end, this.start); } distanceSq() { return this.start.distanceToSquared(this.end); } distance() { return this.start.distanceTo(this.end); } at(t, target) { return this.delta(target).multiplyScalar(t).add(this.start); } closestPointToPointParameter(point, clampToLine) { _startP.subVectors(point, this.start); _startEnd.subVectors(this.end, this.start); const startEnd2 = _startEnd.dot(_startEnd); const startEnd_startP = _startEnd.dot(_startP); let t = startEnd_startP / startEnd2; if (clampToLine) { t = clamp(t, 0, 1); } return t; } closestPointToPoint(point, clampToLine, target) { const t = this.closestPointToPointParameter(point, clampToLine); return this.delta(target).multiplyScalar(t).add(this.start); } applyMatrix4(matrix) { this.start.applyMatrix4(matrix); this.end.applyMatrix4(matrix); return this; } equals(line) { return line.start.equals(this.start) && line.end.equals(this.end); } clone() { return new this.constructor().copy(this); } } const _vector$3 = /* @__PURE__ */ new Vector3(); class SpotLightHelper extends Object3D { static { __name(this, "SpotLightHelper"); } constructor(light, color) { super(); this.light = light; this.matrixAutoUpdate = false; this.color = color; this.type = "SpotLightHelper"; const geometry = new BufferGeometry(); const positions = [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1 ]; for (let i = 0, j = 1, l = 32; i < l; i++, j++) { const p1 = i / l * Math.PI * 2; const p2 = j / l * Math.PI * 2; positions.push( Math.cos(p1), Math.sin(p1), 1, Math.cos(p2), Math.sin(p2), 1 ); } geometry.setAttribute("position", new Float32BufferAttribute(positions, 3)); const material = new LineBasicMaterial({ fog: false, toneMapped: false }); this.cone = new LineSegments(geometry, material); this.add(this.cone); this.update(); } dispose() { this.cone.geometry.dispose(); this.cone.material.dispose(); } update() { this.light.updateWorldMatrix(true, false); this.light.target.updateWorldMatrix(true, false); if (this.parent) { this.parent.updateWorldMatrix(true); this.matrix.copy(this.parent.matrixWorld).invert().multiply(this.light.matrixWorld); } else { this.matrix.copy(this.light.matrixWorld); } this.matrixWorld.copy(this.light.matrixWorld); const coneLength = this.light.distance ? this.light.distance : 1e3; const coneWidth = coneLength * Math.tan(this.light.angle); this.cone.scale.set(coneWidth, coneWidth, coneLength); _vector$3.setFromMatrixPosition(this.light.target.matrixWorld); this.cone.lookAt(_vector$3); if (this.color !== void 0) { this.cone.material.color.set(this.color); } else { this.cone.material.color.copy(this.light.color); } } } const _vector$2 = /* @__PURE__ */ new Vector3(); const _boneMatrix = /* @__PURE__ */ new Matrix4(); const _matrixWorldInv = /* @__PURE__ */ new Matrix4(); class SkeletonHelper extends LineSegments { static { __name(this, "SkeletonHelper"); } constructor(object) { const bones = getBoneList(object); const geometry = new BufferGeometry(); const vertices = []; const colors = []; const color1 = new Color(0, 0, 1); const color2 = new Color(0, 1, 0); for (let i = 0; i < bones.length; i++) { const bone = bones[i]; if (bone.parent && bone.parent.isBone) { vertices.push(0, 0, 0); vertices.push(0, 0, 0); colors.push(color1.r, color1.g, color1.b); colors.push(color2.r, color2.g, color2.b); } } geometry.setAttribute("position", new Float32BufferAttribute(vertices, 3)); geometry.setAttribute("color", new Float32BufferAttribute(colors, 3)); const material = new LineBasicMaterial({ vertexColors: true, depthTest: false, depthWrite: false, toneMapped: false, transparent: true }); super(geometry, material); this.isSkeletonHelper = true; this.type = "SkeletonHelper"; this.root = object; this.bones = bones; this.matrix = object.matrixWorld; this.matrixAutoUpdate = false; } updateMatrixWorld(force) { const bones = this.bones; const geometry = this.geometry; const position = geometry.getAttribute("position"); _matrixWorldInv.copy(this.root.matrixWorld).invert(); for (let i = 0, j = 0; i < bones.length; i++) { const bone = bones[i]; if (bone.parent && bone.parent.isBone) { _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.matrixWorld); _vector$2.setFromMatrixPosition(_boneMatrix); position.setXYZ(j, _vector$2.x, _vector$2.y, _vector$2.z); _boneMatrix.multiplyMatrices(_matrixWorldInv, bone.parent.matrixWorld); _vector$2.setFromMatrixPosition(_boneMatrix); position.setXYZ(j + 1, _vector$2.x, _vector$2.y, _vector$2.z); j += 2; } } geometry.getAttribute("position").needsUpdate = true; super.updateMatrixWorld(force); } dispose() { this.geometry.dispose(); this.material.dispose(); } } function getBoneList(object) { const boneList = []; if (object.isBone === true) { boneList.push(object); } for (let i = 0; i < object.children.length; i++) { boneList.push.apply(boneList, getBoneList(object.children[i])); } return boneList; } __name(getBoneList, "getBoneList"); class PointLightHelper extends Mesh { static { __name(this, "PointLightHelper"); } constructor(light, sphereSize, color) { const geometry = new SphereGeometry(sphereSize, 4, 2); const material = new MeshBasicMaterial({ wireframe: true, fog: false, toneMapped: false }); super(geometry, material); this.light = light; this.color = color; this.type = "PointLightHelper"; this.matrix = this.light.matrixWorld; this.matrixAutoUpdate = false; this.update(); } dispose() { this.geometry.dispose(); this.material.dispose(); } update() { this.light.updateWorldMatrix(true, false); if (this.color !== void 0) { this.material.color.set(this.color); } else { this.material.color.copy(this.light.color); } } } const _vector$1 = /* @__PURE__ */ new Vector3(); const _color1 = /* @__PURE__ */ new Color(); const _color2 = /* @__PURE__ */ new Color(); class HemisphereLightHelper extends Object3D { static { __name(this, "HemisphereLightHelper"); } constructor(light, size, color) { super(); this.light = light; this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.color = color; this.type = "HemisphereLightHelper"; const geometry = new OctahedronGeometry(size); geometry.rotateY(Math.PI * 0.5); this.material = new MeshBasicMaterial({ wireframe: true, fog: false, toneMapped: false }); if (this.color === void 0) this.material.vertexColors = true; const position = geometry.getAttribute("position"); const colors = new Float32Array(position.count * 3); geometry.setAttribute("color", new BufferAttribute(colors, 3)); this.add(new Mesh(geometry, this.material)); this.update(); } dispose() { this.children[0].geometry.dispose(); this.children[0].material.dispose(); } update() { const mesh = this.children[0]; if (this.color !== void 0) { this.material.color.set(this.color); } else { const colors = mesh.geometry.getAttribute("color"); _color1.copy(this.light.color); _color2.copy(this.light.groundColor); for (let i = 0, l = colors.count; i < l; i++) { const color = i < l / 2 ? _color1 : _color2; colors.setXYZ(i, color.r, color.g, color.b); } colors.needsUpdate = true; } this.light.updateWorldMatrix(true, false); mesh.lookAt(_vector$1.setFromMatrixPosition(this.light.matrixWorld).negate()); } } class GridHelper extends LineSegments { static { __name(this, "GridHelper"); } constructor(size = 10, divisions = 10, color1 = 4473924, color2 = 8947848) { color1 = new Color(color1); color2 = new Color(color2); const center = divisions / 2; const step = size / divisions; const halfSize = size / 2; const vertices = [], colors = []; for (let i = 0, j = 0, k = -halfSize; i <= divisions; i++, k += step) { vertices.push(-halfSize, 0, k, halfSize, 0, k); vertices.push(k, 0, -halfSize, k, 0, halfSize); const color = i === center ? color1 : color2; color.toArray(colors, j); j += 3; color.toArray(colors, j); j += 3; color.toArray(colors, j); j += 3; color.toArray(colors, j); j += 3; } const geometry = new BufferGeometry(); geometry.setAttribute("position", new Float32BufferAttribute(vertices, 3)); geometry.setAttribute("color", new Float32BufferAttribute(colors, 3)); const material = new LineBasicMaterial({ vertexColors: true, toneMapped: false }); super(geometry, material); this.type = "GridHelper"; } dispose() { this.geometry.dispose(); this.material.dispose(); } } class PolarGridHelper extends LineSegments { static { __name(this, "PolarGridHelper"); } constructor(radius = 10, sectors = 16, rings = 8, divisions = 64, color1 = 4473924, color2 = 8947848) { color1 = new Color(color1); color2 = new Color(color2); const vertices = []; const colors = []; if (sectors > 1) { for (let i = 0; i < sectors; i++) { const v = i / sectors * (Math.PI * 2); const x = Math.sin(v) * radius; const z = Math.cos(v) * radius; vertices.push(0, 0, 0); vertices.push(x, 0, z); const color = i & 1 ? color1 : color2; colors.push(color.r, color.g, color.b); colors.push(color.r, color.g, color.b); } } for (let i = 0; i < rings; i++) { const color = i & 1 ? color1 : color2; const r = radius - radius / rings * i; for (let j = 0; j < divisions; j++) { let v = j / divisions * (Math.PI * 2); let x = Math.sin(v) * r; let z = Math.cos(v) * r; vertices.push(x, 0, z); colors.push(color.r, color.g, color.b); v = (j + 1) / divisions * (Math.PI * 2); x = Math.sin(v) * r; z = Math.cos(v) * r; vertices.push(x, 0, z); colors.push(color.r, color.g, color.b); } } const geometry = new BufferGeometry(); geometry.setAttribute("position", new Float32BufferAttribute(vertices, 3)); geometry.setAttribute("color", new Float32BufferAttribute(colors, 3)); const material = new LineBasicMaterial({ vertexColors: true, toneMapped: false }); super(geometry, material); this.type = "PolarGridHelper"; } dispose() { this.geometry.dispose(); this.material.dispose(); } } const _v1 = /* @__PURE__ */ new Vector3(); const _v2 = /* @__PURE__ */ new Vector3(); const _v3 = /* @__PURE__ */ new Vector3(); class DirectionalLightHelper extends Object3D { static { __name(this, "DirectionalLightHelper"); } constructor(light, size, color) { super(); this.light = light; this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.color = color; this.type = "DirectionalLightHelper"; if (size === void 0) size = 1; let geometry = new BufferGeometry(); geometry.setAttribute("position", new Float32BufferAttribute([ -size, size, 0, size, size, 0, size, -size, 0, -size, -size, 0, -size, size, 0 ], 3)); const material = new LineBasicMaterial({ fog: false, toneMapped: false }); this.lightPlane = new Line(geometry, material); this.add(this.lightPlane); geometry = new BufferGeometry(); geometry.setAttribute("position", new Float32BufferAttribute([0, 0, 0, 0, 0, 1], 3)); this.targetLine = new Line(geometry, material); this.add(this.targetLine); this.update(); } dispose() { this.lightPlane.geometry.dispose(); this.lightPlane.material.dispose(); this.targetLine.geometry.dispose(); this.targetLine.material.dispose(); } update() { this.light.updateWorldMatrix(true, false); this.light.target.updateWorldMatrix(true, false); _v1.setFromMatrixPosition(this.light.matrixWorld); _v2.setFromMatrixPosition(this.light.target.matrixWorld); _v3.subVectors(_v2, _v1); this.lightPlane.lookAt(_v2); if (this.color !== void 0) { this.lightPlane.material.color.set(this.color); this.targetLine.material.color.set(this.color); } else { this.lightPlane.material.color.copy(this.light.color); this.targetLine.material.color.copy(this.light.color); } this.targetLine.lookAt(_v2); this.targetLine.scale.z = _v3.length(); } } const _vector = /* @__PURE__ */ new Vector3(); const _camera = /* @__PURE__ */ new Camera(); class CameraHelper extends LineSegments { static { __name(this, "CameraHelper"); } constructor(camera) { const geometry = new BufferGeometry(); const material = new LineBasicMaterial({ color: 16777215, vertexColors: true, toneMapped: false }); const vertices = []; const colors = []; const pointMap = {}; addLine("n1", "n2"); addLine("n2", "n4"); addLine("n4", "n3"); addLine("n3", "n1"); addLine("f1", "f2"); addLine("f2", "f4"); addLine("f4", "f3"); addLine("f3", "f1"); addLine("n1", "f1"); addLine("n2", "f2"); addLine("n3", "f3"); addLine("n4", "f4"); addLine("p", "n1"); addLine("p", "n2"); addLine("p", "n3"); addLine("p", "n4"); addLine("u1", "u2"); addLine("u2", "u3"); addLine("u3", "u1"); addLine("c", "t"); addLine("p", "c"); addLine("cn1", "cn2"); addLine("cn3", "cn4"); addLine("cf1", "cf2"); addLine("cf3", "cf4"); function addLine(a, b) { addPoint(a); addPoint(b); } __name(addLine, "addLine"); function addPoint(id2) { vertices.push(0, 0, 0); colors.push(0, 0, 0); if (pointMap[id2] === void 0) { pointMap[id2] = []; } pointMap[id2].push(vertices.length / 3 - 1); } __name(addPoint, "addPoint"); geometry.setAttribute("position", new Float32BufferAttribute(vertices, 3)); geometry.setAttribute("color", new Float32BufferAttribute(colors, 3)); super(geometry, material); this.type = "CameraHelper"; this.camera = camera; if (this.camera.updateProjectionMatrix) this.camera.updateProjectionMatrix(); this.matrix = camera.matrixWorld; this.matrixAutoUpdate = false; this.pointMap = pointMap; this.update(); const colorFrustum = new Color(16755200); const colorCone = new Color(16711680); const colorUp = new Color(43775); const colorTarget = new Color(16777215); const colorCross = new Color(3355443); this.setColors(colorFrustum, colorCone, colorUp, colorTarget, colorCross); } setColors(frustum, cone, up, target, cross) { const geometry = this.geometry; const colorAttribute = geometry.getAttribute("color"); colorAttribute.setXYZ(0, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(1, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(2, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(3, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(4, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(5, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(6, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(7, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(8, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(9, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(10, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(11, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(12, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(13, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(14, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(15, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(16, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(17, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(18, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(19, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(20, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(21, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(22, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(23, frustum.r, frustum.g, frustum.b); colorAttribute.setXYZ(24, cone.r, cone.g, cone.b); colorAttribute.setXYZ(25, cone.r, cone.g, cone.b); colorAttribute.setXYZ(26, cone.r, cone.g, cone.b); colorAttribute.setXYZ(27, cone.r, cone.g, cone.b); colorAttribute.setXYZ(28, cone.r, cone.g, cone.b); colorAttribute.setXYZ(29, cone.r, cone.g, cone.b); colorAttribute.setXYZ(30, cone.r, cone.g, cone.b); colorAttribute.setXYZ(31, cone.r, cone.g, cone.b); colorAttribute.setXYZ(32, up.r, up.g, up.b); colorAttribute.setXYZ(33, up.r, up.g, up.b); colorAttribute.setXYZ(34, up.r, up.g, up.b); colorAttribute.setXYZ(35, up.r, up.g, up.b); colorAttribute.setXYZ(36, up.r, up.g, up.b); colorAttribute.setXYZ(37, up.r, up.g, up.b); colorAttribute.setXYZ(38, target.r, target.g, target.b); colorAttribute.setXYZ(39, target.r, target.g, target.b); colorAttribute.setXYZ(40, cross.r, cross.g, cross.b); colorAttribute.setXYZ(41, cross.r, cross.g, cross.b); colorAttribute.setXYZ(42, cross.r, cross.g, cross.b); colorAttribute.setXYZ(43, cross.r, cross.g, cross.b); colorAttribute.setXYZ(44, cross.r, cross.g, cross.b); colorAttribute.setXYZ(45, cross.r, cross.g, cross.b); colorAttribute.setXYZ(46, cross.r, cross.g, cross.b); colorAttribute.setXYZ(47, cross.r, cross.g, cross.b); colorAttribute.setXYZ(48, cross.r, cross.g, cross.b); colorAttribute.setXYZ(49, cross.r, cross.g, cross.b); colorAttribute.needsUpdate = true; } update() { const geometry = this.geometry; const pointMap = this.pointMap; const w = 1, h = 1; _camera.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse); setPoint("c", pointMap, geometry, _camera, 0, 0, -1); setPoint("t", pointMap, geometry, _camera, 0, 0, 1); setPoint("n1", pointMap, geometry, _camera, -w, -h, -1); setPoint("n2", pointMap, geometry, _camera, w, -h, -1); setPoint("n3", pointMap, geometry, _camera, -w, h, -1); setPoint("n4", pointMap, geometry, _camera, w, h, -1); setPoint("f1", pointMap, geometry, _camera, -w, -h, 1); setPoint("f2", pointMap, geometry, _camera, w, -h, 1); setPoint("f3", pointMap, geometry, _camera, -w, h, 1); setPoint("f4", pointMap, geometry, _camera, w, h, 1); setPoint("u1", pointMap, geometry, _camera, w * 0.7, h * 1.1, -1); setPoint("u2", pointMap, geometry, _camera, -w * 0.7, h * 1.1, -1); setPoint("u3", pointMap, geometry, _camera, 0, h * 2, -1); setPoint("cf1", pointMap, geometry, _camera, -w, 0, 1); setPoint("cf2", pointMap, geometry, _camera, w, 0, 1); setPoint("cf3", pointMap, geometry, _camera, 0, -h, 1); setPoint("cf4", pointMap, geometry, _camera, 0, h, 1); setPoint("cn1", pointMap, geometry, _camera, -w, 0, -1); setPoint("cn2", pointMap, geometry, _camera, w, 0, -1); setPoint("cn3", pointMap, geometry, _camera, 0, -h, -1); setPoint("cn4", pointMap, geometry, _camera, 0, h, -1); geometry.getAttribute("position").needsUpdate = true; } dispose() { this.geometry.dispose(); this.material.dispose(); } } function setPoint(point, pointMap, geometry, camera, x, y, z) { _vector.set(x, y, z).unproject(camera); const points = pointMap[point]; if (points !== void 0) { const position = geometry.getAttribute("position"); for (let i = 0, l = points.length; i < l; i++) { position.setXYZ(points[i], _vector.x, _vector.y, _vector.z); } } } __name(setPoint, "setPoint"); const _box = /* @__PURE__ */ new Box3(); class BoxHelper extends LineSegments { static { __name(this, "BoxHelper"); } constructor(object, color = 16776960) { const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]); const positions = new Float32Array(8 * 3); const geometry = new BufferGeometry(); geometry.setIndex(new BufferAttribute(indices, 1)); geometry.setAttribute("position", new BufferAttribute(positions, 3)); super(geometry, new LineBasicMaterial({ color, toneMapped: false })); this.object = object; this.type = "BoxHelper"; this.matrixAutoUpdate = false; this.update(); } update(object) { if (object !== void 0) { console.warn("THREE.BoxHelper: .update() has no longer arguments."); } if (this.object !== void 0) { _box.setFromObject(this.object); } if (_box.isEmpty()) return; const min = _box.min; const max2 = _box.max; const position = this.geometry.attributes.position; const array = position.array; array[0] = max2.x; array[1] = max2.y; array[2] = max2.z; array[3] = min.x; array[4] = max2.y; array[5] = max2.z; array[6] = min.x; array[7] = min.y; array[8] = max2.z; array[9] = max2.x; array[10] = min.y; array[11] = max2.z; array[12] = max2.x; array[13] = max2.y; array[14] = min.z; array[15] = min.x; array[16] = max2.y; array[17] = min.z; array[18] = min.x; array[19] = min.y; array[20] = min.z; array[21] = max2.x; array[22] = min.y; array[23] = min.z; position.needsUpdate = true; this.geometry.computeBoundingSphere(); } setFromObject(object) { this.object = object; this.update(); return this; } copy(source, recursive) { super.copy(source, recursive); this.object = source.object; return this; } dispose() { this.geometry.dispose(); this.material.dispose(); } } class Box3Helper extends LineSegments { static { __name(this, "Box3Helper"); } constructor(box, color = 16776960) { const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]); const positions = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1]; const geometry = new BufferGeometry(); geometry.setIndex(new BufferAttribute(indices, 1)); geometry.setAttribute("position", new Float32BufferAttribute(positions, 3)); super(geometry, new LineBasicMaterial({ color, toneMapped: false })); this.box = box; this.type = "Box3Helper"; this.geometry.computeBoundingSphere(); } updateMatrixWorld(force) { const box = this.box; if (box.isEmpty()) return; box.getCenter(this.position); box.getSize(this.scale); this.scale.multiplyScalar(0.5); super.updateMatrixWorld(force); } dispose() { this.geometry.dispose(); this.material.dispose(); } } class PlaneHelper extends Line { static { __name(this, "PlaneHelper"); } constructor(plane, size = 1, hex = 16776960) { const color = hex; const positions = [1, -1, 0, -1, 1, 0, -1, -1, 0, 1, 1, 0, -1, 1, 0, -1, -1, 0, 1, -1, 0, 1, 1, 0]; const geometry = new BufferGeometry(); geometry.setAttribute("position", new Float32BufferAttribute(positions, 3)); geometry.computeBoundingSphere(); super(geometry, new LineBasicMaterial({ color, toneMapped: false })); this.type = "PlaneHelper"; this.plane = plane; this.size = size; const positions2 = [1, 1, 0, -1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, -1, 0]; const geometry2 = new BufferGeometry(); geometry2.setAttribute("position", new Float32BufferAttribute(positions2, 3)); geometry2.computeBoundingSphere(); this.add(new Mesh(geometry2, new MeshBasicMaterial({ color, opacity: 0.2, transparent: true, depthWrite: false, toneMapped: false }))); } updateMatrixWorld(force) { this.position.set(0, 0, 0); this.scale.set(0.5 * this.size, 0.5 * this.size, 1); this.lookAt(this.plane.normal); this.translateZ(-this.plane.constant); super.updateMatrixWorld(force); } dispose() { this.geometry.dispose(); this.material.dispose(); this.children[0].geometry.dispose(); this.children[0].material.dispose(); } } const _axis = /* @__PURE__ */ new Vector3(); let _lineGeometry, _coneGeometry; class ArrowHelper extends Object3D { static { __name(this, "ArrowHelper"); } // dir is assumed to be normalized constructor(dir = new Vector3(0, 0, 1), origin = new Vector3(0, 0, 0), length = 1, color = 16776960, headLength = length * 0.2, headWidth = headLength * 0.2) { super(); this.type = "ArrowHelper"; if (_lineGeometry === void 0) { _lineGeometry = new BufferGeometry(); _lineGeometry.setAttribute("position", new Float32BufferAttribute([0, 0, 0, 0, 1, 0], 3)); _coneGeometry = new CylinderGeometry(0, 0.5, 1, 5, 1); _coneGeometry.translate(0, -0.5, 0); } this.position.copy(origin); this.line = new Line(_lineGeometry, new LineBasicMaterial({ color, toneMapped: false })); this.line.matrixAutoUpdate = false; this.add(this.line); this.cone = new Mesh(_coneGeometry, new MeshBasicMaterial({ color, toneMapped: false })); this.cone.matrixAutoUpdate = false; this.add(this.cone); this.setDirection(dir); this.setLength(length, headLength, headWidth); } setDirection(dir) { if (dir.y > 0.99999) { this.quaternion.set(0, 0, 0, 1); } else if (dir.y < -0.99999) { this.quaternion.set(1, 0, 0, 0); } else { _axis.set(dir.z, 0, -dir.x).normalize(); const radians = Math.acos(dir.y); this.quaternion.setFromAxisAngle(_axis, radians); } } setLength(length, headLength = length * 0.2, headWidth = headLength * 0.2) { this.line.scale.set(1, Math.max(1e-4, length - headLength), 1); this.line.updateMatrix(); this.cone.scale.set(headWidth, headLength, headWidth); this.cone.position.y = length; this.cone.updateMatrix(); } setColor(color) { this.line.material.color.set(color); this.cone.material.color.set(color); } copy(source) { super.copy(source, false); this.line.copy(source.line); this.cone.copy(source.cone); return this; } dispose() { this.line.geometry.dispose(); this.line.material.dispose(); this.cone.geometry.dispose(); this.cone.material.dispose(); } } class AxesHelper extends LineSegments { static { __name(this, "AxesHelper"); } constructor(size = 1) { const vertices = [ 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size ]; const colors = [ 1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1 ]; const geometry = new BufferGeometry(); geometry.setAttribute("position", new Float32BufferAttribute(vertices, 3)); geometry.setAttribute("color", new Float32BufferAttribute(colors, 3)); const material = new LineBasicMaterial({ vertexColors: true, toneMapped: false }); super(geometry, material); this.type = "AxesHelper"; } setColors(xAxisColor, yAxisColor, zAxisColor) { const color = new Color(); const array = this.geometry.attributes.color.array; color.set(xAxisColor); color.toArray(array, 0); color.toArray(array, 3); color.set(yAxisColor); color.toArray(array, 6); color.toArray(array, 9); color.set(zAxisColor); color.toArray(array, 12); color.toArray(array, 15); this.geometry.attributes.color.needsUpdate = true; return this; } dispose() { this.geometry.dispose(); this.material.dispose(); } } class ShapePath { static { __name(this, "ShapePath"); } constructor() { this.type = "ShapePath"; this.color = new Color(); this.subPaths = []; this.currentPath = null; } moveTo(x, y) { this.currentPath = new Path(); this.subPaths.push(this.currentPath); this.currentPath.moveTo(x, y); return this; } lineTo(x, y) { this.currentPath.lineTo(x, y); return this; } quadraticCurveTo(aCPx, aCPy, aX, aY) { this.currentPath.quadraticCurveTo(aCPx, aCPy, aX, aY); return this; } bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) { this.currentPath.bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY); return this; } splineThru(pts) { this.currentPath.splineThru(pts); return this; } toShapes(isCCW) { function toShapesNoHoles(inSubpaths) { const shapes2 = []; for (let i = 0, l = inSubpaths.length; i < l; i++) { const tmpPath2 = inSubpaths[i]; const tmpShape2 = new Shape(); tmpShape2.curves = tmpPath2.curves; shapes2.push(tmpShape2); } return shapes2; } __name(toShapesNoHoles, "toShapesNoHoles"); function isPointInsidePolygon(inPt, inPolygon) { const polyLen = inPolygon.length; let inside = false; for (let p = polyLen - 1, q = 0; q < polyLen; p = q++) { let edgeLowPt = inPolygon[p]; let edgeHighPt = inPolygon[q]; let edgeDx = edgeHighPt.x - edgeLowPt.x; let edgeDy = edgeHighPt.y - edgeLowPt.y; if (Math.abs(edgeDy) > Number.EPSILON) { if (edgeDy < 0) { edgeLowPt = inPolygon[q]; edgeDx = -edgeDx; edgeHighPt = inPolygon[p]; edgeDy = -edgeDy; } if (inPt.y < edgeLowPt.y || inPt.y > edgeHighPt.y) continue; if (inPt.y === edgeLowPt.y) { if (inPt.x === edgeLowPt.x) return true; } else { const perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y); if (perpEdge === 0) return true; if (perpEdge < 0) continue; inside = !inside; } } else { if (inPt.y !== edgeLowPt.y) continue; if (edgeHighPt.x <= inPt.x && inPt.x <= edgeLowPt.x || edgeLowPt.x <= inPt.x && inPt.x <= edgeHighPt.x) return true; } } return inside; } __name(isPointInsidePolygon, "isPointInsidePolygon"); const isClockWise = ShapeUtils.isClockWise; const subPaths = this.subPaths; if (subPaths.length === 0) return []; let solid, tmpPath, tmpShape; const shapes = []; if (subPaths.length === 1) { tmpPath = subPaths[0]; tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push(tmpShape); return shapes; } let holesFirst = !isClockWise(subPaths[0].getPoints()); holesFirst = isCCW ? !holesFirst : holesFirst; const betterShapeHoles = []; const newShapes = []; let newShapeHoles = []; let mainIdx = 0; let tmpPoints; newShapes[mainIdx] = void 0; newShapeHoles[mainIdx] = []; for (let i = 0, l = subPaths.length; i < l; i++) { tmpPath = subPaths[i]; tmpPoints = tmpPath.getPoints(); solid = isClockWise(tmpPoints); solid = isCCW ? !solid : solid; if (solid) { if (!holesFirst && newShapes[mainIdx]) mainIdx++; newShapes[mainIdx] = { s: new Shape(), p: tmpPoints }; newShapes[mainIdx].s.curves = tmpPath.curves; if (holesFirst) mainIdx++; newShapeHoles[mainIdx] = []; } else { newShapeHoles[mainIdx].push({ h: tmpPath, p: tmpPoints[0] }); } } if (!newShapes[0]) return toShapesNoHoles(subPaths); if (newShapes.length > 1) { let ambiguous = false; let toChange = 0; for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) { betterShapeHoles[sIdx] = []; } for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) { const sho = newShapeHoles[sIdx]; for (let hIdx = 0; hIdx < sho.length; hIdx++) { const ho = sho[hIdx]; let hole_unassigned = true; for (let s2Idx = 0; s2Idx < newShapes.length; s2Idx++) { if (isPointInsidePolygon(ho.p, newShapes[s2Idx].p)) { if (sIdx !== s2Idx) toChange++; if (hole_unassigned) { hole_unassigned = false; betterShapeHoles[s2Idx].push(ho); } else { ambiguous = true; } } } if (hole_unassigned) { betterShapeHoles[sIdx].push(ho); } } } if (toChange > 0 && ambiguous === false) { newShapeHoles = betterShapeHoles; } } let tmpHoles; for (let i = 0, il = newShapes.length; i < il; i++) { tmpShape = newShapes[i].s; shapes.push(tmpShape); tmpHoles = newShapeHoles[i]; for (let j = 0, jl = tmpHoles.length; j < jl; j++) { tmpShape.holes.push(tmpHoles[j].h); } } return shapes; } } class Controls extends EventDispatcher { static { __name(this, "Controls"); } constructor(object, domElement = null) { super(); this.object = object; this.domElement = domElement; this.enabled = true; this.state = -1; this.keys = {}; this.mouseButtons = { LEFT: null, MIDDLE: null, RIGHT: null }; this.touches = { ONE: null, TWO: null }; } connect() { } disconnect() { } dispose() { } update() { } } class WebGLMultipleRenderTargets extends WebGLRenderTarget { static { __name(this, "WebGLMultipleRenderTargets"); } // @deprecated, r162 constructor(width = 1, height = 1, count = 1, options = {}) { console.warn('THREE.WebGLMultipleRenderTargets has been deprecated and will be removed in r172. Use THREE.WebGLRenderTarget and set the "count" parameter to enable MRT.'); super(width, height, { ...options, count }); this.isWebGLMultipleRenderTargets = true; } get texture() { return this.textures; } } if (typeof __THREE_DEVTOOLS__ !== "undefined") { __THREE_DEVTOOLS__.dispatchEvent(new CustomEvent("register", { detail: { revision: REVISION } })); } if (typeof window !== "undefined") { if (window.__THREE__) { console.warn("WARNING: Multiple instances of Three.js being imported."); } else { window.__THREE__ = REVISION; } } const _changeEvent = { type: "change" }; const _startEvent = { type: "start" }; const _endEvent = { type: "end" }; const _ray = new Ray(); const _plane = new Plane(); const _TILT_LIMIT = Math.cos(70 * MathUtils.DEG2RAD); const _v = new Vector3(); const _twoPI = 2 * Math.PI; const _STATE = { NONE: -1, ROTATE: 0, DOLLY: 1, PAN: 2, TOUCH_ROTATE: 3, TOUCH_PAN: 4, TOUCH_DOLLY_PAN: 5, TOUCH_DOLLY_ROTATE: 6 }; const _EPS = 1e-6; class OrbitControls extends Controls { static { __name(this, "OrbitControls"); } constructor(object, domElement = null) { super(object, domElement); this.state = _STATE.NONE; this.enabled = true; this.target = new Vector3(); this.cursor = new Vector3(); this.minDistance = 0; this.maxDistance = Infinity; this.minZoom = 0; this.maxZoom = Infinity; this.minTargetRadius = 0; this.maxTargetRadius = Infinity; this.minPolarAngle = 0; this.maxPolarAngle = Math.PI; this.minAzimuthAngle = -Infinity; this.maxAzimuthAngle = Infinity; this.enableDamping = false; this.dampingFactor = 0.05; this.enableZoom = true; this.zoomSpeed = 1; this.enableRotate = true; this.rotateSpeed = 1; this.enablePan = true; this.panSpeed = 1; this.screenSpacePanning = true; this.keyPanSpeed = 7; this.zoomToCursor = false; this.autoRotate = false; this.autoRotateSpeed = 2; this.keys = { LEFT: "ArrowLeft", UP: "ArrowUp", RIGHT: "ArrowRight", BOTTOM: "ArrowDown" }; this.mouseButtons = { LEFT: MOUSE.ROTATE, MIDDLE: MOUSE.DOLLY, RIGHT: MOUSE.PAN }; this.touches = { ONE: TOUCH.ROTATE, TWO: TOUCH.DOLLY_PAN }; this.target0 = this.target.clone(); this.position0 = this.object.position.clone(); this.zoom0 = this.object.zoom; this._domElementKeyEvents = null; this._lastPosition = new Vector3(); this._lastQuaternion = new Quaternion(); this._lastTargetPosition = new Vector3(); this._quat = new Quaternion().setFromUnitVectors(object.up, new Vector3(0, 1, 0)); this._quatInverse = this._quat.clone().invert(); this._spherical = new Spherical(); this._sphericalDelta = new Spherical(); this._scale = 1; this._panOffset = new Vector3(); this._rotateStart = new Vector2(); this._rotateEnd = new Vector2(); this._rotateDelta = new Vector2(); this._panStart = new Vector2(); this._panEnd = new Vector2(); this._panDelta = new Vector2(); this._dollyStart = new Vector2(); this._dollyEnd = new Vector2(); this._dollyDelta = new Vector2(); this._dollyDirection = new Vector3(); this._mouse = new Vector2(); this._performCursorZoom = false; this._pointers = []; this._pointerPositions = {}; this._controlActive = false; this._onPointerMove = onPointerMove.bind(this); this._onPointerDown = onPointerDown.bind(this); this._onPointerUp = onPointerUp.bind(this); this._onContextMenu = onContextMenu.bind(this); this._onMouseWheel = onMouseWheel.bind(this); this._onKeyDown = onKeyDown.bind(this); this._onTouchStart = onTouchStart.bind(this); this._onTouchMove = onTouchMove.bind(this); this._onMouseDown = onMouseDown.bind(this); this._onMouseMove = onMouseMove.bind(this); this._interceptControlDown = interceptControlDown.bind(this); this._interceptControlUp = interceptControlUp.bind(this); if (this.domElement !== null) { this.connect(); } this.update(); } connect() { this.domElement.addEventListener("pointerdown", this._onPointerDown); this.domElement.addEventListener("pointercancel", this._onPointerUp); this.domElement.addEventListener("contextmenu", this._onContextMenu); this.domElement.addEventListener("wheel", this._onMouseWheel, { passive: false }); const document2 = this.domElement.getRootNode(); document2.addEventListener("keydown", this._interceptControlDown, { passive: true, capture: true }); this.domElement.style.touchAction = "none"; } disconnect() { this.domElement.removeEventListener("pointerdown", this._onPointerDown); this.domElement.removeEventListener("pointermove", this._onPointerMove); this.domElement.removeEventListener("pointerup", this._onPointerUp); this.domElement.removeEventListener("pointercancel", this._onPointerUp); this.domElement.removeEventListener("wheel", this._onMouseWheel); this.domElement.removeEventListener("contextmenu", this._onContextMenu); this.stopListenToKeyEvents(); const document2 = this.domElement.getRootNode(); document2.removeEventListener("keydown", this._interceptControlDown, { capture: true }); this.domElement.style.touchAction = "auto"; } dispose() { this.disconnect(); } getPolarAngle() { return this._spherical.phi; } getAzimuthalAngle() { return this._spherical.theta; } getDistance() { return this.object.position.distanceTo(this.target); } listenToKeyEvents(domElement) { domElement.addEventListener("keydown", this._onKeyDown); this._domElementKeyEvents = domElement; } stopListenToKeyEvents() { if (this._domElementKeyEvents !== null) { this._domElementKeyEvents.removeEventListener("keydown", this._onKeyDown); this._domElementKeyEvents = null; } } saveState() { this.target0.copy(this.target); this.position0.copy(this.object.position); this.zoom0 = this.object.zoom; } reset() { this.target.copy(this.target0); this.object.position.copy(this.position0); this.object.zoom = this.zoom0; this.object.updateProjectionMatrix(); this.dispatchEvent(_changeEvent); this.update(); this.state = _STATE.NONE; } update(deltaTime = null) { const position = this.object.position; _v.copy(position).sub(this.target); _v.applyQuaternion(this._quat); this._spherical.setFromVector3(_v); if (this.autoRotate && this.state === _STATE.NONE) { this._rotateLeft(this._getAutoRotationAngle(deltaTime)); } if (this.enableDamping) { this._spherical.theta += this._sphericalDelta.theta * this.dampingFactor; this._spherical.phi += this._sphericalDelta.phi * this.dampingFactor; } else { this._spherical.theta += this._sphericalDelta.theta; this._spherical.phi += this._sphericalDelta.phi; } let min = this.minAzimuthAngle; let max2 = this.maxAzimuthAngle; if (isFinite(min) && isFinite(max2)) { if (min < -Math.PI) min += _twoPI; else if (min > Math.PI) min -= _twoPI; if (max2 < -Math.PI) max2 += _twoPI; else if (max2 > Math.PI) max2 -= _twoPI; if (min <= max2) { this._spherical.theta = Math.max(min, Math.min(max2, this._spherical.theta)); } else { this._spherical.theta = this._spherical.theta > (min + max2) / 2 ? Math.max(min, this._spherical.theta) : Math.min(max2, this._spherical.theta); } } this._spherical.phi = Math.max(this.minPolarAngle, Math.min(this.maxPolarAngle, this._spherical.phi)); this._spherical.makeSafe(); if (this.enableDamping === true) { this.target.addScaledVector(this._panOffset, this.dampingFactor); } else { this.target.add(this._panOffset); } this.target.sub(this.cursor); this.target.clampLength(this.minTargetRadius, this.maxTargetRadius); this.target.add(this.cursor); let zoomChanged = false; if (this.zoomToCursor && this._performCursorZoom || this.object.isOrthographicCamera) { this._spherical.radius = this._clampDistance(this._spherical.radius); } else { const prevRadius = this._spherical.radius; this._spherical.radius = this._clampDistance(this._spherical.radius * this._scale); zoomChanged = prevRadius != this._spherical.radius; } _v.setFromSpherical(this._spherical); _v.applyQuaternion(this._quatInverse); position.copy(this.target).add(_v); this.object.lookAt(this.target); if (this.enableDamping === true) { this._sphericalDelta.theta *= 1 - this.dampingFactor; this._sphericalDelta.phi *= 1 - this.dampingFactor; this._panOffset.multiplyScalar(1 - this.dampingFactor); } else { this._sphericalDelta.set(0, 0, 0); this._panOffset.set(0, 0, 0); } if (this.zoomToCursor && this._performCursorZoom) { let newRadius = null; if (this.object.isPerspectiveCamera) { const prevRadius = _v.length(); newRadius = this._clampDistance(prevRadius * this._scale); const radiusDelta = prevRadius - newRadius; this.object.position.addScaledVector(this._dollyDirection, radiusDelta); this.object.updateMatrixWorld(); zoomChanged = !!radiusDelta; } else if (this.object.isOrthographicCamera) { const mouseBefore = new Vector3(this._mouse.x, this._mouse.y, 0); mouseBefore.unproject(this.object); const prevZoom = this.object.zoom; this.object.zoom = Math.max(this.minZoom, Math.min(this.maxZoom, this.object.zoom / this._scale)); this.object.updateProjectionMatrix(); zoomChanged = prevZoom !== this.object.zoom; const mouseAfter = new Vector3(this._mouse.x, this._mouse.y, 0); mouseAfter.unproject(this.object); this.object.position.sub(mouseAfter).add(mouseBefore); this.object.updateMatrixWorld(); newRadius = _v.length(); } else { console.warn("WARNING: OrbitControls.js encountered an unknown camera type - zoom to cursor disabled."); this.zoomToCursor = false; } if (newRadius !== null) { if (this.screenSpacePanning) { this.target.set(0, 0, -1).transformDirection(this.object.matrix).multiplyScalar(newRadius).add(this.object.position); } else { _ray.origin.copy(this.object.position); _ray.direction.set(0, 0, -1).transformDirection(this.object.matrix); if (Math.abs(this.object.up.dot(_ray.direction)) < _TILT_LIMIT) { this.object.lookAt(this.target); } else { _plane.setFromNormalAndCoplanarPoint(this.object.up, this.target); _ray.intersectPlane(_plane, this.target); } } } } else if (this.object.isOrthographicCamera) { const prevZoom = this.object.zoom; this.object.zoom = Math.max(this.minZoom, Math.min(this.maxZoom, this.object.zoom / this._scale)); if (prevZoom !== this.object.zoom) { this.object.updateProjectionMatrix(); zoomChanged = true; } } this._scale = 1; this._performCursorZoom = false; if (zoomChanged || this._lastPosition.distanceToSquared(this.object.position) > _EPS || 8 * (1 - this._lastQuaternion.dot(this.object.quaternion)) > _EPS || this._lastTargetPosition.distanceToSquared(this.target) > _EPS) { this.dispatchEvent(_changeEvent); this._lastPosition.copy(this.object.position); this._lastQuaternion.copy(this.object.quaternion); this._lastTargetPosition.copy(this.target); return true; } return false; } _getAutoRotationAngle(deltaTime) { if (deltaTime !== null) { return _twoPI / 60 * this.autoRotateSpeed * deltaTime; } else { return _twoPI / 60 / 60 * this.autoRotateSpeed; } } _getZoomScale(delta) { const normalizedDelta = Math.abs(delta * 0.01); return Math.pow(0.95, this.zoomSpeed * normalizedDelta); } _rotateLeft(angle) { this._sphericalDelta.theta -= angle; } _rotateUp(angle) { this._sphericalDelta.phi -= angle; } _panLeft(distance, objectMatrix) { _v.setFromMatrixColumn(objectMatrix, 0); _v.multiplyScalar(-distance); this._panOffset.add(_v); } _panUp(distance, objectMatrix) { if (this.screenSpacePanning === true) { _v.setFromMatrixColumn(objectMatrix, 1); } else { _v.setFromMatrixColumn(objectMatrix, 0); _v.crossVectors(this.object.up, _v); } _v.multiplyScalar(distance); this._panOffset.add(_v); } // deltaX and deltaY are in pixels; right and down are positive _pan(deltaX, deltaY) { const element = this.domElement; if (this.object.isPerspectiveCamera) { const position = this.object.position; _v.copy(position).sub(this.target); let targetDistance = _v.length(); targetDistance *= Math.tan(this.object.fov / 2 * Math.PI / 180); this._panLeft(2 * deltaX * targetDistance / element.clientHeight, this.object.matrix); this._panUp(2 * deltaY * targetDistance / element.clientHeight, this.object.matrix); } else if (this.object.isOrthographicCamera) { this._panLeft(deltaX * (this.object.right - this.object.left) / this.object.zoom / element.clientWidth, this.object.matrix); this._panUp(deltaY * (this.object.top - this.object.bottom) / this.object.zoom / element.clientHeight, this.object.matrix); } else { console.warn("WARNING: OrbitControls.js encountered an unknown camera type - pan disabled."); this.enablePan = false; } } _dollyOut(dollyScale) { if (this.object.isPerspectiveCamera || this.object.isOrthographicCamera) { this._scale /= dollyScale; } else { console.warn("WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled."); this.enableZoom = false; } } _dollyIn(dollyScale) { if (this.object.isPerspectiveCamera || this.object.isOrthographicCamera) { this._scale *= dollyScale; } else { console.warn("WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled."); this.enableZoom = false; } } _updateZoomParameters(x, y) { if (!this.zoomToCursor) { return; } this._performCursorZoom = true; const rect = this.domElement.getBoundingClientRect(); const dx = x - rect.left; const dy = y - rect.top; const w = rect.width; const h = rect.height; this._mouse.x = dx / w * 2 - 1; this._mouse.y = -(dy / h) * 2 + 1; this._dollyDirection.set(this._mouse.x, this._mouse.y, 1).unproject(this.object).sub(this.object.position).normalize(); } _clampDistance(dist) { return Math.max(this.minDistance, Math.min(this.maxDistance, dist)); } // // event callbacks - update the object state // _handleMouseDownRotate(event) { this._rotateStart.set(event.clientX, event.clientY); } _handleMouseDownDolly(event) { this._updateZoomParameters(event.clientX, event.clientX); this._dollyStart.set(event.clientX, event.clientY); } _handleMouseDownPan(event) { this._panStart.set(event.clientX, event.clientY); } _handleMouseMoveRotate(event) { this._rotateEnd.set(event.clientX, event.clientY); this._rotateDelta.subVectors(this._rotateEnd, this._rotateStart).multiplyScalar(this.rotateSpeed); const element = this.domElement; this._rotateLeft(_twoPI * this._rotateDelta.x / element.clientHeight); this._rotateUp(_twoPI * this._rotateDelta.y / element.clientHeight); this._rotateStart.copy(this._rotateEnd); this.update(); } _handleMouseMoveDolly(event) { this._dollyEnd.set(event.clientX, event.clientY); this._dollyDelta.subVectors(this._dollyEnd, this._dollyStart); if (this._dollyDelta.y > 0) { this._dollyOut(this._getZoomScale(this._dollyDelta.y)); } else if (this._dollyDelta.y < 0) { this._dollyIn(this._getZoomScale(this._dollyDelta.y)); } this._dollyStart.copy(this._dollyEnd); this.update(); } _handleMouseMovePan(event) { this._panEnd.set(event.clientX, event.clientY); this._panDelta.subVectors(this._panEnd, this._panStart).multiplyScalar(this.panSpeed); this._pan(this._panDelta.x, this._panDelta.y); this._panStart.copy(this._panEnd); this.update(); } _handleMouseWheel(event) { this._updateZoomParameters(event.clientX, event.clientY); if (event.deltaY < 0) { this._dollyIn(this._getZoomScale(event.deltaY)); } else if (event.deltaY > 0) { this._dollyOut(this._getZoomScale(event.deltaY)); } this.update(); } _handleKeyDown(event) { let needsUpdate = false; switch (event.code) { case this.keys.UP: if (event.ctrlKey || event.metaKey || event.shiftKey) { this._rotateUp(_twoPI * this.rotateSpeed / this.domElement.clientHeight); } else { this._pan(0, this.keyPanSpeed); } needsUpdate = true; break; case this.keys.BOTTOM: if (event.ctrlKey || event.metaKey || event.shiftKey) { this._rotateUp(-_twoPI * this.rotateSpeed / this.domElement.clientHeight); } else { this._pan(0, -this.keyPanSpeed); } needsUpdate = true; break; case this.keys.LEFT: if (event.ctrlKey || event.metaKey || event.shiftKey) { this._rotateLeft(_twoPI * this.rotateSpeed / this.domElement.clientHeight); } else { this._pan(this.keyPanSpeed, 0); } needsUpdate = true; break; case this.keys.RIGHT: if (event.ctrlKey || event.metaKey || event.shiftKey) { this._rotateLeft(-_twoPI * this.rotateSpeed / this.domElement.clientHeight); } else { this._pan(-this.keyPanSpeed, 0); } needsUpdate = true; break; } if (needsUpdate) { event.preventDefault(); this.update(); } } _handleTouchStartRotate(event) { if (this._pointers.length === 1) { this._rotateStart.set(event.pageX, event.pageY); } else { const position = this._getSecondPointerPosition(event); const x = 0.5 * (event.pageX + position.x); const y = 0.5 * (event.pageY + position.y); this._rotateStart.set(x, y); } } _handleTouchStartPan(event) { if (this._pointers.length === 1) { this._panStart.set(event.pageX, event.pageY); } else { const position = this._getSecondPointerPosition(event); const x = 0.5 * (event.pageX + position.x); const y = 0.5 * (event.pageY + position.y); this._panStart.set(x, y); } } _handleTouchStartDolly(event) { const position = this._getSecondPointerPosition(event); const dx = event.pageX - position.x; const dy = event.pageY - position.y; const distance = Math.sqrt(dx * dx + dy * dy); this._dollyStart.set(0, distance); } _handleTouchStartDollyPan(event) { if (this.enableZoom) this._handleTouchStartDolly(event); if (this.enablePan) this._handleTouchStartPan(event); } _handleTouchStartDollyRotate(event) { if (this.enableZoom) this._handleTouchStartDolly(event); if (this.enableRotate) this._handleTouchStartRotate(event); } _handleTouchMoveRotate(event) { if (this._pointers.length == 1) { this._rotateEnd.set(event.pageX, event.pageY); } else { const position = this._getSecondPointerPosition(event); const x = 0.5 * (event.pageX + position.x); const y = 0.5 * (event.pageY + position.y); this._rotateEnd.set(x, y); } this._rotateDelta.subVectors(this._rotateEnd, this._rotateStart).multiplyScalar(this.rotateSpeed); const element = this.domElement; this._rotateLeft(_twoPI * this._rotateDelta.x / element.clientHeight); this._rotateUp(_twoPI * this._rotateDelta.y / element.clientHeight); this._rotateStart.copy(this._rotateEnd); } _handleTouchMovePan(event) { if (this._pointers.length === 1) { this._panEnd.set(event.pageX, event.pageY); } else { const position = this._getSecondPointerPosition(event); const x = 0.5 * (event.pageX + position.x); const y = 0.5 * (event.pageY + position.y); this._panEnd.set(x, y); } this._panDelta.subVectors(this._panEnd, this._panStart).multiplyScalar(this.panSpeed); this._pan(this._panDelta.x, this._panDelta.y); this._panStart.copy(this._panEnd); } _handleTouchMoveDolly(event) { const position = this._getSecondPointerPosition(event); const dx = event.pageX - position.x; const dy = event.pageY - position.y; const distance = Math.sqrt(dx * dx + dy * dy); this._dollyEnd.set(0, distance); this._dollyDelta.set(0, Math.pow(this._dollyEnd.y / this._dollyStart.y, this.zoomSpeed)); this._dollyOut(this._dollyDelta.y); this._dollyStart.copy(this._dollyEnd); const centerX = (event.pageX + position.x) * 0.5; const centerY = (event.pageY + position.y) * 0.5; this._updateZoomParameters(centerX, centerY); } _handleTouchMoveDollyPan(event) { if (this.enableZoom) this._handleTouchMoveDolly(event); if (this.enablePan) this._handleTouchMovePan(event); } _handleTouchMoveDollyRotate(event) { if (this.enableZoom) this._handleTouchMoveDolly(event); if (this.enableRotate) this._handleTouchMoveRotate(event); } // pointers _addPointer(event) { this._pointers.push(event.pointerId); } _removePointer(event) { delete this._pointerPositions[event.pointerId]; for (let i = 0; i < this._pointers.length; i++) { if (this._pointers[i] == event.pointerId) { this._pointers.splice(i, 1); return; } } } _isTrackingPointer(event) { for (let i = 0; i < this._pointers.length; i++) { if (this._pointers[i] == event.pointerId) return true; } return false; } _trackPointer(event) { let position = this._pointerPositions[event.pointerId]; if (position === void 0) { position = new Vector2(); this._pointerPositions[event.pointerId] = position; } position.set(event.pageX, event.pageY); } _getSecondPointerPosition(event) { const pointerId = event.pointerId === this._pointers[0] ? this._pointers[1] : this._pointers[0]; return this._pointerPositions[pointerId]; } // _customWheelEvent(event) { const mode = event.deltaMode; const newEvent = { clientX: event.clientX, clientY: event.clientY, deltaY: event.deltaY }; switch (mode) { case 1: newEvent.deltaY *= 16; break; case 2: newEvent.deltaY *= 100; break; } if (event.ctrlKey && !this._controlActive) { newEvent.deltaY *= 10; } return newEvent; } } function onPointerDown(event) { if (this.enabled === false) return; if (this._pointers.length === 0) { this.domElement.setPointerCapture(event.pointerId); this.domElement.addEventListener("pointermove", this._onPointerMove); this.domElement.addEventListener("pointerup", this._onPointerUp); } if (this._isTrackingPointer(event)) return; this._addPointer(event); if (event.pointerType === "touch") { this._onTouchStart(event); } else { this._onMouseDown(event); } } __name(onPointerDown, "onPointerDown"); function onPointerMove(event) { if (this.enabled === false) return; if (event.pointerType === "touch") { this._onTouchMove(event); } else { this._onMouseMove(event); } } __name(onPointerMove, "onPointerMove"); function onPointerUp(event) { this._removePointer(event); switch (this._pointers.length) { case 0: this.domElement.releasePointerCapture(event.pointerId); this.domElement.removeEventListener("pointermove", this._onPointerMove); this.domElement.removeEventListener("pointerup", this._onPointerUp); this.dispatchEvent(_endEvent); this.state = _STATE.NONE; break; case 1: const pointerId = this._pointers[0]; const position = this._pointerPositions[pointerId]; this._onTouchStart({ pointerId, pageX: position.x, pageY: position.y }); break; } } __name(onPointerUp, "onPointerUp"); function onMouseDown(event) { let mouseAction; switch (event.button) { case 0: mouseAction = this.mouseButtons.LEFT; break; case 1: mouseAction = this.mouseButtons.MIDDLE; break; case 2: mouseAction = this.mouseButtons.RIGHT; break; default: mouseAction = -1; } switch (mouseAction) { case MOUSE.DOLLY: if (this.enableZoom === false) return; this._handleMouseDownDolly(event); this.state = _STATE.DOLLY; break; case MOUSE.ROTATE: if (event.ctrlKey || event.metaKey || event.shiftKey) { if (this.enablePan === false) return; this._handleMouseDownPan(event); this.state = _STATE.PAN; } else { if (this.enableRotate === false) return; this._handleMouseDownRotate(event); this.state = _STATE.ROTATE; } break; case MOUSE.PAN: if (event.ctrlKey || event.metaKey || event.shiftKey) { if (this.enableRotate === false) return; this._handleMouseDownRotate(event); this.state = _STATE.ROTATE; } else { if (this.enablePan === false) return; this._handleMouseDownPan(event); this.state = _STATE.PAN; } break; default: this.state = _STATE.NONE; } if (this.state !== _STATE.NONE) { this.dispatchEvent(_startEvent); } } __name(onMouseDown, "onMouseDown"); function onMouseMove(event) { switch (this.state) { case _STATE.ROTATE: if (this.enableRotate === false) return; this._handleMouseMoveRotate(event); break; case _STATE.DOLLY: if (this.enableZoom === false) return; this._handleMouseMoveDolly(event); break; case _STATE.PAN: if (this.enablePan === false) return; this._handleMouseMovePan(event); break; } } __name(onMouseMove, "onMouseMove"); function onMouseWheel(event) { if (this.enabled === false || this.enableZoom === false || this.state !== _STATE.NONE) return; event.preventDefault(); this.dispatchEvent(_startEvent); this._handleMouseWheel(this._customWheelEvent(event)); this.dispatchEvent(_endEvent); } __name(onMouseWheel, "onMouseWheel"); function onKeyDown(event) { if (this.enabled === false || this.enablePan === false) return; this._handleKeyDown(event); } __name(onKeyDown, "onKeyDown"); function onTouchStart(event) { this._trackPointer(event); switch (this._pointers.length) { case 1: switch (this.touches.ONE) { case TOUCH.ROTATE: if (this.enableRotate === false) return; this._handleTouchStartRotate(event); this.state = _STATE.TOUCH_ROTATE; break; case TOUCH.PAN: if (this.enablePan === false) return; this._handleTouchStartPan(event); this.state = _STATE.TOUCH_PAN; break; default: this.state = _STATE.NONE; } break; case 2: switch (this.touches.TWO) { case TOUCH.DOLLY_PAN: if (this.enableZoom === false && this.enablePan === false) return; this._handleTouchStartDollyPan(event); this.state = _STATE.TOUCH_DOLLY_PAN; break; case TOUCH.DOLLY_ROTATE: if (this.enableZoom === false && this.enableRotate === false) return; this._handleTouchStartDollyRotate(event); this.state = _STATE.TOUCH_DOLLY_ROTATE; break; default: this.state = _STATE.NONE; } break; default: this.state = _STATE.NONE; } if (this.state !== _STATE.NONE) { this.dispatchEvent(_startEvent); } } __name(onTouchStart, "onTouchStart"); function onTouchMove(event) { this._trackPointer(event); switch (this.state) { case _STATE.TOUCH_ROTATE: if (this.enableRotate === false) return; this._handleTouchMoveRotate(event); this.update(); break; case _STATE.TOUCH_PAN: if (this.enablePan === false) return; this._handleTouchMovePan(event); this.update(); break; case _STATE.TOUCH_DOLLY_PAN: if (this.enableZoom === false && this.enablePan === false) return; this._handleTouchMoveDollyPan(event); this.update(); break; case _STATE.TOUCH_DOLLY_ROTATE: if (this.enableZoom === false && this.enableRotate === false) return; this._handleTouchMoveDollyRotate(event); this.update(); break; default: this.state = _STATE.NONE; } } __name(onTouchMove, "onTouchMove"); function onContextMenu(event) { if (this.enabled === false) return; event.preventDefault(); } __name(onContextMenu, "onContextMenu"); function interceptControlDown(event) { if (event.key === "Control") { this._controlActive = true; const document2 = this.domElement.getRootNode(); document2.addEventListener("keyup", this._interceptControlUp, { passive: true, capture: true }); } } __name(interceptControlDown, "interceptControlDown"); function interceptControlUp(event) { if (event.key === "Control") { this._controlActive = false; const document2 = this.domElement.getRootNode(); document2.removeEventListener("keyup", this._interceptControlUp, { passive: true, capture: true }); } } __name(interceptControlUp, "interceptControlUp"); function computeMikkTSpaceTangents(geometry, MikkTSpace, negateSign = true) { if (!MikkTSpace || !MikkTSpace.isReady) { throw new Error("BufferGeometryUtils: Initialized MikkTSpace library required."); } if (!geometry.hasAttribute("position") || !geometry.hasAttribute("normal") || !geometry.hasAttribute("uv")) { throw new Error('BufferGeometryUtils: Tangents require "position", "normal", and "uv" attributes.'); } function getAttributeArray(attribute) { if (attribute.normalized || attribute.isInterleavedBufferAttribute) { const dstArray = new Float32Array(attribute.count * attribute.itemSize); for (let i = 0, j = 0; i < attribute.count; i++) { dstArray[j++] = attribute.getX(i); dstArray[j++] = attribute.getY(i); if (attribute.itemSize > 2) { dstArray[j++] = attribute.getZ(i); } } return dstArray; } if (attribute.array instanceof Float32Array) { return attribute.array; } return new Float32Array(attribute.array); } __name(getAttributeArray, "getAttributeArray"); const _geometry2 = geometry.index ? geometry.toNonIndexed() : geometry; const tangents = MikkTSpace.generateTangents( getAttributeArray(_geometry2.attributes.position), getAttributeArray(_geometry2.attributes.normal), getAttributeArray(_geometry2.attributes.uv) ); if (negateSign) { for (let i = 3; i < tangents.length; i += 4) { tangents[i] *= -1; } } _geometry2.setAttribute("tangent", new BufferAttribute(tangents, 4)); if (geometry !== _geometry2) { geometry.copy(_geometry2); } return geometry; } __name(computeMikkTSpaceTangents, "computeMikkTSpaceTangents"); function mergeGeometries(geometries, useGroups = false) { const isIndexed = geometries[0].index !== null; const attributesUsed = new Set(Object.keys(geometries[0].attributes)); const morphAttributesUsed = new Set(Object.keys(geometries[0].morphAttributes)); const attributes = {}; const morphAttributes = {}; const morphTargetsRelative = geometries[0].morphTargetsRelative; const mergedGeometry = new BufferGeometry(); let offset = 0; for (let i = 0; i < geometries.length; ++i) { const geometry = geometries[i]; let attributesCount = 0; if (isIndexed !== (geometry.index !== null)) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". All geometries must have compatible attributes; make sure index attribute exists among all geometries, or in none of them."); return null; } for (const name in geometry.attributes) { if (!attributesUsed.has(name)) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + '. All geometries must have compatible attributes; make sure "' + name + '" attribute exists among all geometries, or in none of them.'); return null; } if (attributes[name] === void 0) attributes[name] = []; attributes[name].push(geometry.attributes[name]); attributesCount++; } if (attributesCount !== attributesUsed.size) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". Make sure all geometries have the same number of attributes."); return null; } if (morphTargetsRelative !== geometry.morphTargetsRelative) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". .morphTargetsRelative must be consistent throughout all geometries."); return null; } for (const name in geometry.morphAttributes) { if (!morphAttributesUsed.has(name)) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". .morphAttributes must be consistent throughout all geometries."); return null; } if (morphAttributes[name] === void 0) morphAttributes[name] = []; morphAttributes[name].push(geometry.morphAttributes[name]); } if (useGroups) { let count; if (isIndexed) { count = geometry.index.count; } else if (geometry.attributes.position !== void 0) { count = geometry.attributes.position.count; } else { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index " + i + ". The geometry must have either an index or a position attribute"); return null; } mergedGeometry.addGroup(offset, count, i); offset += count; } } if (isIndexed) { let indexOffset = 0; const mergedIndex = []; for (let i = 0; i < geometries.length; ++i) { const index = geometries[i].index; for (let j = 0; j < index.count; ++j) { mergedIndex.push(index.getX(j) + indexOffset); } indexOffset += geometries[i].attributes.position.count; } mergedGeometry.setIndex(mergedIndex); } for (const name in attributes) { const mergedAttribute = mergeAttributes(attributes[name]); if (!mergedAttribute) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the " + name + " attribute."); return null; } mergedGeometry.setAttribute(name, mergedAttribute); } for (const name in morphAttributes) { const numMorphTargets = morphAttributes[name][0].length; if (numMorphTargets === 0) break; mergedGeometry.morphAttributes = mergedGeometry.morphAttributes || {}; mergedGeometry.morphAttributes[name] = []; for (let i = 0; i < numMorphTargets; ++i) { const morphAttributesToMerge = []; for (let j = 0; j < morphAttributes[name].length; ++j) { morphAttributesToMerge.push(morphAttributes[name][j][i]); } const mergedMorphAttribute = mergeAttributes(morphAttributesToMerge); if (!mergedMorphAttribute) { console.error("THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the " + name + " morphAttribute."); return null; } mergedGeometry.morphAttributes[name].push(mergedMorphAttribute); } } return mergedGeometry; } __name(mergeGeometries, "mergeGeometries"); function mergeAttributes(attributes) { let TypedArray; let itemSize; let normalized; let gpuType = -1; let arrayLength = 0; for (let i = 0; i < attributes.length; ++i) { const attribute = attributes[i]; if (TypedArray === void 0) TypedArray = attribute.array.constructor; if (TypedArray !== attribute.array.constructor) { console.error("THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.array must be of consistent array types across matching attributes."); return null; } if (itemSize === void 0) itemSize = attribute.itemSize; if (itemSize !== attribute.itemSize) { console.error("THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.itemSize must be consistent across matching attributes."); return null; } if (normalized === void 0) normalized = attribute.normalized; if (normalized !== attribute.normalized) { console.error("THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.normalized must be consistent across matching attributes."); return null; } if (gpuType === -1) gpuType = attribute.gpuType; if (gpuType !== attribute.gpuType) { console.error("THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.gpuType must be consistent across matching attributes."); return null; } arrayLength += attribute.count * itemSize; } const array = new TypedArray(arrayLength); const result = new BufferAttribute(array, itemSize, normalized); let offset = 0; for (let i = 0; i < attributes.length; ++i) { const attribute = attributes[i]; if (attribute.isInterleavedBufferAttribute) { const tupleOffset = offset / itemSize; for (let j = 0, l = attribute.count; j < l; j++) { for (let c = 0; c < itemSize; c++) { const value = attribute.getComponent(j, c); result.setComponent(j + tupleOffset, c, value); } } } else { array.set(attribute.array, offset); } offset += attribute.count * itemSize; } if (gpuType !== void 0) { result.gpuType = gpuType; } return result; } __name(mergeAttributes, "mergeAttributes"); function deepCloneAttribute(attribute) { if (attribute.isInstancedInterleavedBufferAttribute || attribute.isInterleavedBufferAttribute) { return deinterleaveAttribute(attribute); } if (attribute.isInstancedBufferAttribute) { return new InstancedBufferAttribute().copy(attribute); } return new BufferAttribute().copy(attribute); } __name(deepCloneAttribute, "deepCloneAttribute"); function interleaveAttributes(attributes) { let TypedArray; let arrayLength = 0; let stride = 0; for (let i = 0, l = attributes.length; i < l; ++i) { const attribute = attributes[i]; if (TypedArray === void 0) TypedArray = attribute.array.constructor; if (TypedArray !== attribute.array.constructor) { console.error("AttributeBuffers of different types cannot be interleaved"); return null; } arrayLength += attribute.array.length; stride += attribute.itemSize; } const interleavedBuffer = new InterleavedBuffer(new TypedArray(arrayLength), stride); let offset = 0; const res = []; const getters = ["getX", "getY", "getZ", "getW"]; const setters = ["setX", "setY", "setZ", "setW"]; for (let j = 0, l = attributes.length; j < l; j++) { const attribute = attributes[j]; const itemSize = attribute.itemSize; const count = attribute.count; const iba = new InterleavedBufferAttribute(interleavedBuffer, itemSize, offset, attribute.normalized); res.push(iba); offset += itemSize; for (let c = 0; c < count; c++) { for (let k = 0; k < itemSize; k++) { iba[setters[k]](c, attribute[getters[k]](c)); } } } return res; } __name(interleaveAttributes, "interleaveAttributes"); function deinterleaveAttribute(attribute) { const cons = attribute.data.array.constructor; const count = attribute.count; const itemSize = attribute.itemSize; const normalized = attribute.normalized; const array = new cons(count * itemSize); let newAttribute; if (attribute.isInstancedInterleavedBufferAttribute) { newAttribute = new InstancedBufferAttribute(array, itemSize, normalized, attribute.meshPerAttribute); } else { newAttribute = new BufferAttribute(array, itemSize, normalized); } for (let i = 0; i < count; i++) { newAttribute.setX(i, attribute.getX(i)); if (itemSize >= 2) { newAttribute.setY(i, attribute.getY(i)); } if (itemSize >= 3) { newAttribute.setZ(i, attribute.getZ(i)); } if (itemSize >= 4) { newAttribute.setW(i, attribute.getW(i)); } } return newAttribute; } __name(deinterleaveAttribute, "deinterleaveAttribute"); function deinterleaveGeometry(geometry) { const attributes = geometry.attributes; const morphTargets = geometry.morphTargets; const attrMap = /* @__PURE__ */ new Map(); for (const key in attributes) { const attr = attributes[key]; if (attr.isInterleavedBufferAttribute) { if (!attrMap.has(attr)) { attrMap.set(attr, deinterleaveAttribute(attr)); } attributes[key] = attrMap.get(attr); } } for (const key in morphTargets) { const attr = morphTargets[key]; if (attr.isInterleavedBufferAttribute) { if (!attrMap.has(attr)) { attrMap.set(attr, deinterleaveAttribute(attr)); } morphTargets[key] = attrMap.get(attr); } } } __name(deinterleaveGeometry, "deinterleaveGeometry"); function estimateBytesUsed(geometry) { let mem = 0; for (const name in geometry.attributes) { const attr = geometry.getAttribute(name); mem += attr.count * attr.itemSize * attr.array.BYTES_PER_ELEMENT; } const indices = geometry.getIndex(); mem += indices ? indices.count * indices.itemSize * indices.array.BYTES_PER_ELEMENT : 0; return mem; } __name(estimateBytesUsed, "estimateBytesUsed"); function mergeVertices(geometry, tolerance = 1e-4) { tolerance = Math.max(tolerance, Number.EPSILON); const hashToIndex = {}; const indices = geometry.getIndex(); const positions = geometry.getAttribute("position"); const vertexCount = indices ? indices.count : positions.count; let nextIndex = 0; const attributeNames = Object.keys(geometry.attributes); const tmpAttributes = {}; const tmpMorphAttributes = {}; const newIndices = []; const getters = ["getX", "getY", "getZ", "getW"]; const setters = ["setX", "setY", "setZ", "setW"]; for (let i = 0, l = attributeNames.length; i < l; i++) { const name = attributeNames[i]; const attr = geometry.attributes[name]; tmpAttributes[name] = new attr.constructor( new attr.array.constructor(attr.count * attr.itemSize), attr.itemSize, attr.normalized ); const morphAttributes = geometry.morphAttributes[name]; if (morphAttributes) { if (!tmpMorphAttributes[name]) tmpMorphAttributes[name] = []; morphAttributes.forEach((morphAttr, i2) => { const array = new morphAttr.array.constructor(morphAttr.count * morphAttr.itemSize); tmpMorphAttributes[name][i2] = new morphAttr.constructor(array, morphAttr.itemSize, morphAttr.normalized); }); } } const halfTolerance = tolerance * 0.5; const exponent = Math.log10(1 / tolerance); const hashMultiplier = Math.pow(10, exponent); const hashAdditive = halfTolerance * hashMultiplier; for (let i = 0; i < vertexCount; i++) { const index = indices ? indices.getX(i) : i; let hash = ""; for (let j = 0, l = attributeNames.length; j < l; j++) { const name = attributeNames[j]; const attribute = geometry.getAttribute(name); const itemSize = attribute.itemSize; for (let k = 0; k < itemSize; k++) { hash += `${~~(attribute[getters[k]](index) * hashMultiplier + hashAdditive)},`; } } if (hash in hashToIndex) { newIndices.push(hashToIndex[hash]); } else { for (let j = 0, l = attributeNames.length; j < l; j++) { const name = attributeNames[j]; const attribute = geometry.getAttribute(name); const morphAttributes = geometry.morphAttributes[name]; const itemSize = attribute.itemSize; const newArray = tmpAttributes[name]; const newMorphArrays = tmpMorphAttributes[name]; for (let k = 0; k < itemSize; k++) { const getterFunc = getters[k]; const setterFunc = setters[k]; newArray[setterFunc](nextIndex, attribute[getterFunc](index)); if (morphAttributes) { for (let m = 0, ml = morphAttributes.length; m < ml; m++) { newMorphArrays[m][setterFunc](nextIndex, morphAttributes[m][getterFunc](index)); } } } } hashToIndex[hash] = nextIndex; newIndices.push(nextIndex); nextIndex++; } } const result = geometry.clone(); for (const name in geometry.attributes) { const tmpAttribute = tmpAttributes[name]; result.setAttribute(name, new tmpAttribute.constructor( tmpAttribute.array.slice(0, nextIndex * tmpAttribute.itemSize), tmpAttribute.itemSize, tmpAttribute.normalized )); if (!(name in tmpMorphAttributes)) continue; for (let j = 0; j < tmpMorphAttributes[name].length; j++) { const tmpMorphAttribute = tmpMorphAttributes[name][j]; result.morphAttributes[name][j] = new tmpMorphAttribute.constructor( tmpMorphAttribute.array.slice(0, nextIndex * tmpMorphAttribute.itemSize), tmpMorphAttribute.itemSize, tmpMorphAttribute.normalized ); } } result.setIndex(newIndices); return result; } __name(mergeVertices, "mergeVertices"); function toTrianglesDrawMode(geometry, drawMode) { if (drawMode === TrianglesDrawMode) { console.warn("THREE.BufferGeometryUtils.toTrianglesDrawMode(): Geometry already defined as triangles."); return geometry; } if (drawMode === TriangleFanDrawMode || drawMode === TriangleStripDrawMode) { let index = geometry.getIndex(); if (index === null) { const indices = []; const position = geometry.getAttribute("position"); if (position !== void 0) { for (let i = 0; i < position.count; i++) { indices.push(i); } geometry.setIndex(indices); index = geometry.getIndex(); } else { console.error("THREE.BufferGeometryUtils.toTrianglesDrawMode(): Undefined position attribute. Processing not possible."); return geometry; } } const numberOfTriangles = index.count - 2; const newIndices = []; if (drawMode === TriangleFanDrawMode) { for (let i = 1; i <= numberOfTriangles; i++) { newIndices.push(index.getX(0)); newIndices.push(index.getX(i)); newIndices.push(index.getX(i + 1)); } } else { for (let i = 0; i < numberOfTriangles; i++) { if (i % 2 === 0) { newIndices.push(index.getX(i)); newIndices.push(index.getX(i + 1)); newIndices.push(index.getX(i + 2)); } else { newIndices.push(index.getX(i + 2)); newIndices.push(index.getX(i + 1)); newIndices.push(index.getX(i)); } } } if (newIndices.length / 3 !== numberOfTriangles) { console.error("THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unable to generate correct amount of triangles."); } const newGeometry = geometry.clone(); newGeometry.setIndex(newIndices); newGeometry.clearGroups(); return newGeometry; } else { console.error("THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unknown draw mode:", drawMode); return geometry; } } __name(toTrianglesDrawMode, "toTrianglesDrawMode"); function computeMorphedAttributes(object) { const _vA2 = new Vector3(); const _vB2 = new Vector3(); const _vC2 = new Vector3(); const _tempA2 = new Vector3(); const _tempB = new Vector3(); const _tempC = new Vector3(); const _morphA2 = new Vector3(); const _morphB = new Vector3(); const _morphC = new Vector3(); function _calculateMorphedAttributeData(object2, attribute, morphAttribute, morphTargetsRelative2, a2, b3, c2, modifiedAttributeArray) { _vA2.fromBufferAttribute(attribute, a2); _vB2.fromBufferAttribute(attribute, b3); _vC2.fromBufferAttribute(attribute, c2); const morphInfluences = object2.morphTargetInfluences; if (morphAttribute && morphInfluences) { _morphA2.set(0, 0, 0); _morphB.set(0, 0, 0); _morphC.set(0, 0, 0); for (let i2 = 0, il2 = morphAttribute.length; i2 < il2; i2++) { const influence = morphInfluences[i2]; const morph = morphAttribute[i2]; if (influence === 0) continue; _tempA2.fromBufferAttribute(morph, a2); _tempB.fromBufferAttribute(morph, b3); _tempC.fromBufferAttribute(morph, c2); if (morphTargetsRelative2) { _morphA2.addScaledVector(_tempA2, influence); _morphB.addScaledVector(_tempB, influence); _morphC.addScaledVector(_tempC, influence); } else { _morphA2.addScaledVector(_tempA2.sub(_vA2), influence); _morphB.addScaledVector(_tempB.sub(_vB2), influence); _morphC.addScaledVector(_tempC.sub(_vC2), influence); } } _vA2.add(_morphA2); _vB2.add(_morphB); _vC2.add(_morphC); } if (object2.isSkinnedMesh) { object2.applyBoneTransform(a2, _vA2); object2.applyBoneTransform(b3, _vB2); object2.applyBoneTransform(c2, _vC2); } modifiedAttributeArray[a2 * 3 + 0] = _vA2.x; modifiedAttributeArray[a2 * 3 + 1] = _vA2.y; modifiedAttributeArray[a2 * 3 + 2] = _vA2.z; modifiedAttributeArray[b3 * 3 + 0] = _vB2.x; modifiedAttributeArray[b3 * 3 + 1] = _vB2.y; modifiedAttributeArray[b3 * 3 + 2] = _vB2.z; modifiedAttributeArray[c2 * 3 + 0] = _vC2.x; modifiedAttributeArray[c2 * 3 + 1] = _vC2.y; modifiedAttributeArray[c2 * 3 + 2] = _vC2.z; } __name(_calculateMorphedAttributeData, "_calculateMorphedAttributeData"); const geometry = object.geometry; const material = object.material; let a, b, c; const index = geometry.index; const positionAttribute = geometry.attributes.position; const morphPosition = geometry.morphAttributes.position; const morphTargetsRelative = geometry.morphTargetsRelative; const normalAttribute = geometry.attributes.normal; const morphNormal = geometry.morphAttributes.position; const groups = geometry.groups; const drawRange = geometry.drawRange; let i, j, il, jl; let group; let start, end; const modifiedPosition = new Float32Array(positionAttribute.count * positionAttribute.itemSize); const modifiedNormal = new Float32Array(normalAttribute.count * normalAttribute.itemSize); if (index !== null) { if (Array.isArray(material)) { for (i = 0, il = groups.length; i < il; i++) { group = groups[i]; start = Math.max(group.start, drawRange.start); end = Math.min(group.start + group.count, drawRange.start + drawRange.count); for (j = start, jl = end; j < jl; j += 3) { a = index.getX(j); b = index.getX(j + 1); c = index.getX(j + 2); _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { start = Math.max(0, drawRange.start); end = Math.min(index.count, drawRange.start + drawRange.count); for (i = start, il = end; i < il; i += 3) { a = index.getX(i); b = index.getX(i + 1); c = index.getX(i + 2); _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { if (Array.isArray(material)) { for (i = 0, il = groups.length; i < il; i++) { group = groups[i]; start = Math.max(group.start, drawRange.start); end = Math.min(group.start + group.count, drawRange.start + drawRange.count); for (j = start, jl = end; j < jl; j += 3) { a = j; b = j + 1; c = j + 2; _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } else { start = Math.max(0, drawRange.start); end = Math.min(positionAttribute.count, drawRange.start + drawRange.count); for (i = start, il = end; i < il; i += 3) { a = i; b = i + 1; c = i + 2; _calculateMorphedAttributeData( object, positionAttribute, morphPosition, morphTargetsRelative, a, b, c, modifiedPosition ); _calculateMorphedAttributeData( object, normalAttribute, morphNormal, morphTargetsRelative, a, b, c, modifiedNormal ); } } } const morphedPositionAttribute = new Float32BufferAttribute(modifiedPosition, 3); const morphedNormalAttribute = new Float32BufferAttribute(modifiedNormal, 3); return { positionAttribute, normalAttribute, morphedPositionAttribute, morphedNormalAttribute }; } __name(computeMorphedAttributes, "computeMorphedAttributes"); function mergeGroups(geometry) { if (geometry.groups.length === 0) { console.warn("THREE.BufferGeometryUtils.mergeGroups(): No groups are defined. Nothing to merge."); return geometry; } let groups = geometry.groups; groups = groups.sort((a, b) => { if (a.materialIndex !== b.materialIndex) return a.materialIndex - b.materialIndex; return a.start - b.start; }); if (geometry.getIndex() === null) { const positionAttribute = geometry.getAttribute("position"); const indices = []; for (let i = 0; i < positionAttribute.count; i += 3) { indices.push(i, i + 1, i + 2); } geometry.setIndex(indices); } const index = geometry.getIndex(); const newIndices = []; for (let i = 0; i < groups.length; i++) { const group = groups[i]; const groupStart = group.start; const groupLength = groupStart + group.count; for (let j = groupStart; j < groupLength; j++) { newIndices.push(index.getX(j)); } } geometry.dispose(); geometry.setIndex(newIndices); let start = 0; for (let i = 0; i < groups.length; i++) { const group = groups[i]; group.start = start; start += group.count; } let currentGroup = groups[0]; geometry.groups = [currentGroup]; for (let i = 1; i < groups.length; i++) { const group = groups[i]; if (currentGroup.materialIndex === group.materialIndex) { currentGroup.count += group.count; } else { currentGroup = group; geometry.groups.push(currentGroup); } } return geometry; } __name(mergeGroups, "mergeGroups"); function toCreasedNormals(geometry, creaseAngle = Math.PI / 3) { const creaseDot = Math.cos(creaseAngle); const hashMultiplier = (1 + 1e-10) * 100; const verts = [new Vector3(), new Vector3(), new Vector3()]; const tempVec1 = new Vector3(); const tempVec2 = new Vector3(); const tempNorm = new Vector3(); const tempNorm2 = new Vector3(); function hashVertex(v) { const x = ~~(v.x * hashMultiplier); const y = ~~(v.y * hashMultiplier); const z = ~~(v.z * hashMultiplier); return `${x},${y},${z}`; } __name(hashVertex, "hashVertex"); const resultGeometry = geometry.index ? geometry.toNonIndexed() : geometry; const posAttr = resultGeometry.attributes.position; const vertexMap = {}; for (let i = 0, l = posAttr.count / 3; i < l; i++) { const i3 = 3 * i; const a = verts[0].fromBufferAttribute(posAttr, i3 + 0); const b = verts[1].fromBufferAttribute(posAttr, i3 + 1); const c = verts[2].fromBufferAttribute(posAttr, i3 + 2); tempVec1.subVectors(c, b); tempVec2.subVectors(a, b); const normal = new Vector3().crossVectors(tempVec1, tempVec2).normalize(); for (let n = 0; n < 3; n++) { const vert = verts[n]; const hash = hashVertex(vert); if (!(hash in vertexMap)) { vertexMap[hash] = []; } vertexMap[hash].push(normal); } } const normalArray = new Float32Array(posAttr.count * 3); const normAttr = new BufferAttribute(normalArray, 3, false); for (let i = 0, l = posAttr.count / 3; i < l; i++) { const i3 = 3 * i; const a = verts[0].fromBufferAttribute(posAttr, i3 + 0); const b = verts[1].fromBufferAttribute(posAttr, i3 + 1); const c = verts[2].fromBufferAttribute(posAttr, i3 + 2); tempVec1.subVectors(c, b); tempVec2.subVectors(a, b); tempNorm.crossVectors(tempVec1, tempVec2).normalize(); for (let n = 0; n < 3; n++) { const vert = verts[n]; const hash = hashVertex(vert); const otherNormals = vertexMap[hash]; tempNorm2.set(0, 0, 0); for (let k = 0, lk = otherNormals.length; k < lk; k++) { const otherNorm = otherNormals[k]; if (tempNorm.dot(otherNorm) > creaseDot) { tempNorm2.add(otherNorm); } } tempNorm2.normalize(); normAttr.setXYZ(i3 + n, tempNorm2.x, tempNorm2.y, tempNorm2.z); } } resultGeometry.setAttribute("normal", normAttr); return resultGeometry; } __name(toCreasedNormals, "toCreasedNormals"); class GLTFLoader extends Loader { static { __name(this, "GLTFLoader"); } constructor(manager) { super(manager); this.dracoLoader = null; this.ktx2Loader = null; this.meshoptDecoder = null; this.pluginCallbacks = []; this.register(function(parser) { return new GLTFMaterialsClearcoatExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsDispersionExtension(parser); }); this.register(function(parser) { return new GLTFTextureBasisUExtension(parser); }); this.register(function(parser) { return new GLTFTextureWebPExtension(parser); }); this.register(function(parser) { return new GLTFTextureAVIFExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsSheenExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsTransmissionExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsVolumeExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsIorExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsEmissiveStrengthExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsSpecularExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsIridescenceExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsAnisotropyExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsBumpExtension(parser); }); this.register(function(parser) { return new GLTFLightsExtension(parser); }); this.register(function(parser) { return new GLTFMeshoptCompression(parser); }); this.register(function(parser) { return new GLTFMeshGpuInstancing(parser); }); } load(url, onLoad, onProgress, onError) { const scope = this; let resourcePath; if (this.resourcePath !== "") { resourcePath = this.resourcePath; } else if (this.path !== "") { const relativeUrl = LoaderUtils.extractUrlBase(url); resourcePath = LoaderUtils.resolveURL(relativeUrl, this.path); } else { resourcePath = LoaderUtils.extractUrlBase(url); } this.manager.itemStart(url); const _onError = /* @__PURE__ */ __name(function(e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); scope.manager.itemEnd(url); }, "_onError"); const loader = new FileLoader(this.manager); loader.setPath(this.path); loader.setResponseType("arraybuffer"); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(this.withCredentials); loader.load(url, function(data) { try { scope.parse(data, resourcePath, function(gltf) { onLoad(gltf); scope.manager.itemEnd(url); }, _onError); } catch (e) { _onError(e); } }, onProgress, _onError); } setDRACOLoader(dracoLoader) { this.dracoLoader = dracoLoader; return this; } setKTX2Loader(ktx2Loader) { this.ktx2Loader = ktx2Loader; return this; } setMeshoptDecoder(meshoptDecoder) { this.meshoptDecoder = meshoptDecoder; return this; } register(callback) { if (this.pluginCallbacks.indexOf(callback) === -1) { this.pluginCallbacks.push(callback); } return this; } unregister(callback) { if (this.pluginCallbacks.indexOf(callback) !== -1) { this.pluginCallbacks.splice(this.pluginCallbacks.indexOf(callback), 1); } return this; } parse(data, path, onLoad, onError) { let json; const extensions = {}; const plugins = {}; const textDecoder = new TextDecoder(); if (typeof data === "string") { json = JSON.parse(data); } else if (data instanceof ArrayBuffer) { const magic = textDecoder.decode(new Uint8Array(data, 0, 4)); if (magic === BINARY_EXTENSION_HEADER_MAGIC) { try { extensions[EXTENSIONS.KHR_BINARY_GLTF] = new GLTFBinaryExtension(data); } catch (error) { if (onError) onError(error); return; } json = JSON.parse(extensions[EXTENSIONS.KHR_BINARY_GLTF].content); } else { json = JSON.parse(textDecoder.decode(data)); } } else { json = data; } if (json.asset === void 0 || json.asset.version[0] < 2) { if (onError) onError(new Error("THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.")); return; } const parser = new GLTFParser(json, { path: path || this.resourcePath || "", crossOrigin: this.crossOrigin, requestHeader: this.requestHeader, manager: this.manager, ktx2Loader: this.ktx2Loader, meshoptDecoder: this.meshoptDecoder }); parser.fileLoader.setRequestHeader(this.requestHeader); for (let i = 0; i < this.pluginCallbacks.length; i++) { const plugin = this.pluginCallbacks[i](parser); if (!plugin.name) console.error("THREE.GLTFLoader: Invalid plugin found: missing name"); plugins[plugin.name] = plugin; extensions[plugin.name] = true; } if (json.extensionsUsed) { for (let i = 0; i < json.extensionsUsed.length; ++i) { const extensionName = json.extensionsUsed[i]; const extensionsRequired = json.extensionsRequired || []; switch (extensionName) { case EXTENSIONS.KHR_MATERIALS_UNLIT: extensions[extensionName] = new GLTFMaterialsUnlitExtension(); break; case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION: extensions[extensionName] = new GLTFDracoMeshCompressionExtension(json, this.dracoLoader); break; case EXTENSIONS.KHR_TEXTURE_TRANSFORM: extensions[extensionName] = new GLTFTextureTransformExtension(); break; case EXTENSIONS.KHR_MESH_QUANTIZATION: extensions[extensionName] = new GLTFMeshQuantizationExtension(); break; default: if (extensionsRequired.indexOf(extensionName) >= 0 && plugins[extensionName] === void 0) { console.warn('THREE.GLTFLoader: Unknown extension "' + extensionName + '".'); } } } } parser.setExtensions(extensions); parser.setPlugins(plugins); parser.parse(onLoad, onError); } parseAsync(data, path) { const scope = this; return new Promise(function(resolve, reject) { scope.parse(data, path, resolve, reject); }); } } function GLTFRegistry() { let objects = {}; return { get: /* @__PURE__ */ __name(function(key) { return objects[key]; }, "get"), add: /* @__PURE__ */ __name(function(key, object) { objects[key] = object; }, "add"), remove: /* @__PURE__ */ __name(function(key) { delete objects[key]; }, "remove"), removeAll: /* @__PURE__ */ __name(function() { objects = {}; }, "removeAll") }; } __name(GLTFRegistry, "GLTFRegistry"); const EXTENSIONS = { KHR_BINARY_GLTF: "KHR_binary_glTF", KHR_DRACO_MESH_COMPRESSION: "KHR_draco_mesh_compression", KHR_LIGHTS_PUNCTUAL: "KHR_lights_punctual", KHR_MATERIALS_CLEARCOAT: "KHR_materials_clearcoat", KHR_MATERIALS_DISPERSION: "KHR_materials_dispersion", KHR_MATERIALS_IOR: "KHR_materials_ior", KHR_MATERIALS_SHEEN: "KHR_materials_sheen", KHR_MATERIALS_SPECULAR: "KHR_materials_specular", KHR_MATERIALS_TRANSMISSION: "KHR_materials_transmission", KHR_MATERIALS_IRIDESCENCE: "KHR_materials_iridescence", KHR_MATERIALS_ANISOTROPY: "KHR_materials_anisotropy", KHR_MATERIALS_UNLIT: "KHR_materials_unlit", KHR_MATERIALS_VOLUME: "KHR_materials_volume", KHR_TEXTURE_BASISU: "KHR_texture_basisu", KHR_TEXTURE_TRANSFORM: "KHR_texture_transform", KHR_MESH_QUANTIZATION: "KHR_mesh_quantization", KHR_MATERIALS_EMISSIVE_STRENGTH: "KHR_materials_emissive_strength", EXT_MATERIALS_BUMP: "EXT_materials_bump", EXT_TEXTURE_WEBP: "EXT_texture_webp", EXT_TEXTURE_AVIF: "EXT_texture_avif", EXT_MESHOPT_COMPRESSION: "EXT_meshopt_compression", EXT_MESH_GPU_INSTANCING: "EXT_mesh_gpu_instancing" }; class GLTFLightsExtension { static { __name(this, "GLTFLightsExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL; this.cache = { refs: {}, uses: {} }; } _markDefs() { const parser = this.parser; const nodeDefs = this.parser.json.nodes || []; for (let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex++) { const nodeDef = nodeDefs[nodeIndex]; if (nodeDef.extensions && nodeDef.extensions[this.name] && nodeDef.extensions[this.name].light !== void 0) { parser._addNodeRef(this.cache, nodeDef.extensions[this.name].light); } } } _loadLight(lightIndex) { const parser = this.parser; const cacheKey = "light:" + lightIndex; let dependency = parser.cache.get(cacheKey); if (dependency) return dependency; const json = parser.json; const extensions = json.extensions && json.extensions[this.name] || {}; const lightDefs = extensions.lights || []; const lightDef = lightDefs[lightIndex]; let lightNode; const color = new Color(16777215); if (lightDef.color !== void 0) color.setRGB(lightDef.color[0], lightDef.color[1], lightDef.color[2], LinearSRGBColorSpace); const range = lightDef.range !== void 0 ? lightDef.range : 0; switch (lightDef.type) { case "directional": lightNode = new DirectionalLight(color); lightNode.target.position.set(0, 0, -1); lightNode.add(lightNode.target); break; case "point": lightNode = new PointLight(color); lightNode.distance = range; break; case "spot": lightNode = new SpotLight(color); lightNode.distance = range; lightDef.spot = lightDef.spot || {}; lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== void 0 ? lightDef.spot.innerConeAngle : 0; lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== void 0 ? lightDef.spot.outerConeAngle : Math.PI / 4; lightNode.angle = lightDef.spot.outerConeAngle; lightNode.penumbra = 1 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle; lightNode.target.position.set(0, 0, -1); lightNode.add(lightNode.target); break; default: throw new Error("THREE.GLTFLoader: Unexpected light type: " + lightDef.type); } lightNode.position.set(0, 0, 0); lightNode.decay = 2; assignExtrasToUserData(lightNode, lightDef); if (lightDef.intensity !== void 0) lightNode.intensity = lightDef.intensity; lightNode.name = parser.createUniqueName(lightDef.name || "light_" + lightIndex); dependency = Promise.resolve(lightNode); parser.cache.add(cacheKey, dependency); return dependency; } getDependency(type, index) { if (type !== "light") return; return this._loadLight(index); } createNodeAttachment(nodeIndex) { const self2 = this; const parser = this.parser; const json = parser.json; const nodeDef = json.nodes[nodeIndex]; const lightDef = nodeDef.extensions && nodeDef.extensions[this.name] || {}; const lightIndex = lightDef.light; if (lightIndex === void 0) return null; return this._loadLight(lightIndex).then(function(light) { return parser._getNodeRef(self2.cache, lightIndex, light); }); } } class GLTFMaterialsUnlitExtension { static { __name(this, "GLTFMaterialsUnlitExtension"); } constructor() { this.name = EXTENSIONS.KHR_MATERIALS_UNLIT; } getMaterialType() { return MeshBasicMaterial; } extendParams(materialParams, materialDef, parser) { const pending = []; materialParams.color = new Color(1, 1, 1); materialParams.opacity = 1; const metallicRoughness = materialDef.pbrMetallicRoughness; if (metallicRoughness) { if (Array.isArray(metallicRoughness.baseColorFactor)) { const array = metallicRoughness.baseColorFactor; materialParams.color.setRGB(array[0], array[1], array[2], LinearSRGBColorSpace); materialParams.opacity = array[3]; } if (metallicRoughness.baseColorTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "map", metallicRoughness.baseColorTexture, SRGBColorSpace)); } } return Promise.all(pending); } } class GLTFMaterialsEmissiveStrengthExtension { static { __name(this, "GLTFMaterialsEmissiveStrengthExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_EMISSIVE_STRENGTH; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const emissiveStrength = materialDef.extensions[this.name].emissiveStrength; if (emissiveStrength !== void 0) { materialParams.emissiveIntensity = emissiveStrength; } return Promise.resolve(); } } class GLTFMaterialsClearcoatExtension { static { __name(this, "GLTFMaterialsClearcoatExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; if (extension.clearcoatFactor !== void 0) { materialParams.clearcoat = extension.clearcoatFactor; } if (extension.clearcoatTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "clearcoatMap", extension.clearcoatTexture)); } if (extension.clearcoatRoughnessFactor !== void 0) { materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor; } if (extension.clearcoatRoughnessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "clearcoatRoughnessMap", extension.clearcoatRoughnessTexture)); } if (extension.clearcoatNormalTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "clearcoatNormalMap", extension.clearcoatNormalTexture)); if (extension.clearcoatNormalTexture.scale !== void 0) { const scale = extension.clearcoatNormalTexture.scale; materialParams.clearcoatNormalScale = new Vector2(scale, scale); } } return Promise.all(pending); } } class GLTFMaterialsDispersionExtension { static { __name(this, "GLTFMaterialsDispersionExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_DISPERSION; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const extension = materialDef.extensions[this.name]; materialParams.dispersion = extension.dispersion !== void 0 ? extension.dispersion : 0; return Promise.resolve(); } } class GLTFMaterialsIridescenceExtension { static { __name(this, "GLTFMaterialsIridescenceExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_IRIDESCENCE; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; if (extension.iridescenceFactor !== void 0) { materialParams.iridescence = extension.iridescenceFactor; } if (extension.iridescenceTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "iridescenceMap", extension.iridescenceTexture)); } if (extension.iridescenceIor !== void 0) { materialParams.iridescenceIOR = extension.iridescenceIor; } if (materialParams.iridescenceThicknessRange === void 0) { materialParams.iridescenceThicknessRange = [100, 400]; } if (extension.iridescenceThicknessMinimum !== void 0) { materialParams.iridescenceThicknessRange[0] = extension.iridescenceThicknessMinimum; } if (extension.iridescenceThicknessMaximum !== void 0) { materialParams.iridescenceThicknessRange[1] = extension.iridescenceThicknessMaximum; } if (extension.iridescenceThicknessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "iridescenceThicknessMap", extension.iridescenceThicknessTexture)); } return Promise.all(pending); } } class GLTFMaterialsSheenExtension { static { __name(this, "GLTFMaterialsSheenExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_SHEEN; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; materialParams.sheenColor = new Color(0, 0, 0); materialParams.sheenRoughness = 0; materialParams.sheen = 1; const extension = materialDef.extensions[this.name]; if (extension.sheenColorFactor !== void 0) { const colorFactor = extension.sheenColorFactor; materialParams.sheenColor.setRGB(colorFactor[0], colorFactor[1], colorFactor[2], LinearSRGBColorSpace); } if (extension.sheenRoughnessFactor !== void 0) { materialParams.sheenRoughness = extension.sheenRoughnessFactor; } if (extension.sheenColorTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "sheenColorMap", extension.sheenColorTexture, SRGBColorSpace)); } if (extension.sheenRoughnessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "sheenRoughnessMap", extension.sheenRoughnessTexture)); } return Promise.all(pending); } } class GLTFMaterialsTransmissionExtension { static { __name(this, "GLTFMaterialsTransmissionExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_TRANSMISSION; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; if (extension.transmissionFactor !== void 0) { materialParams.transmission = extension.transmissionFactor; } if (extension.transmissionTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "transmissionMap", extension.transmissionTexture)); } return Promise.all(pending); } } class GLTFMaterialsVolumeExtension { static { __name(this, "GLTFMaterialsVolumeExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_VOLUME; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; materialParams.thickness = extension.thicknessFactor !== void 0 ? extension.thicknessFactor : 0; if (extension.thicknessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "thicknessMap", extension.thicknessTexture)); } materialParams.attenuationDistance = extension.attenuationDistance || Infinity; const colorArray = extension.attenuationColor || [1, 1, 1]; materialParams.attenuationColor = new Color().setRGB(colorArray[0], colorArray[1], colorArray[2], LinearSRGBColorSpace); return Promise.all(pending); } } class GLTFMaterialsIorExtension { static { __name(this, "GLTFMaterialsIorExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_IOR; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const extension = materialDef.extensions[this.name]; materialParams.ior = extension.ior !== void 0 ? extension.ior : 1.5; return Promise.resolve(); } } class GLTFMaterialsSpecularExtension { static { __name(this, "GLTFMaterialsSpecularExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_SPECULAR; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; materialParams.specularIntensity = extension.specularFactor !== void 0 ? extension.specularFactor : 1; if (extension.specularTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "specularIntensityMap", extension.specularTexture)); } const colorArray = extension.specularColorFactor || [1, 1, 1]; materialParams.specularColor = new Color().setRGB(colorArray[0], colorArray[1], colorArray[2], LinearSRGBColorSpace); if (extension.specularColorTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "specularColorMap", extension.specularColorTexture, SRGBColorSpace)); } return Promise.all(pending); } } class GLTFMaterialsBumpExtension { static { __name(this, "GLTFMaterialsBumpExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.EXT_MATERIALS_BUMP; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; materialParams.bumpScale = extension.bumpFactor !== void 0 ? extension.bumpFactor : 1; if (extension.bumpTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "bumpMap", extension.bumpTexture)); } return Promise.all(pending); } } class GLTFMaterialsAnisotropyExtension { static { __name(this, "GLTFMaterialsAnisotropyExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_ANISOTROPY; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; if (extension.anisotropyStrength !== void 0) { materialParams.anisotropy = extension.anisotropyStrength; } if (extension.anisotropyRotation !== void 0) { materialParams.anisotropyRotation = extension.anisotropyRotation; } if (extension.anisotropyTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "anisotropyMap", extension.anisotropyTexture)); } return Promise.all(pending); } } class GLTFTextureBasisUExtension { static { __name(this, "GLTFTextureBasisUExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_TEXTURE_BASISU; } loadTexture(textureIndex) { const parser = this.parser; const json = parser.json; const textureDef = json.textures[textureIndex]; if (!textureDef.extensions || !textureDef.extensions[this.name]) { return null; } const extension = textureDef.extensions[this.name]; const loader = parser.options.ktx2Loader; if (!loader) { if (json.extensionsRequired && json.extensionsRequired.indexOf(this.name) >= 0) { throw new Error("THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures"); } else { return null; } } return parser.loadTextureImage(textureIndex, extension.source, loader); } } class GLTFTextureWebPExtension { static { __name(this, "GLTFTextureWebPExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.EXT_TEXTURE_WEBP; this.isSupported = null; } loadTexture(textureIndex) { const name = this.name; const parser = this.parser; const json = parser.json; const textureDef = json.textures[textureIndex]; if (!textureDef.extensions || !textureDef.extensions[name]) { return null; } const extension = textureDef.extensions[name]; const source = json.images[extension.source]; let loader = parser.textureLoader; if (source.uri) { const handler = parser.options.manager.getHandler(source.uri); if (handler !== null) loader = handler; } return this.detectSupport().then(function(isSupported) { if (isSupported) return parser.loadTextureImage(textureIndex, extension.source, loader); if (json.extensionsRequired && json.extensionsRequired.indexOf(name) >= 0) { throw new Error("THREE.GLTFLoader: WebP required by asset but unsupported."); } return parser.loadTexture(textureIndex); }); } detectSupport() { if (!this.isSupported) { this.isSupported = new Promise(function(resolve) { const image = new Image(); image.src = ""; image.onload = image.onerror = function() { resolve(image.height === 1); }; }); } return this.isSupported; } } class GLTFTextureAVIFExtension { static { __name(this, "GLTFTextureAVIFExtension"); } constructor(parser) { this.parser = parser; this.name = EXTENSIONS.EXT_TEXTURE_AVIF; this.isSupported = null; } loadTexture(textureIndex) { const name = this.name; const parser = this.parser; const json = parser.json; const textureDef = json.textures[textureIndex]; if (!textureDef.extensions || !textureDef.extensions[name]) { return null; } const extension = textureDef.extensions[name]; const source = json.images[extension.source]; let loader = parser.textureLoader; if (source.uri) { const handler = parser.options.manager.getHandler(source.uri); if (handler !== null) loader = handler; } return this.detectSupport().then(function(isSupported) { if (isSupported) return parser.loadTextureImage(textureIndex, extension.source, loader); if (json.extensionsRequired && json.extensionsRequired.indexOf(name) >= 0) { throw new Error("THREE.GLTFLoader: AVIF required by asset but unsupported."); } return parser.loadTexture(textureIndex); }); } detectSupport() { if (!this.isSupported) { this.isSupported = new Promise(function(resolve) { const image = new Image(); image.src = ""; image.onload = image.onerror = function() { resolve(image.height === 1); }; }); } return this.isSupported; } } class GLTFMeshoptCompression { static { __name(this, "GLTFMeshoptCompression"); } constructor(parser) { this.name = EXTENSIONS.EXT_MESHOPT_COMPRESSION; this.parser = parser; } loadBufferView(index) { const json = this.parser.json; const bufferView = json.bufferViews[index]; if (bufferView.extensions && bufferView.extensions[this.name]) { const extensionDef = bufferView.extensions[this.name]; const buffer = this.parser.getDependency("buffer", extensionDef.buffer); const decoder = this.parser.options.meshoptDecoder; if (!decoder || !decoder.supported) { if (json.extensionsRequired && json.extensionsRequired.indexOf(this.name) >= 0) { throw new Error("THREE.GLTFLoader: setMeshoptDecoder must be called before loading compressed files"); } else { return null; } } return buffer.then(function(res) { const byteOffset = extensionDef.byteOffset || 0; const byteLength = extensionDef.byteLength || 0; const count = extensionDef.count; const stride = extensionDef.byteStride; const source = new Uint8Array(res, byteOffset, byteLength); if (decoder.decodeGltfBufferAsync) { return decoder.decodeGltfBufferAsync(count, stride, source, extensionDef.mode, extensionDef.filter).then(function(res2) { return res2.buffer; }); } else { return decoder.ready.then(function() { const result = new ArrayBuffer(count * stride); decoder.decodeGltfBuffer(new Uint8Array(result), count, stride, source, extensionDef.mode, extensionDef.filter); return result; }); } }); } else { return null; } } } class GLTFMeshGpuInstancing { static { __name(this, "GLTFMeshGpuInstancing"); } constructor(parser) { this.name = EXTENSIONS.EXT_MESH_GPU_INSTANCING; this.parser = parser; } createNodeMesh(nodeIndex) { const json = this.parser.json; const nodeDef = json.nodes[nodeIndex]; if (!nodeDef.extensions || !nodeDef.extensions[this.name] || nodeDef.mesh === void 0) { return null; } const meshDef = json.meshes[nodeDef.mesh]; for (const primitive of meshDef.primitives) { if (primitive.mode !== WEBGL_CONSTANTS.TRIANGLES && primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_STRIP && primitive.mode !== WEBGL_CONSTANTS.TRIANGLE_FAN && primitive.mode !== void 0) { return null; } } const extensionDef = nodeDef.extensions[this.name]; const attributesDef = extensionDef.attributes; const pending = []; const attributes = {}; for (const key in attributesDef) { pending.push(this.parser.getDependency("accessor", attributesDef[key]).then((accessor) => { attributes[key] = accessor; return attributes[key]; })); } if (pending.length < 1) { return null; } pending.push(this.parser.createNodeMesh(nodeIndex)); return Promise.all(pending).then((results) => { const nodeObject = results.pop(); const meshes = nodeObject.isGroup ? nodeObject.children : [nodeObject]; const count = results[0].count; const instancedMeshes = []; for (const mesh of meshes) { const m = new Matrix4(); const p = new Vector3(); const q = new Quaternion(); const s = new Vector3(1, 1, 1); const instancedMesh = new InstancedMesh(mesh.geometry, mesh.material, count); for (let i = 0; i < count; i++) { if (attributes.TRANSLATION) { p.fromBufferAttribute(attributes.TRANSLATION, i); } if (attributes.ROTATION) { q.fromBufferAttribute(attributes.ROTATION, i); } if (attributes.SCALE) { s.fromBufferAttribute(attributes.SCALE, i); } instancedMesh.setMatrixAt(i, m.compose(p, q, s)); } for (const attributeName in attributes) { if (attributeName === "_COLOR_0") { const attr = attributes[attributeName]; instancedMesh.instanceColor = new InstancedBufferAttribute(attr.array, attr.itemSize, attr.normalized); } else if (attributeName !== "TRANSLATION" && attributeName !== "ROTATION" && attributeName !== "SCALE") { mesh.geometry.setAttribute(attributeName, attributes[attributeName]); } } Object3D.prototype.copy.call(instancedMesh, mesh); this.parser.assignFinalMaterial(instancedMesh); instancedMeshes.push(instancedMesh); } if (nodeObject.isGroup) { nodeObject.clear(); nodeObject.add(...instancedMeshes); return nodeObject; } return instancedMeshes[0]; }); } } const BINARY_EXTENSION_HEADER_MAGIC = "glTF"; const BINARY_EXTENSION_HEADER_LENGTH = 12; const BINARY_EXTENSION_CHUNK_TYPES = { JSON: 1313821514, BIN: 5130562 }; class GLTFBinaryExtension { static { __name(this, "GLTFBinaryExtension"); } constructor(data) { this.name = EXTENSIONS.KHR_BINARY_GLTF; this.content = null; this.body = null; const headerView = new DataView(data, 0, BINARY_EXTENSION_HEADER_LENGTH); const textDecoder = new TextDecoder(); this.header = { magic: textDecoder.decode(new Uint8Array(data.slice(0, 4))), version: headerView.getUint32(4, true), length: headerView.getUint32(8, true) }; if (this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC) { throw new Error("THREE.GLTFLoader: Unsupported glTF-Binary header."); } else if (this.header.version < 2) { throw new Error("THREE.GLTFLoader: Legacy binary file detected."); } const chunkContentsLength = this.header.length - BINARY_EXTENSION_HEADER_LENGTH; const chunkView = new DataView(data, BINARY_EXTENSION_HEADER_LENGTH); let chunkIndex = 0; while (chunkIndex < chunkContentsLength) { const chunkLength = chunkView.getUint32(chunkIndex, true); chunkIndex += 4; const chunkType = chunkView.getUint32(chunkIndex, true); chunkIndex += 4; if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON) { const contentArray = new Uint8Array(data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength); this.content = textDecoder.decode(contentArray); } else if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN) { const byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex; this.body = data.slice(byteOffset, byteOffset + chunkLength); } chunkIndex += chunkLength; } if (this.content === null) { throw new Error("THREE.GLTFLoader: JSON content not found."); } } } class GLTFDracoMeshCompressionExtension { static { __name(this, "GLTFDracoMeshCompressionExtension"); } constructor(json, dracoLoader) { if (!dracoLoader) { throw new Error("THREE.GLTFLoader: No DRACOLoader instance provided."); } this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION; this.json = json; this.dracoLoader = dracoLoader; this.dracoLoader.preload(); } decodePrimitive(primitive, parser) { const json = this.json; const dracoLoader = this.dracoLoader; const bufferViewIndex = primitive.extensions[this.name].bufferView; const gltfAttributeMap = primitive.extensions[this.name].attributes; const threeAttributeMap = {}; const attributeNormalizedMap = {}; const attributeTypeMap = {}; for (const attributeName in gltfAttributeMap) { const threeAttributeName = ATTRIBUTES[attributeName] || attributeName.toLowerCase(); threeAttributeMap[threeAttributeName] = gltfAttributeMap[attributeName]; } for (const attributeName in primitive.attributes) { const threeAttributeName = ATTRIBUTES[attributeName] || attributeName.toLowerCase(); if (gltfAttributeMap[attributeName] !== void 0) { const accessorDef = json.accessors[primitive.attributes[attributeName]]; const componentType = WEBGL_COMPONENT_TYPES[accessorDef.componentType]; attributeTypeMap[threeAttributeName] = componentType.name; attributeNormalizedMap[threeAttributeName] = accessorDef.normalized === true; } } return parser.getDependency("bufferView", bufferViewIndex).then(function(bufferView) { return new Promise(function(resolve, reject) { dracoLoader.decodeDracoFile(bufferView, function(geometry) { for (const attributeName in geometry.attributes) { const attribute = geometry.attributes[attributeName]; const normalized = attributeNormalizedMap[attributeName]; if (normalized !== void 0) attribute.normalized = normalized; } resolve(geometry); }, threeAttributeMap, attributeTypeMap, LinearSRGBColorSpace, reject); }); }); } } class GLTFTextureTransformExtension { static { __name(this, "GLTFTextureTransformExtension"); } constructor() { this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM; } extendTexture(texture, transform) { if ((transform.texCoord === void 0 || transform.texCoord === texture.channel) && transform.offset === void 0 && transform.rotation === void 0 && transform.scale === void 0) { return texture; } texture = texture.clone(); if (transform.texCoord !== void 0) { texture.channel = transform.texCoord; } if (transform.offset !== void 0) { texture.offset.fromArray(transform.offset); } if (transform.rotation !== void 0) { texture.rotation = transform.rotation; } if (transform.scale !== void 0) { texture.repeat.fromArray(transform.scale); } texture.needsUpdate = true; return texture; } } class GLTFMeshQuantizationExtension { static { __name(this, "GLTFMeshQuantizationExtension"); } constructor() { this.name = EXTENSIONS.KHR_MESH_QUANTIZATION; } } class GLTFCubicSplineInterpolant extends Interpolant { static { __name(this, "GLTFCubicSplineInterpolant"); } constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer); } copySampleValue_(index) { const result = this.resultBuffer, values = this.sampleValues, valueSize = this.valueSize, offset = index * valueSize * 3 + valueSize; for (let i = 0; i !== valueSize; i++) { result[i] = values[offset + i]; } return result; } interpolate_(i1, t0, t, t1) { const result = this.resultBuffer; const values = this.sampleValues; const stride = this.valueSize; const stride2 = stride * 2; const stride3 = stride * 3; const td2 = t1 - t0; const p = (t - t0) / td2; const pp = p * p; const ppp = pp * p; const offset1 = i1 * stride3; const offset0 = offset1 - stride3; const s2 = -2 * ppp + 3 * pp; const s3 = ppp - pp; const s0 = 1 - s2; const s1 = s3 - pp + p; for (let i = 0; i !== stride; i++) { const p0 = values[offset0 + i + stride]; const m0 = values[offset0 + i + stride2] * td2; const p1 = values[offset1 + i + stride]; const m1 = values[offset1 + i] * td2; result[i] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1; } return result; } } const _q = new Quaternion(); class GLTFCubicSplineQuaternionInterpolant extends GLTFCubicSplineInterpolant { static { __name(this, "GLTFCubicSplineQuaternionInterpolant"); } interpolate_(i1, t0, t, t1) { const result = super.interpolate_(i1, t0, t, t1); _q.fromArray(result).normalize().toArray(result); return result; } } const WEBGL_CONSTANTS = { FLOAT: 5126, //FLOAT_MAT2: 35674, FLOAT_MAT3: 35675, FLOAT_MAT4: 35676, FLOAT_VEC2: 35664, FLOAT_VEC3: 35665, FLOAT_VEC4: 35666, LINEAR: 9729, REPEAT: 10497, SAMPLER_2D: 35678, POINTS: 0, LINES: 1, LINE_LOOP: 2, LINE_STRIP: 3, TRIANGLES: 4, TRIANGLE_STRIP: 5, TRIANGLE_FAN: 6, UNSIGNED_BYTE: 5121, UNSIGNED_SHORT: 5123 }; const WEBGL_COMPONENT_TYPES = { 5120: Int8Array, 5121: Uint8Array, 5122: Int16Array, 5123: Uint16Array, 5125: Uint32Array, 5126: Float32Array }; const WEBGL_FILTERS = { 9728: NearestFilter, 9729: LinearFilter, 9984: NearestMipmapNearestFilter, 9985: LinearMipmapNearestFilter, 9986: NearestMipmapLinearFilter, 9987: LinearMipmapLinearFilter }; const WEBGL_WRAPPINGS = { 33071: ClampToEdgeWrapping, 33648: MirroredRepeatWrapping, 10497: RepeatWrapping }; const WEBGL_TYPE_SIZES = { "SCALAR": 1, "VEC2": 2, "VEC3": 3, "VEC4": 4, "MAT2": 4, "MAT3": 9, "MAT4": 16 }; const ATTRIBUTES = { POSITION: "position", NORMAL: "normal", TANGENT: "tangent", TEXCOORD_0: "uv", TEXCOORD_1: "uv1", TEXCOORD_2: "uv2", TEXCOORD_3: "uv3", COLOR_0: "color", WEIGHTS_0: "skinWeight", JOINTS_0: "skinIndex" }; const PATH_PROPERTIES = { scale: "scale", translation: "position", rotation: "quaternion", weights: "morphTargetInfluences" }; const INTERPOLATION = { CUBICSPLINE: void 0, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each // keyframe track will be initialized with a default interpolation type, then modified. LINEAR: InterpolateLinear, STEP: InterpolateDiscrete }; const ALPHA_MODES = { OPAQUE: "OPAQUE", MASK: "MASK", BLEND: "BLEND" }; function createDefaultMaterial(cache) { if (cache["DefaultMaterial"] === void 0) { cache["DefaultMaterial"] = new MeshStandardMaterial({ color: 16777215, emissive: 0, metalness: 1, roughness: 1, transparent: false, depthTest: true, side: FrontSide }); } return cache["DefaultMaterial"]; } __name(createDefaultMaterial, "createDefaultMaterial"); function addUnknownExtensionsToUserData(knownExtensions, object, objectDef) { for (const name in objectDef.extensions) { if (knownExtensions[name] === void 0) { object.userData.gltfExtensions = object.userData.gltfExtensions || {}; object.userData.gltfExtensions[name] = objectDef.extensions[name]; } } } __name(addUnknownExtensionsToUserData, "addUnknownExtensionsToUserData"); function assignExtrasToUserData(object, gltfDef) { if (gltfDef.extras !== void 0) { if (typeof gltfDef.extras === "object") { Object.assign(object.userData, gltfDef.extras); } else { console.warn("THREE.GLTFLoader: Ignoring primitive type .extras, " + gltfDef.extras); } } } __name(assignExtrasToUserData, "assignExtrasToUserData"); function addMorphTargets(geometry, targets, parser) { let hasMorphPosition = false; let hasMorphNormal = false; let hasMorphColor = false; for (let i = 0, il = targets.length; i < il; i++) { const target = targets[i]; if (target.POSITION !== void 0) hasMorphPosition = true; if (target.NORMAL !== void 0) hasMorphNormal = true; if (target.COLOR_0 !== void 0) hasMorphColor = true; if (hasMorphPosition && hasMorphNormal && hasMorphColor) break; } if (!hasMorphPosition && !hasMorphNormal && !hasMorphColor) return Promise.resolve(geometry); const pendingPositionAccessors = []; const pendingNormalAccessors = []; const pendingColorAccessors = []; for (let i = 0, il = targets.length; i < il; i++) { const target = targets[i]; if (hasMorphPosition) { const pendingAccessor = target.POSITION !== void 0 ? parser.getDependency("accessor", target.POSITION) : geometry.attributes.position; pendingPositionAccessors.push(pendingAccessor); } if (hasMorphNormal) { const pendingAccessor = target.NORMAL !== void 0 ? parser.getDependency("accessor", target.NORMAL) : geometry.attributes.normal; pendingNormalAccessors.push(pendingAccessor); } if (hasMorphColor) { const pendingAccessor = target.COLOR_0 !== void 0 ? parser.getDependency("accessor", target.COLOR_0) : geometry.attributes.color; pendingColorAccessors.push(pendingAccessor); } } return Promise.all([ Promise.all(pendingPositionAccessors), Promise.all(pendingNormalAccessors), Promise.all(pendingColorAccessors) ]).then(function(accessors) { const morphPositions = accessors[0]; const morphNormals = accessors[1]; const morphColors = accessors[2]; if (hasMorphPosition) geometry.morphAttributes.position = morphPositions; if (hasMorphNormal) geometry.morphAttributes.normal = morphNormals; if (hasMorphColor) geometry.morphAttributes.color = morphColors; geometry.morphTargetsRelative = true; return geometry; }); } __name(addMorphTargets, "addMorphTargets"); function updateMorphTargets(mesh, meshDef) { mesh.updateMorphTargets(); if (meshDef.weights !== void 0) { for (let i = 0, il = meshDef.weights.length; i < il; i++) { mesh.morphTargetInfluences[i] = meshDef.weights[i]; } } if (meshDef.extras && Array.isArray(meshDef.extras.targetNames)) { const targetNames = meshDef.extras.targetNames; if (mesh.morphTargetInfluences.length === targetNames.length) { mesh.morphTargetDictionary = {}; for (let i = 0, il = targetNames.length; i < il; i++) { mesh.morphTargetDictionary[targetNames[i]] = i; } } else { console.warn("THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names."); } } } __name(updateMorphTargets, "updateMorphTargets"); function createPrimitiveKey(primitiveDef) { let geometryKey; const dracoExtension = primitiveDef.extensions && primitiveDef.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]; if (dracoExtension) { geometryKey = "draco:" + dracoExtension.bufferView + ":" + dracoExtension.indices + ":" + createAttributesKey(dracoExtension.attributes); } else { geometryKey = primitiveDef.indices + ":" + createAttributesKey(primitiveDef.attributes) + ":" + primitiveDef.mode; } if (primitiveDef.targets !== void 0) { for (let i = 0, il = primitiveDef.targets.length; i < il; i++) { geometryKey += ":" + createAttributesKey(primitiveDef.targets[i]); } } return geometryKey; } __name(createPrimitiveKey, "createPrimitiveKey"); function createAttributesKey(attributes) { let attributesKey = ""; const keys = Object.keys(attributes).sort(); for (let i = 0, il = keys.length; i < il; i++) { attributesKey += keys[i] + ":" + attributes[keys[i]] + ";"; } return attributesKey; } __name(createAttributesKey, "createAttributesKey"); function getNormalizedComponentScale(constructor) { switch (constructor) { case Int8Array: return 1 / 127; case Uint8Array: return 1 / 255; case Int16Array: return 1 / 32767; case Uint16Array: return 1 / 65535; default: throw new Error("THREE.GLTFLoader: Unsupported normalized accessor component type."); } } __name(getNormalizedComponentScale, "getNormalizedComponentScale"); function getImageURIMimeType(uri) { if (uri.search(/\.jpe?g($|\?)/i) > 0 || uri.search(/^data\:image\/jpeg/) === 0) return "image/jpeg"; if (uri.search(/\.webp($|\?)/i) > 0 || uri.search(/^data\:image\/webp/) === 0) return "image/webp"; if (uri.search(/\.ktx2($|\?)/i) > 0 || uri.search(/^data\:image\/ktx2/) === 0) return "image/ktx2"; return "image/png"; } __name(getImageURIMimeType, "getImageURIMimeType"); const _identityMatrix = new Matrix4(); class GLTFParser { static { __name(this, "GLTFParser"); } constructor(json = {}, options = {}) { this.json = json; this.extensions = {}; this.plugins = {}; this.options = options; this.cache = new GLTFRegistry(); this.associations = /* @__PURE__ */ new Map(); this.primitiveCache = {}; this.nodeCache = {}; this.meshCache = { refs: {}, uses: {} }; this.cameraCache = { refs: {}, uses: {} }; this.lightCache = { refs: {}, uses: {} }; this.sourceCache = {}; this.textureCache = {}; this.nodeNamesUsed = {}; let isSafari = false; let safariVersion = -1; let isFirefox = false; let firefoxVersion = -1; if (typeof navigator !== "undefined") { const userAgent = navigator.userAgent; isSafari = /^((?!chrome|android).)*safari/i.test(userAgent) === true; const safariMatch = userAgent.match(/Version\/(\d+)/); safariVersion = isSafari && safariMatch ? parseInt(safariMatch[1], 10) : -1; isFirefox = userAgent.indexOf("Firefox") > -1; firefoxVersion = isFirefox ? userAgent.match(/Firefox\/([0-9]+)\./)[1] : -1; } if (typeof createImageBitmap === "undefined" || isSafari && safariVersion < 17 || isFirefox && firefoxVersion < 98) { this.textureLoader = new TextureLoader(this.options.manager); } else { this.textureLoader = new ImageBitmapLoader(this.options.manager); } this.textureLoader.setCrossOrigin(this.options.crossOrigin); this.textureLoader.setRequestHeader(this.options.requestHeader); this.fileLoader = new FileLoader(this.options.manager); this.fileLoader.setResponseType("arraybuffer"); if (this.options.crossOrigin === "use-credentials") { this.fileLoader.setWithCredentials(true); } } setExtensions(extensions) { this.extensions = extensions; } setPlugins(plugins) { this.plugins = plugins; } parse(onLoad, onError) { const parser = this; const json = this.json; const extensions = this.extensions; this.cache.removeAll(); this.nodeCache = {}; this._invokeAll(function(ext2) { return ext2._markDefs && ext2._markDefs(); }); Promise.all(this._invokeAll(function(ext2) { return ext2.beforeRoot && ext2.beforeRoot(); })).then(function() { return Promise.all([ parser.getDependencies("scene"), parser.getDependencies("animation"), parser.getDependencies("camera") ]); }).then(function(dependencies) { const result = { scene: dependencies[0][json.scene || 0], scenes: dependencies[0], animations: dependencies[1], cameras: dependencies[2], asset: json.asset, parser, userData: {} }; addUnknownExtensionsToUserData(extensions, result, json); assignExtrasToUserData(result, json); return Promise.all(parser._invokeAll(function(ext2) { return ext2.afterRoot && ext2.afterRoot(result); })).then(function() { for (const scene of result.scenes) { scene.updateMatrixWorld(); } onLoad(result); }); }).catch(onError); } /** * Marks the special nodes/meshes in json for efficient parse. */ _markDefs() { const nodeDefs = this.json.nodes || []; const skinDefs = this.json.skins || []; const meshDefs = this.json.meshes || []; for (let skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex++) { const joints = skinDefs[skinIndex].joints; for (let i = 0, il = joints.length; i < il; i++) { nodeDefs[joints[i]].isBone = true; } } for (let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex++) { const nodeDef = nodeDefs[nodeIndex]; if (nodeDef.mesh !== void 0) { this._addNodeRef(this.meshCache, nodeDef.mesh); if (nodeDef.skin !== void 0) { meshDefs[nodeDef.mesh].isSkinnedMesh = true; } } if (nodeDef.camera !== void 0) { this._addNodeRef(this.cameraCache, nodeDef.camera); } } } /** * Counts references to shared node / Object3D resources. These resources * can be reused, or "instantiated", at multiple nodes in the scene * hierarchy. Mesh, Camera, and Light instances are instantiated and must * be marked. Non-scenegraph resources (like Materials, Geometries, and * Textures) can be reused directly and are not marked here. * * Example: CesiumMilkTruck sample model reuses "Wheel" meshes. */ _addNodeRef(cache, index) { if (index === void 0) return; if (cache.refs[index] === void 0) { cache.refs[index] = cache.uses[index] = 0; } cache.refs[index]++; } /** Returns a reference to a shared resource, cloning it if necessary. */ _getNodeRef(cache, index, object) { if (cache.refs[index] <= 1) return object; const ref = object.clone(); const updateMappings = /* @__PURE__ */ __name((original, clone) => { const mappings = this.associations.get(original); if (mappings != null) { this.associations.set(clone, mappings); } for (const [i, child] of original.children.entries()) { updateMappings(child, clone.children[i]); } }, "updateMappings"); updateMappings(object, ref); ref.name += "_instance_" + cache.uses[index]++; return ref; } _invokeOne(func) { const extensions = Object.values(this.plugins); extensions.push(this); for (let i = 0; i < extensions.length; i++) { const result = func(extensions[i]); if (result) return result; } return null; } _invokeAll(func) { const extensions = Object.values(this.plugins); extensions.unshift(this); const pending = []; for (let i = 0; i < extensions.length; i++) { const result = func(extensions[i]); if (result) pending.push(result); } return pending; } /** * Requests the specified dependency asynchronously, with caching. * @param {string} type * @param {number} index * @return {Promise} */ getDependency(type, index) { const cacheKey = type + ":" + index; let dependency = this.cache.get(cacheKey); if (!dependency) { switch (type) { case "scene": dependency = this.loadScene(index); break; case "node": dependency = this._invokeOne(function(ext2) { return ext2.loadNode && ext2.loadNode(index); }); break; case "mesh": dependency = this._invokeOne(function(ext2) { return ext2.loadMesh && ext2.loadMesh(index); }); break; case "accessor": dependency = this.loadAccessor(index); break; case "bufferView": dependency = this._invokeOne(function(ext2) { return ext2.loadBufferView && ext2.loadBufferView(index); }); break; case "buffer": dependency = this.loadBuffer(index); break; case "material": dependency = this._invokeOne(function(ext2) { return ext2.loadMaterial && ext2.loadMaterial(index); }); break; case "texture": dependency = this._invokeOne(function(ext2) { return ext2.loadTexture && ext2.loadTexture(index); }); break; case "skin": dependency = this.loadSkin(index); break; case "animation": dependency = this._invokeOne(function(ext2) { return ext2.loadAnimation && ext2.loadAnimation(index); }); break; case "camera": dependency = this.loadCamera(index); break; default: dependency = this._invokeOne(function(ext2) { return ext2 != this && ext2.getDependency && ext2.getDependency(type, index); }); if (!dependency) { throw new Error("Unknown type: " + type); } break; } this.cache.add(cacheKey, dependency); } return dependency; } /** * Requests all dependencies of the specified type asynchronously, with caching. * @param {string} type * @return {Promise>} */ getDependencies(type) { let dependencies = this.cache.get(type); if (!dependencies) { const parser = this; const defs = this.json[type + (type === "mesh" ? "es" : "s")] || []; dependencies = Promise.all(defs.map(function(def, index) { return parser.getDependency(type, index); })); this.cache.add(type, dependencies); } return dependencies; } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferIndex * @return {Promise} */ loadBuffer(bufferIndex) { const bufferDef = this.json.buffers[bufferIndex]; const loader = this.fileLoader; if (bufferDef.type && bufferDef.type !== "arraybuffer") { throw new Error("THREE.GLTFLoader: " + bufferDef.type + " buffer type is not supported."); } if (bufferDef.uri === void 0 && bufferIndex === 0) { return Promise.resolve(this.extensions[EXTENSIONS.KHR_BINARY_GLTF].body); } const options = this.options; return new Promise(function(resolve, reject) { loader.load(LoaderUtils.resolveURL(bufferDef.uri, options.path), resolve, void 0, function() { reject(new Error('THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".')); }); }); } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferViewIndex * @return {Promise} */ loadBufferView(bufferViewIndex) { const bufferViewDef = this.json.bufferViews[bufferViewIndex]; return this.getDependency("buffer", bufferViewDef.buffer).then(function(buffer) { const byteLength = bufferViewDef.byteLength || 0; const byteOffset = bufferViewDef.byteOffset || 0; return buffer.slice(byteOffset, byteOffset + byteLength); }); } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors * @param {number} accessorIndex * @return {Promise} */ loadAccessor(accessorIndex) { const parser = this; const json = this.json; const accessorDef = this.json.accessors[accessorIndex]; if (accessorDef.bufferView === void 0 && accessorDef.sparse === void 0) { const itemSize = WEBGL_TYPE_SIZES[accessorDef.type]; const TypedArray = WEBGL_COMPONENT_TYPES[accessorDef.componentType]; const normalized = accessorDef.normalized === true; const array = new TypedArray(accessorDef.count * itemSize); return Promise.resolve(new BufferAttribute(array, itemSize, normalized)); } const pendingBufferViews = []; if (accessorDef.bufferView !== void 0) { pendingBufferViews.push(this.getDependency("bufferView", accessorDef.bufferView)); } else { pendingBufferViews.push(null); } if (accessorDef.sparse !== void 0) { pendingBufferViews.push(this.getDependency("bufferView", accessorDef.sparse.indices.bufferView)); pendingBufferViews.push(this.getDependency("bufferView", accessorDef.sparse.values.bufferView)); } return Promise.all(pendingBufferViews).then(function(bufferViews) { const bufferView = bufferViews[0]; const itemSize = WEBGL_TYPE_SIZES[accessorDef.type]; const TypedArray = WEBGL_COMPONENT_TYPES[accessorDef.componentType]; const elementBytes = TypedArray.BYTES_PER_ELEMENT; const itemBytes = elementBytes * itemSize; const byteOffset = accessorDef.byteOffset || 0; const byteStride = accessorDef.bufferView !== void 0 ? json.bufferViews[accessorDef.bufferView].byteStride : void 0; const normalized = accessorDef.normalized === true; let array, bufferAttribute; if (byteStride && byteStride !== itemBytes) { const ibSlice = Math.floor(byteOffset / byteStride); const ibCacheKey = "InterleavedBuffer:" + accessorDef.bufferView + ":" + accessorDef.componentType + ":" + ibSlice + ":" + accessorDef.count; let ib = parser.cache.get(ibCacheKey); if (!ib) { array = new TypedArray(bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes); ib = new InterleavedBuffer(array, byteStride / elementBytes); parser.cache.add(ibCacheKey, ib); } bufferAttribute = new InterleavedBufferAttribute(ib, itemSize, byteOffset % byteStride / elementBytes, normalized); } else { if (bufferView === null) { array = new TypedArray(accessorDef.count * itemSize); } else { array = new TypedArray(bufferView, byteOffset, accessorDef.count * itemSize); } bufferAttribute = new BufferAttribute(array, itemSize, normalized); } if (accessorDef.sparse !== void 0) { const itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR; const TypedArrayIndices = WEBGL_COMPONENT_TYPES[accessorDef.sparse.indices.componentType]; const byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0; const byteOffsetValues = accessorDef.sparse.values.byteOffset || 0; const sparseIndices = new TypedArrayIndices(bufferViews[1], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices); const sparseValues = new TypedArray(bufferViews[2], byteOffsetValues, accessorDef.sparse.count * itemSize); if (bufferView !== null) { bufferAttribute = new BufferAttribute(bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized); } bufferAttribute.normalized = false; for (let i = 0, il = sparseIndices.length; i < il; i++) { const index = sparseIndices[i]; bufferAttribute.setX(index, sparseValues[i * itemSize]); if (itemSize >= 2) bufferAttribute.setY(index, sparseValues[i * itemSize + 1]); if (itemSize >= 3) bufferAttribute.setZ(index, sparseValues[i * itemSize + 2]); if (itemSize >= 4) bufferAttribute.setW(index, sparseValues[i * itemSize + 3]); if (itemSize >= 5) throw new Error("THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute."); } bufferAttribute.normalized = normalized; } return bufferAttribute; }); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures * @param {number} textureIndex * @return {Promise} */ loadTexture(textureIndex) { const json = this.json; const options = this.options; const textureDef = json.textures[textureIndex]; const sourceIndex = textureDef.source; const sourceDef = json.images[sourceIndex]; let loader = this.textureLoader; if (sourceDef.uri) { const handler = options.manager.getHandler(sourceDef.uri); if (handler !== null) loader = handler; } return this.loadTextureImage(textureIndex, sourceIndex, loader); } loadTextureImage(textureIndex, sourceIndex, loader) { const parser = this; const json = this.json; const textureDef = json.textures[textureIndex]; const sourceDef = json.images[sourceIndex]; const cacheKey = (sourceDef.uri || sourceDef.bufferView) + ":" + textureDef.sampler; if (this.textureCache[cacheKey]) { return this.textureCache[cacheKey]; } const promise = this.loadImageSource(sourceIndex, loader).then(function(texture) { texture.flipY = false; texture.name = textureDef.name || sourceDef.name || ""; if (texture.name === "" && typeof sourceDef.uri === "string" && sourceDef.uri.startsWith("data:image/") === false) { texture.name = sourceDef.uri; } const samplers = json.samplers || {}; const sampler = samplers[textureDef.sampler] || {}; texture.magFilter = WEBGL_FILTERS[sampler.magFilter] || LinearFilter; texture.minFilter = WEBGL_FILTERS[sampler.minFilter] || LinearMipmapLinearFilter; texture.wrapS = WEBGL_WRAPPINGS[sampler.wrapS] || RepeatWrapping; texture.wrapT = WEBGL_WRAPPINGS[sampler.wrapT] || RepeatWrapping; texture.generateMipmaps = !texture.isCompressedTexture && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; parser.associations.set(texture, { textures: textureIndex }); return texture; }).catch(function() { return null; }); this.textureCache[cacheKey] = promise; return promise; } loadImageSource(sourceIndex, loader) { const parser = this; const json = this.json; const options = this.options; if (this.sourceCache[sourceIndex] !== void 0) { return this.sourceCache[sourceIndex].then((texture) => texture.clone()); } const sourceDef = json.images[sourceIndex]; const URL2 = self.URL || self.webkitURL; let sourceURI = sourceDef.uri || ""; let isObjectURL = false; if (sourceDef.bufferView !== void 0) { sourceURI = parser.getDependency("bufferView", sourceDef.bufferView).then(function(bufferView) { isObjectURL = true; const blob = new Blob([bufferView], { type: sourceDef.mimeType }); sourceURI = URL2.createObjectURL(blob); return sourceURI; }); } else if (sourceDef.uri === void 0) { throw new Error("THREE.GLTFLoader: Image " + sourceIndex + " is missing URI and bufferView"); } const promise = Promise.resolve(sourceURI).then(function(sourceURI2) { return new Promise(function(resolve, reject) { let onLoad = resolve; if (loader.isImageBitmapLoader === true) { onLoad = /* @__PURE__ */ __name(function(imageBitmap) { const texture = new Texture(imageBitmap); texture.needsUpdate = true; resolve(texture); }, "onLoad"); } loader.load(LoaderUtils.resolveURL(sourceURI2, options.path), onLoad, void 0, reject); }); }).then(function(texture) { if (isObjectURL === true) { URL2.revokeObjectURL(sourceURI); } assignExtrasToUserData(texture, sourceDef); texture.userData.mimeType = sourceDef.mimeType || getImageURIMimeType(sourceDef.uri); return texture; }).catch(function(error) { console.error("THREE.GLTFLoader: Couldn't load texture", sourceURI); throw error; }); this.sourceCache[sourceIndex] = promise; return promise; } /** * Asynchronously assigns a texture to the given material parameters. * @param {Object} materialParams * @param {string} mapName * @param {Object} mapDef * @return {Promise} */ assignTexture(materialParams, mapName, mapDef, colorSpace) { const parser = this; return this.getDependency("texture", mapDef.index).then(function(texture) { if (!texture) return null; if (mapDef.texCoord !== void 0 && mapDef.texCoord > 0) { texture = texture.clone(); texture.channel = mapDef.texCoord; } if (parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM]) { const transform = mapDef.extensions !== void 0 ? mapDef.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM] : void 0; if (transform) { const gltfReference = parser.associations.get(texture); texture = parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM].extendTexture(texture, transform); parser.associations.set(texture, gltfReference); } } if (colorSpace !== void 0) { texture.colorSpace = colorSpace; } materialParams[mapName] = texture; return texture; }); } /** * Assigns final material to a Mesh, Line, or Points instance. The instance * already has a material (generated from the glTF material options alone) * but reuse of the same glTF material may require multiple threejs materials * to accommodate different primitive types, defines, etc. New materials will * be created if necessary, and reused from a cache. * @param {Object3D} mesh Mesh, Line, or Points instance. */ assignFinalMaterial(mesh) { const geometry = mesh.geometry; let material = mesh.material; const useDerivativeTangents = geometry.attributes.tangent === void 0; const useVertexColors = geometry.attributes.color !== void 0; const useFlatShading = geometry.attributes.normal === void 0; if (mesh.isPoints) { const cacheKey = "PointsMaterial:" + material.uuid; let pointsMaterial = this.cache.get(cacheKey); if (!pointsMaterial) { pointsMaterial = new PointsMaterial(); Material.prototype.copy.call(pointsMaterial, material); pointsMaterial.color.copy(material.color); pointsMaterial.map = material.map; pointsMaterial.sizeAttenuation = false; this.cache.add(cacheKey, pointsMaterial); } material = pointsMaterial; } else if (mesh.isLine) { const cacheKey = "LineBasicMaterial:" + material.uuid; let lineMaterial = this.cache.get(cacheKey); if (!lineMaterial) { lineMaterial = new LineBasicMaterial(); Material.prototype.copy.call(lineMaterial, material); lineMaterial.color.copy(material.color); lineMaterial.map = material.map; this.cache.add(cacheKey, lineMaterial); } material = lineMaterial; } if (useDerivativeTangents || useVertexColors || useFlatShading) { let cacheKey = "ClonedMaterial:" + material.uuid + ":"; if (useDerivativeTangents) cacheKey += "derivative-tangents:"; if (useVertexColors) cacheKey += "vertex-colors:"; if (useFlatShading) cacheKey += "flat-shading:"; let cachedMaterial = this.cache.get(cacheKey); if (!cachedMaterial) { cachedMaterial = material.clone(); if (useVertexColors) cachedMaterial.vertexColors = true; if (useFlatShading) cachedMaterial.flatShading = true; if (useDerivativeTangents) { if (cachedMaterial.normalScale) cachedMaterial.normalScale.y *= -1; if (cachedMaterial.clearcoatNormalScale) cachedMaterial.clearcoatNormalScale.y *= -1; } this.cache.add(cacheKey, cachedMaterial); this.associations.set(cachedMaterial, this.associations.get(material)); } material = cachedMaterial; } mesh.material = material; } getMaterialType() { return MeshStandardMaterial; } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials * @param {number} materialIndex * @return {Promise} */ loadMaterial(materialIndex) { const parser = this; const json = this.json; const extensions = this.extensions; const materialDef = json.materials[materialIndex]; let materialType; const materialParams = {}; const materialExtensions = materialDef.extensions || {}; const pending = []; if (materialExtensions[EXTENSIONS.KHR_MATERIALS_UNLIT]) { const kmuExtension = extensions[EXTENSIONS.KHR_MATERIALS_UNLIT]; materialType = kmuExtension.getMaterialType(); pending.push(kmuExtension.extendParams(materialParams, materialDef, parser)); } else { const metallicRoughness = materialDef.pbrMetallicRoughness || {}; materialParams.color = new Color(1, 1, 1); materialParams.opacity = 1; if (Array.isArray(metallicRoughness.baseColorFactor)) { const array = metallicRoughness.baseColorFactor; materialParams.color.setRGB(array[0], array[1], array[2], LinearSRGBColorSpace); materialParams.opacity = array[3]; } if (metallicRoughness.baseColorTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "map", metallicRoughness.baseColorTexture, SRGBColorSpace)); } materialParams.metalness = metallicRoughness.metallicFactor !== void 0 ? metallicRoughness.metallicFactor : 1; materialParams.roughness = metallicRoughness.roughnessFactor !== void 0 ? metallicRoughness.roughnessFactor : 1; if (metallicRoughness.metallicRoughnessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "metalnessMap", metallicRoughness.metallicRoughnessTexture)); pending.push(parser.assignTexture(materialParams, "roughnessMap", metallicRoughness.metallicRoughnessTexture)); } materialType = this._invokeOne(function(ext2) { return ext2.getMaterialType && ext2.getMaterialType(materialIndex); }); pending.push(Promise.all(this._invokeAll(function(ext2) { return ext2.extendMaterialParams && ext2.extendMaterialParams(materialIndex, materialParams); }))); } if (materialDef.doubleSided === true) { materialParams.side = DoubleSide; } const alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE; if (alphaMode === ALPHA_MODES.BLEND) { materialParams.transparent = true; materialParams.depthWrite = false; } else { materialParams.transparent = false; if (alphaMode === ALPHA_MODES.MASK) { materialParams.alphaTest = materialDef.alphaCutoff !== void 0 ? materialDef.alphaCutoff : 0.5; } } if (materialDef.normalTexture !== void 0 && materialType !== MeshBasicMaterial) { pending.push(parser.assignTexture(materialParams, "normalMap", materialDef.normalTexture)); materialParams.normalScale = new Vector2(1, 1); if (materialDef.normalTexture.scale !== void 0) { const scale = materialDef.normalTexture.scale; materialParams.normalScale.set(scale, scale); } } if (materialDef.occlusionTexture !== void 0 && materialType !== MeshBasicMaterial) { pending.push(parser.assignTexture(materialParams, "aoMap", materialDef.occlusionTexture)); if (materialDef.occlusionTexture.strength !== void 0) { materialParams.aoMapIntensity = materialDef.occlusionTexture.strength; } } if (materialDef.emissiveFactor !== void 0 && materialType !== MeshBasicMaterial) { const emissiveFactor = materialDef.emissiveFactor; materialParams.emissive = new Color().setRGB(emissiveFactor[0], emissiveFactor[1], emissiveFactor[2], LinearSRGBColorSpace); } if (materialDef.emissiveTexture !== void 0 && materialType !== MeshBasicMaterial) { pending.push(parser.assignTexture(materialParams, "emissiveMap", materialDef.emissiveTexture, SRGBColorSpace)); } return Promise.all(pending).then(function() { const material = new materialType(materialParams); if (materialDef.name) material.name = materialDef.name; assignExtrasToUserData(material, materialDef); parser.associations.set(material, { materials: materialIndex }); if (materialDef.extensions) addUnknownExtensionsToUserData(extensions, material, materialDef); return material; }); } /** When Object3D instances are targeted by animation, they need unique names. */ createUniqueName(originalName) { const sanitizedName = PropertyBinding.sanitizeNodeName(originalName || ""); if (sanitizedName in this.nodeNamesUsed) { return sanitizedName + "_" + ++this.nodeNamesUsed[sanitizedName]; } else { this.nodeNamesUsed[sanitizedName] = 0; return sanitizedName; } } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry * * Creates BufferGeometries from primitives. * * @param {Array} primitives * @return {Promise>} */ loadGeometries(primitives) { const parser = this; const extensions = this.extensions; const cache = this.primitiveCache; function createDracoPrimitive(primitive) { return extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION].decodePrimitive(primitive, parser).then(function(geometry) { return addPrimitiveAttributes(geometry, primitive, parser); }); } __name(createDracoPrimitive, "createDracoPrimitive"); const pending = []; for (let i = 0, il = primitives.length; i < il; i++) { const primitive = primitives[i]; const cacheKey = createPrimitiveKey(primitive); const cached = cache[cacheKey]; if (cached) { pending.push(cached.promise); } else { let geometryPromise; if (primitive.extensions && primitive.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]) { geometryPromise = createDracoPrimitive(primitive); } else { geometryPromise = addPrimitiveAttributes(new BufferGeometry(), primitive, parser); } cache[cacheKey] = { primitive, promise: geometryPromise }; pending.push(geometryPromise); } } return Promise.all(pending); } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes * @param {number} meshIndex * @return {Promise} */ loadMesh(meshIndex) { const parser = this; const json = this.json; const extensions = this.extensions; const meshDef = json.meshes[meshIndex]; const primitives = meshDef.primitives; const pending = []; for (let i = 0, il = primitives.length; i < il; i++) { const material = primitives[i].material === void 0 ? createDefaultMaterial(this.cache) : this.getDependency("material", primitives[i].material); pending.push(material); } pending.push(parser.loadGeometries(primitives)); return Promise.all(pending).then(function(results) { const materials = results.slice(0, results.length - 1); const geometries = results[results.length - 1]; const meshes = []; for (let i = 0, il = geometries.length; i < il; i++) { const geometry = geometries[i]; const primitive = primitives[i]; let mesh; const material = materials[i]; if (primitive.mode === WEBGL_CONSTANTS.TRIANGLES || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN || primitive.mode === void 0) { mesh = meshDef.isSkinnedMesh === true ? new SkinnedMesh(geometry, material) : new Mesh(geometry, material); if (mesh.isSkinnedMesh === true) { mesh.normalizeSkinWeights(); } if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP) { mesh.geometry = toTrianglesDrawMode(mesh.geometry, TriangleStripDrawMode); } else if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN) { mesh.geometry = toTrianglesDrawMode(mesh.geometry, TriangleFanDrawMode); } } else if (primitive.mode === WEBGL_CONSTANTS.LINES) { mesh = new LineSegments(geometry, material); } else if (primitive.mode === WEBGL_CONSTANTS.LINE_STRIP) { mesh = new Line(geometry, material); } else if (primitive.mode === WEBGL_CONSTANTS.LINE_LOOP) { mesh = new LineLoop(geometry, material); } else if (primitive.mode === WEBGL_CONSTANTS.POINTS) { mesh = new Points(geometry, material); } else { throw new Error("THREE.GLTFLoader: Primitive mode unsupported: " + primitive.mode); } if (Object.keys(mesh.geometry.morphAttributes).length > 0) { updateMorphTargets(mesh, meshDef); } mesh.name = parser.createUniqueName(meshDef.name || "mesh_" + meshIndex); assignExtrasToUserData(mesh, meshDef); if (primitive.extensions) addUnknownExtensionsToUserData(extensions, mesh, primitive); parser.assignFinalMaterial(mesh); meshes.push(mesh); } for (let i = 0, il = meshes.length; i < il; i++) { parser.associations.set(meshes[i], { meshes: meshIndex, primitives: i }); } if (meshes.length === 1) { if (meshDef.extensions) addUnknownExtensionsToUserData(extensions, meshes[0], meshDef); return meshes[0]; } const group = new Group(); if (meshDef.extensions) addUnknownExtensionsToUserData(extensions, group, meshDef); parser.associations.set(group, { meshes: meshIndex }); for (let i = 0, il = meshes.length; i < il; i++) { group.add(meshes[i]); } return group; }); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras * @param {number} cameraIndex * @return {Promise} */ loadCamera(cameraIndex) { let camera; const cameraDef = this.json.cameras[cameraIndex]; const params = cameraDef[cameraDef.type]; if (!params) { console.warn("THREE.GLTFLoader: Missing camera parameters."); return; } if (cameraDef.type === "perspective") { camera = new PerspectiveCamera(MathUtils.radToDeg(params.yfov), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6); } else if (cameraDef.type === "orthographic") { camera = new OrthographicCamera(-params.xmag, params.xmag, params.ymag, -params.ymag, params.znear, params.zfar); } if (cameraDef.name) camera.name = this.createUniqueName(cameraDef.name); assignExtrasToUserData(camera, cameraDef); return Promise.resolve(camera); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins * @param {number} skinIndex * @return {Promise} */ loadSkin(skinIndex) { const skinDef = this.json.skins[skinIndex]; const pending = []; for (let i = 0, il = skinDef.joints.length; i < il; i++) { pending.push(this._loadNodeShallow(skinDef.joints[i])); } if (skinDef.inverseBindMatrices !== void 0) { pending.push(this.getDependency("accessor", skinDef.inverseBindMatrices)); } else { pending.push(null); } return Promise.all(pending).then(function(results) { const inverseBindMatrices = results.pop(); const jointNodes = results; const bones = []; const boneInverses = []; for (let i = 0, il = jointNodes.length; i < il; i++) { const jointNode = jointNodes[i]; if (jointNode) { bones.push(jointNode); const mat = new Matrix4(); if (inverseBindMatrices !== null) { mat.fromArray(inverseBindMatrices.array, i * 16); } boneInverses.push(mat); } else { console.warn('THREE.GLTFLoader: Joint "%s" could not be found.', skinDef.joints[i]); } } return new Skeleton(bones, boneInverses); }); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations * @param {number} animationIndex * @return {Promise} */ loadAnimation(animationIndex) { const json = this.json; const parser = this; const animationDef = json.animations[animationIndex]; const animationName = animationDef.name ? animationDef.name : "animation_" + animationIndex; const pendingNodes = []; const pendingInputAccessors = []; const pendingOutputAccessors = []; const pendingSamplers = []; const pendingTargets = []; for (let i = 0, il = animationDef.channels.length; i < il; i++) { const channel = animationDef.channels[i]; const sampler = animationDef.samplers[channel.sampler]; const target = channel.target; const name = target.node; const input = animationDef.parameters !== void 0 ? animationDef.parameters[sampler.input] : sampler.input; const output = animationDef.parameters !== void 0 ? animationDef.parameters[sampler.output] : sampler.output; if (target.node === void 0) continue; pendingNodes.push(this.getDependency("node", name)); pendingInputAccessors.push(this.getDependency("accessor", input)); pendingOutputAccessors.push(this.getDependency("accessor", output)); pendingSamplers.push(sampler); pendingTargets.push(target); } return Promise.all([ Promise.all(pendingNodes), Promise.all(pendingInputAccessors), Promise.all(pendingOutputAccessors), Promise.all(pendingSamplers), Promise.all(pendingTargets) ]).then(function(dependencies) { const nodes = dependencies[0]; const inputAccessors = dependencies[1]; const outputAccessors = dependencies[2]; const samplers = dependencies[3]; const targets = dependencies[4]; const tracks = []; for (let i = 0, il = nodes.length; i < il; i++) { const node = nodes[i]; const inputAccessor = inputAccessors[i]; const outputAccessor = outputAccessors[i]; const sampler = samplers[i]; const target = targets[i]; if (node === void 0) continue; if (node.updateMatrix) { node.updateMatrix(); } const createdTracks = parser._createAnimationTracks(node, inputAccessor, outputAccessor, sampler, target); if (createdTracks) { for (let k = 0; k < createdTracks.length; k++) { tracks.push(createdTracks[k]); } } } return new AnimationClip(animationName, void 0, tracks); }); } createNodeMesh(nodeIndex) { const json = this.json; const parser = this; const nodeDef = json.nodes[nodeIndex]; if (nodeDef.mesh === void 0) return null; return parser.getDependency("mesh", nodeDef.mesh).then(function(mesh) { const node = parser._getNodeRef(parser.meshCache, nodeDef.mesh, mesh); if (nodeDef.weights !== void 0) { node.traverse(function(o) { if (!o.isMesh) return; for (let i = 0, il = nodeDef.weights.length; i < il; i++) { o.morphTargetInfluences[i] = nodeDef.weights[i]; } }); } return node; }); } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy * @param {number} nodeIndex * @return {Promise} */ loadNode(nodeIndex) { const json = this.json; const parser = this; const nodeDef = json.nodes[nodeIndex]; const nodePending = parser._loadNodeShallow(nodeIndex); const childPending = []; const childrenDef = nodeDef.children || []; for (let i = 0, il = childrenDef.length; i < il; i++) { childPending.push(parser.getDependency("node", childrenDef[i])); } const skeletonPending = nodeDef.skin === void 0 ? Promise.resolve(null) : parser.getDependency("skin", nodeDef.skin); return Promise.all([ nodePending, Promise.all(childPending), skeletonPending ]).then(function(results) { const node = results[0]; const children = results[1]; const skeleton = results[2]; if (skeleton !== null) { node.traverse(function(mesh) { if (!mesh.isSkinnedMesh) return; mesh.bind(skeleton, _identityMatrix); }); } for (let i = 0, il = children.length; i < il; i++) { node.add(children[i]); } return node; }); } // ._loadNodeShallow() parses a single node. // skin and child nodes are created and added in .loadNode() (no '_' prefix). _loadNodeShallow(nodeIndex) { const json = this.json; const extensions = this.extensions; const parser = this; if (this.nodeCache[nodeIndex] !== void 0) { return this.nodeCache[nodeIndex]; } const nodeDef = json.nodes[nodeIndex]; const nodeName = nodeDef.name ? parser.createUniqueName(nodeDef.name) : ""; const pending = []; const meshPromise = parser._invokeOne(function(ext2) { return ext2.createNodeMesh && ext2.createNodeMesh(nodeIndex); }); if (meshPromise) { pending.push(meshPromise); } if (nodeDef.camera !== void 0) { pending.push(parser.getDependency("camera", nodeDef.camera).then(function(camera) { return parser._getNodeRef(parser.cameraCache, nodeDef.camera, camera); })); } parser._invokeAll(function(ext2) { return ext2.createNodeAttachment && ext2.createNodeAttachment(nodeIndex); }).forEach(function(promise) { pending.push(promise); }); this.nodeCache[nodeIndex] = Promise.all(pending).then(function(objects) { let node; if (nodeDef.isBone === true) { node = new Bone(); } else if (objects.length > 1) { node = new Group(); } else if (objects.length === 1) { node = objects[0]; } else { node = new Object3D(); } if (node !== objects[0]) { for (let i = 0, il = objects.length; i < il; i++) { node.add(objects[i]); } } if (nodeDef.name) { node.userData.name = nodeDef.name; node.name = nodeName; } assignExtrasToUserData(node, nodeDef); if (nodeDef.extensions) addUnknownExtensionsToUserData(extensions, node, nodeDef); if (nodeDef.matrix !== void 0) { const matrix = new Matrix4(); matrix.fromArray(nodeDef.matrix); node.applyMatrix4(matrix); } else { if (nodeDef.translation !== void 0) { node.position.fromArray(nodeDef.translation); } if (nodeDef.rotation !== void 0) { node.quaternion.fromArray(nodeDef.rotation); } if (nodeDef.scale !== void 0) { node.scale.fromArray(nodeDef.scale); } } if (!parser.associations.has(node)) { parser.associations.set(node, {}); } parser.associations.get(node).nodes = nodeIndex; return node; }); return this.nodeCache[nodeIndex]; } /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes * @param {number} sceneIndex * @return {Promise} */ loadScene(sceneIndex) { const extensions = this.extensions; const sceneDef = this.json.scenes[sceneIndex]; const parser = this; const scene = new Group(); if (sceneDef.name) scene.name = parser.createUniqueName(sceneDef.name); assignExtrasToUserData(scene, sceneDef); if (sceneDef.extensions) addUnknownExtensionsToUserData(extensions, scene, sceneDef); const nodeIds = sceneDef.nodes || []; const pending = []; for (let i = 0, il = nodeIds.length; i < il; i++) { pending.push(parser.getDependency("node", nodeIds[i])); } return Promise.all(pending).then(function(nodes) { for (let i = 0, il = nodes.length; i < il; i++) { scene.add(nodes[i]); } const reduceAssociations = /* @__PURE__ */ __name((node) => { const reducedAssociations = /* @__PURE__ */ new Map(); for (const [key, value] of parser.associations) { if (key instanceof Material || key instanceof Texture) { reducedAssociations.set(key, value); } } node.traverse((node2) => { const mappings = parser.associations.get(node2); if (mappings != null) { reducedAssociations.set(node2, mappings); } }); return reducedAssociations; }, "reduceAssociations"); parser.associations = reduceAssociations(scene); return scene; }); } _createAnimationTracks(node, inputAccessor, outputAccessor, sampler, target) { const tracks = []; const targetName = node.name ? node.name : node.uuid; const targetNames = []; if (PATH_PROPERTIES[target.path] === PATH_PROPERTIES.weights) { node.traverse(function(object) { if (object.morphTargetInfluences) { targetNames.push(object.name ? object.name : object.uuid); } }); } else { targetNames.push(targetName); } let TypedKeyframeTrack; switch (PATH_PROPERTIES[target.path]) { case PATH_PROPERTIES.weights: TypedKeyframeTrack = NumberKeyframeTrack; break; case PATH_PROPERTIES.rotation: TypedKeyframeTrack = QuaternionKeyframeTrack; break; case PATH_PROPERTIES.position: case PATH_PROPERTIES.scale: TypedKeyframeTrack = VectorKeyframeTrack; break; default: switch (outputAccessor.itemSize) { case 1: TypedKeyframeTrack = NumberKeyframeTrack; break; case 2: case 3: default: TypedKeyframeTrack = VectorKeyframeTrack; break; } break; } const interpolation = sampler.interpolation !== void 0 ? INTERPOLATION[sampler.interpolation] : InterpolateLinear; const outputArray = this._getArrayFromAccessor(outputAccessor); for (let j = 0, jl = targetNames.length; j < jl; j++) { const track = new TypedKeyframeTrack( targetNames[j] + "." + PATH_PROPERTIES[target.path], inputAccessor.array, outputArray, interpolation ); if (sampler.interpolation === "CUBICSPLINE") { this._createCubicSplineTrackInterpolant(track); } tracks.push(track); } return tracks; } _getArrayFromAccessor(accessor) { let outputArray = accessor.array; if (accessor.normalized) { const scale = getNormalizedComponentScale(outputArray.constructor); const scaled = new Float32Array(outputArray.length); for (let j = 0, jl = outputArray.length; j < jl; j++) { scaled[j] = outputArray[j] * scale; } outputArray = scaled; } return outputArray; } _createCubicSplineTrackInterpolant(track) { track.createInterpolant = /* @__PURE__ */ __name(function InterpolantFactoryMethodGLTFCubicSpline(result) { const interpolantType = this instanceof QuaternionKeyframeTrack ? GLTFCubicSplineQuaternionInterpolant : GLTFCubicSplineInterpolant; return new interpolantType(this.times, this.values, this.getValueSize() / 3, result); }, "InterpolantFactoryMethodGLTFCubicSpline"); track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true; } } function computeBounds(geometry, primitiveDef, parser) { const attributes = primitiveDef.attributes; const box = new Box3(); if (attributes.POSITION !== void 0) { const accessor = parser.json.accessors[attributes.POSITION]; const min = accessor.min; const max2 = accessor.max; if (min !== void 0 && max2 !== void 0) { box.set( new Vector3(min[0], min[1], min[2]), new Vector3(max2[0], max2[1], max2[2]) ); if (accessor.normalized) { const boxScale = getNormalizedComponentScale(WEBGL_COMPONENT_TYPES[accessor.componentType]); box.min.multiplyScalar(boxScale); box.max.multiplyScalar(boxScale); } } else { console.warn("THREE.GLTFLoader: Missing min/max properties for accessor POSITION."); return; } } else { return; } const targets = primitiveDef.targets; if (targets !== void 0) { const maxDisplacement = new Vector3(); const vector = new Vector3(); for (let i = 0, il = targets.length; i < il; i++) { const target = targets[i]; if (target.POSITION !== void 0) { const accessor = parser.json.accessors[target.POSITION]; const min = accessor.min; const max2 = accessor.max; if (min !== void 0 && max2 !== void 0) { vector.setX(Math.max(Math.abs(min[0]), Math.abs(max2[0]))); vector.setY(Math.max(Math.abs(min[1]), Math.abs(max2[1]))); vector.setZ(Math.max(Math.abs(min[2]), Math.abs(max2[2]))); if (accessor.normalized) { const boxScale = getNormalizedComponentScale(WEBGL_COMPONENT_TYPES[accessor.componentType]); vector.multiplyScalar(boxScale); } maxDisplacement.max(vector); } else { console.warn("THREE.GLTFLoader: Missing min/max properties for accessor POSITION."); } } } box.expandByVector(maxDisplacement); } geometry.boundingBox = box; const sphere = new Sphere(); box.getCenter(sphere.center); sphere.radius = box.min.distanceTo(box.max) / 2; geometry.boundingSphere = sphere; } __name(computeBounds, "computeBounds"); function addPrimitiveAttributes(geometry, primitiveDef, parser) { const attributes = primitiveDef.attributes; const pending = []; function assignAttributeAccessor(accessorIndex, attributeName) { return parser.getDependency("accessor", accessorIndex).then(function(accessor) { geometry.setAttribute(attributeName, accessor); }); } __name(assignAttributeAccessor, "assignAttributeAccessor"); for (const gltfAttributeName in attributes) { const threeAttributeName = ATTRIBUTES[gltfAttributeName] || gltfAttributeName.toLowerCase(); if (threeAttributeName in geometry.attributes) continue; pending.push(assignAttributeAccessor(attributes[gltfAttributeName], threeAttributeName)); } if (primitiveDef.indices !== void 0 && !geometry.index) { const accessor = parser.getDependency("accessor", primitiveDef.indices).then(function(accessor2) { geometry.setIndex(accessor2); }); pending.push(accessor); } if (ColorManagement.workingColorSpace !== LinearSRGBColorSpace && "COLOR_0" in attributes) { console.warn(`THREE.GLTFLoader: Converting vertex colors from "srgb-linear" to "${ColorManagement.workingColorSpace}" not supported.`); } assignExtrasToUserData(geometry, primitiveDef); computeBounds(geometry, primitiveDef, parser); return Promise.all(pending).then(function() { return primitiveDef.targets !== void 0 ? addMorphTargets(geometry, primitiveDef.targets, parser) : geometry; }); } __name(addPrimitiveAttributes, "addPrimitiveAttributes"); const _object_pattern = /^[og]\s*(.+)?/; const _material_library_pattern = /^mtllib /; const _material_use_pattern = /^usemtl /; const _map_use_pattern = /^usemap /; const _face_vertex_data_separator_pattern = /\s+/; const _vA = new Vector3(); const _vB = new Vector3(); const _vC = new Vector3(); const _ab = new Vector3(); const _cb = new Vector3(); const _color = new Color(); function ParserState() { const state = { objects: [], object: {}, vertices: [], normals: [], colors: [], uvs: [], materials: {}, materialLibraries: [], startObject: /* @__PURE__ */ __name(function(name, fromDeclaration) { if (this.object && this.object.fromDeclaration === false) { this.object.name = name; this.object.fromDeclaration = fromDeclaration !== false; return; } const previousMaterial = this.object && typeof this.object.currentMaterial === "function" ? this.object.currentMaterial() : void 0; if (this.object && typeof this.object._finalize === "function") { this.object._finalize(true); } this.object = { name: name || "", fromDeclaration: fromDeclaration !== false, geometry: { vertices: [], normals: [], colors: [], uvs: [], hasUVIndices: false }, materials: [], smooth: true, startMaterial: /* @__PURE__ */ __name(function(name2, libraries) { const previous = this._finalize(false); if (previous && (previous.inherited || previous.groupCount <= 0)) { this.materials.splice(previous.index, 1); } const material = { index: this.materials.length, name: name2 || "", mtllib: Array.isArray(libraries) && libraries.length > 0 ? libraries[libraries.length - 1] : "", smooth: previous !== void 0 ? previous.smooth : this.smooth, groupStart: previous !== void 0 ? previous.groupEnd : 0, groupEnd: -1, groupCount: -1, inherited: false, clone: /* @__PURE__ */ __name(function(index) { const cloned = { index: typeof index === "number" ? index : this.index, name: this.name, mtllib: this.mtllib, smooth: this.smooth, groupStart: 0, groupEnd: -1, groupCount: -1, inherited: false }; cloned.clone = this.clone.bind(cloned); return cloned; }, "clone") }; this.materials.push(material); return material; }, "startMaterial"), currentMaterial: /* @__PURE__ */ __name(function() { if (this.materials.length > 0) { return this.materials[this.materials.length - 1]; } return void 0; }, "currentMaterial"), _finalize: /* @__PURE__ */ __name(function(end) { const lastMultiMaterial = this.currentMaterial(); if (lastMultiMaterial && lastMultiMaterial.groupEnd === -1) { lastMultiMaterial.groupEnd = this.geometry.vertices.length / 3; lastMultiMaterial.groupCount = lastMultiMaterial.groupEnd - lastMultiMaterial.groupStart; lastMultiMaterial.inherited = false; } if (end && this.materials.length > 1) { for (let mi = this.materials.length - 1; mi >= 0; mi--) { if (this.materials[mi].groupCount <= 0) { this.materials.splice(mi, 1); } } } if (end && this.materials.length === 0) { this.materials.push({ name: "", smooth: this.smooth }); } return lastMultiMaterial; }, "_finalize") }; if (previousMaterial && previousMaterial.name && typeof previousMaterial.clone === "function") { const declared = previousMaterial.clone(0); declared.inherited = true; this.object.materials.push(declared); } this.objects.push(this.object); }, "startObject"), finalize: /* @__PURE__ */ __name(function() { if (this.object && typeof this.object._finalize === "function") { this.object._finalize(true); } }, "finalize"), parseVertexIndex: /* @__PURE__ */ __name(function(value, len) { const index = parseInt(value, 10); return (index >= 0 ? index - 1 : index + len / 3) * 3; }, "parseVertexIndex"), parseNormalIndex: /* @__PURE__ */ __name(function(value, len) { const index = parseInt(value, 10); return (index >= 0 ? index - 1 : index + len / 3) * 3; }, "parseNormalIndex"), parseUVIndex: /* @__PURE__ */ __name(function(value, len) { const index = parseInt(value, 10); return (index >= 0 ? index - 1 : index + len / 2) * 2; }, "parseUVIndex"), addVertex: /* @__PURE__ */ __name(function(a, b, c) { const src = this.vertices; const dst = this.object.geometry.vertices; dst.push(src[a + 0], src[a + 1], src[a + 2]); dst.push(src[b + 0], src[b + 1], src[b + 2]); dst.push(src[c + 0], src[c + 1], src[c + 2]); }, "addVertex"), addVertexPoint: /* @__PURE__ */ __name(function(a) { const src = this.vertices; const dst = this.object.geometry.vertices; dst.push(src[a + 0], src[a + 1], src[a + 2]); }, "addVertexPoint"), addVertexLine: /* @__PURE__ */ __name(function(a) { const src = this.vertices; const dst = this.object.geometry.vertices; dst.push(src[a + 0], src[a + 1], src[a + 2]); }, "addVertexLine"), addNormal: /* @__PURE__ */ __name(function(a, b, c) { const src = this.normals; const dst = this.object.geometry.normals; dst.push(src[a + 0], src[a + 1], src[a + 2]); dst.push(src[b + 0], src[b + 1], src[b + 2]); dst.push(src[c + 0], src[c + 1], src[c + 2]); }, "addNormal"), addFaceNormal: /* @__PURE__ */ __name(function(a, b, c) { const src = this.vertices; const dst = this.object.geometry.normals; _vA.fromArray(src, a); _vB.fromArray(src, b); _vC.fromArray(src, c); _cb.subVectors(_vC, _vB); _ab.subVectors(_vA, _vB); _cb.cross(_ab); _cb.normalize(); dst.push(_cb.x, _cb.y, _cb.z); dst.push(_cb.x, _cb.y, _cb.z); dst.push(_cb.x, _cb.y, _cb.z); }, "addFaceNormal"), addColor: /* @__PURE__ */ __name(function(a, b, c) { const src = this.colors; const dst = this.object.geometry.colors; if (src[a] !== void 0) dst.push(src[a + 0], src[a + 1], src[a + 2]); if (src[b] !== void 0) dst.push(src[b + 0], src[b + 1], src[b + 2]); if (src[c] !== void 0) dst.push(src[c + 0], src[c + 1], src[c + 2]); }, "addColor"), addUV: /* @__PURE__ */ __name(function(a, b, c) { const src = this.uvs; const dst = this.object.geometry.uvs; dst.push(src[a + 0], src[a + 1]); dst.push(src[b + 0], src[b + 1]); dst.push(src[c + 0], src[c + 1]); }, "addUV"), addDefaultUV: /* @__PURE__ */ __name(function() { const dst = this.object.geometry.uvs; dst.push(0, 0); dst.push(0, 0); dst.push(0, 0); }, "addDefaultUV"), addUVLine: /* @__PURE__ */ __name(function(a) { const src = this.uvs; const dst = this.object.geometry.uvs; dst.push(src[a + 0], src[a + 1]); }, "addUVLine"), addFace: /* @__PURE__ */ __name(function(a, b, c, ua, ub, uc, na, nb, nc) { const vLen = this.vertices.length; let ia = this.parseVertexIndex(a, vLen); let ib = this.parseVertexIndex(b, vLen); let ic = this.parseVertexIndex(c, vLen); this.addVertex(ia, ib, ic); this.addColor(ia, ib, ic); if (na !== void 0 && na !== "") { const nLen = this.normals.length; ia = this.parseNormalIndex(na, nLen); ib = this.parseNormalIndex(nb, nLen); ic = this.parseNormalIndex(nc, nLen); this.addNormal(ia, ib, ic); } else { this.addFaceNormal(ia, ib, ic); } if (ua !== void 0 && ua !== "") { const uvLen = this.uvs.length; ia = this.parseUVIndex(ua, uvLen); ib = this.parseUVIndex(ub, uvLen); ic = this.parseUVIndex(uc, uvLen); this.addUV(ia, ib, ic); this.object.geometry.hasUVIndices = true; } else { this.addDefaultUV(); } }, "addFace"), addPointGeometry: /* @__PURE__ */ __name(function(vertices) { this.object.geometry.type = "Points"; const vLen = this.vertices.length; for (let vi = 0, l = vertices.length; vi < l; vi++) { const index = this.parseVertexIndex(vertices[vi], vLen); this.addVertexPoint(index); this.addColor(index); } }, "addPointGeometry"), addLineGeometry: /* @__PURE__ */ __name(function(vertices, uvs) { this.object.geometry.type = "Line"; const vLen = this.vertices.length; const uvLen = this.uvs.length; for (let vi = 0, l = vertices.length; vi < l; vi++) { this.addVertexLine(this.parseVertexIndex(vertices[vi], vLen)); } for (let uvi = 0, l = uvs.length; uvi < l; uvi++) { this.addUVLine(this.parseUVIndex(uvs[uvi], uvLen)); } }, "addLineGeometry") }; state.startObject("", false); return state; } __name(ParserState, "ParserState"); class OBJLoader extends Loader { static { __name(this, "OBJLoader"); } constructor(manager) { super(manager); this.materials = null; } load(url, onLoad, onProgress, onError) { const scope = this; const loader = new FileLoader(this.manager); loader.setPath(this.path); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(this.withCredentials); loader.load(url, function(text) { try { onLoad(scope.parse(text)); } catch (e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } }, onProgress, onError); } setMaterials(materials) { this.materials = materials; return this; } parse(text) { const state = new ParserState(); if (text.indexOf("\r\n") !== -1) { text = text.replace(/\r\n/g, "\n"); } if (text.indexOf("\\\n") !== -1) { text = text.replace(/\\\n/g, ""); } const lines = text.split("\n"); let result = []; for (let i = 0, l = lines.length; i < l; i++) { const line = lines[i].trimStart(); if (line.length === 0) continue; const lineFirstChar = line.charAt(0); if (lineFirstChar === "#") continue; if (lineFirstChar === "v") { const data = line.split(_face_vertex_data_separator_pattern); switch (data[0]) { case "v": state.vertices.push( parseFloat(data[1]), parseFloat(data[2]), parseFloat(data[3]) ); if (data.length >= 7) { _color.setRGB( parseFloat(data[4]), parseFloat(data[5]), parseFloat(data[6]), SRGBColorSpace ); state.colors.push(_color.r, _color.g, _color.b); } else { state.colors.push(void 0, void 0, void 0); } break; case "vn": state.normals.push( parseFloat(data[1]), parseFloat(data[2]), parseFloat(data[3]) ); break; case "vt": state.uvs.push( parseFloat(data[1]), parseFloat(data[2]) ); break; } } else if (lineFirstChar === "f") { const lineData = line.slice(1).trim(); const vertexData = lineData.split(_face_vertex_data_separator_pattern); const faceVertices = []; for (let j = 0, jl = vertexData.length; j < jl; j++) { const vertex2 = vertexData[j]; if (vertex2.length > 0) { const vertexParts = vertex2.split("/"); faceVertices.push(vertexParts); } } const v1 = faceVertices[0]; for (let j = 1, jl = faceVertices.length - 1; j < jl; j++) { const v2 = faceVertices[j]; const v3 = faceVertices[j + 1]; state.addFace( v1[0], v2[0], v3[0], v1[1], v2[1], v3[1], v1[2], v2[2], v3[2] ); } } else if (lineFirstChar === "l") { const lineParts = line.substring(1).trim().split(" "); let lineVertices = []; const lineUVs = []; if (line.indexOf("/") === -1) { lineVertices = lineParts; } else { for (let li = 0, llen = lineParts.length; li < llen; li++) { const parts = lineParts[li].split("/"); if (parts[0] !== "") lineVertices.push(parts[0]); if (parts[1] !== "") lineUVs.push(parts[1]); } } state.addLineGeometry(lineVertices, lineUVs); } else if (lineFirstChar === "p") { const lineData = line.slice(1).trim(); const pointData = lineData.split(" "); state.addPointGeometry(pointData); } else if ((result = _object_pattern.exec(line)) !== null) { const name = (" " + result[0].slice(1).trim()).slice(1); state.startObject(name); } else if (_material_use_pattern.test(line)) { state.object.startMaterial(line.substring(7).trim(), state.materialLibraries); } else if (_material_library_pattern.test(line)) { state.materialLibraries.push(line.substring(7).trim()); } else if (_map_use_pattern.test(line)) { console.warn('THREE.OBJLoader: Rendering identifier "usemap" not supported. Textures must be defined in MTL files.'); } else if (lineFirstChar === "s") { result = line.split(" "); if (result.length > 1) { const value = result[1].trim().toLowerCase(); state.object.smooth = value !== "0" && value !== "off"; } else { state.object.smooth = true; } const material = state.object.currentMaterial(); if (material) material.smooth = state.object.smooth; } else { if (line === "\0") continue; console.warn('THREE.OBJLoader: Unexpected line: "' + line + '"'); } } state.finalize(); const container = new Group(); container.materialLibraries = [].concat(state.materialLibraries); const hasPrimitives = !(state.objects.length === 1 && state.objects[0].geometry.vertices.length === 0); if (hasPrimitives === true) { for (let i = 0, l = state.objects.length; i < l; i++) { const object = state.objects[i]; const geometry = object.geometry; const materials = object.materials; const isLine = geometry.type === "Line"; const isPoints = geometry.type === "Points"; let hasVertexColors = false; if (geometry.vertices.length === 0) continue; const buffergeometry = new BufferGeometry(); buffergeometry.setAttribute("position", new Float32BufferAttribute(geometry.vertices, 3)); if (geometry.normals.length > 0) { buffergeometry.setAttribute("normal", new Float32BufferAttribute(geometry.normals, 3)); } if (geometry.colors.length > 0) { hasVertexColors = true; buffergeometry.setAttribute("color", new Float32BufferAttribute(geometry.colors, 3)); } if (geometry.hasUVIndices === true) { buffergeometry.setAttribute("uv", new Float32BufferAttribute(geometry.uvs, 2)); } const createdMaterials = []; for (let mi = 0, miLen = materials.length; mi < miLen; mi++) { const sourceMaterial = materials[mi]; const materialHash = sourceMaterial.name + "_" + sourceMaterial.smooth + "_" + hasVertexColors; let material = state.materials[materialHash]; if (this.materials !== null) { material = this.materials.create(sourceMaterial.name); if (isLine && material && !(material instanceof LineBasicMaterial)) { const materialLine = new LineBasicMaterial(); Material.prototype.copy.call(materialLine, material); materialLine.color.copy(material.color); material = materialLine; } else if (isPoints && material && !(material instanceof PointsMaterial)) { const materialPoints = new PointsMaterial({ size: 10, sizeAttenuation: false }); Material.prototype.copy.call(materialPoints, material); materialPoints.color.copy(material.color); materialPoints.map = material.map; material = materialPoints; } } if (material === void 0) { if (isLine) { material = new LineBasicMaterial(); } else if (isPoints) { material = new PointsMaterial({ size: 1, sizeAttenuation: false }); } else { material = new MeshPhongMaterial(); } material.name = sourceMaterial.name; material.flatShading = sourceMaterial.smooth ? false : true; material.vertexColors = hasVertexColors; state.materials[materialHash] = material; } createdMaterials.push(material); } let mesh; if (createdMaterials.length > 1) { for (let mi = 0, miLen = materials.length; mi < miLen; mi++) { const sourceMaterial = materials[mi]; buffergeometry.addGroup(sourceMaterial.groupStart, sourceMaterial.groupCount, mi); } if (isLine) { mesh = new LineSegments(buffergeometry, createdMaterials); } else if (isPoints) { mesh = new Points(buffergeometry, createdMaterials); } else { mesh = new Mesh(buffergeometry, createdMaterials); } } else { if (isLine) { mesh = new LineSegments(buffergeometry, createdMaterials[0]); } else if (isPoints) { mesh = new Points(buffergeometry, createdMaterials[0]); } else { mesh = new Mesh(buffergeometry, createdMaterials[0]); } } mesh.name = object.name; container.add(mesh); } } else { if (state.vertices.length > 0) { const material = new PointsMaterial({ size: 1, sizeAttenuation: false }); const buffergeometry = new BufferGeometry(); buffergeometry.setAttribute("position", new Float32BufferAttribute(state.vertices, 3)); if (state.colors.length > 0 && state.colors[0] !== void 0) { buffergeometry.setAttribute("color", new Float32BufferAttribute(state.colors, 3)); material.vertexColors = true; } const points = new Points(buffergeometry, material); container.add(points); } } return container; } } class MTLLoader extends Loader { static { __name(this, "MTLLoader"); } constructor(manager) { super(manager); } /** * Loads and parses a MTL asset from a URL. * * @param {String} url - URL to the MTL file. * @param {Function} [onLoad] - Callback invoked with the loaded object. * @param {Function} [onProgress] - Callback for download progress. * @param {Function} [onError] - Callback for download errors. * * @see setPath setResourcePath * * @note In order for relative texture references to resolve correctly * you must call setResourcePath() explicitly prior to load. */ load(url, onLoad, onProgress, onError) { const scope = this; const path = this.path === "" ? LoaderUtils.extractUrlBase(url) : this.path; const loader = new FileLoader(this.manager); loader.setPath(this.path); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(this.withCredentials); loader.load(url, function(text) { try { onLoad(scope.parse(text, path)); } catch (e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } }, onProgress, onError); } setMaterialOptions(value) { this.materialOptions = value; return this; } /** * Parses a MTL file. * * @param {String} text - Content of MTL file * @return {MaterialCreator} * * @see setPath setResourcePath * * @note In order for relative texture references to resolve correctly * you must call setResourcePath() explicitly prior to parse. */ parse(text, path) { const lines = text.split("\n"); let info = {}; const delimiter_pattern = /\s+/; const materialsInfo = {}; for (let i = 0; i < lines.length; i++) { let line = lines[i]; line = line.trim(); if (line.length === 0 || line.charAt(0) === "#") { continue; } const pos = line.indexOf(" "); let key = pos >= 0 ? line.substring(0, pos) : line; key = key.toLowerCase(); let value = pos >= 0 ? line.substring(pos + 1) : ""; value = value.trim(); if (key === "newmtl") { info = { name: value }; materialsInfo[value] = info; } else { if (key === "ka" || key === "kd" || key === "ks" || key === "ke") { const ss = value.split(delimiter_pattern, 3); info[key] = [parseFloat(ss[0]), parseFloat(ss[1]), parseFloat(ss[2])]; } else { info[key] = value; } } } const materialCreator = new MaterialCreator(this.resourcePath || path, this.materialOptions); materialCreator.setCrossOrigin(this.crossOrigin); materialCreator.setManager(this.manager); materialCreator.setMaterials(materialsInfo); return materialCreator; } } class MaterialCreator { static { __name(this, "MaterialCreator"); } constructor(baseUrl = "", options = {}) { this.baseUrl = baseUrl; this.options = options; this.materialsInfo = {}; this.materials = {}; this.materialsArray = []; this.nameLookup = {}; this.crossOrigin = "anonymous"; this.side = this.options.side !== void 0 ? this.options.side : FrontSide; this.wrap = this.options.wrap !== void 0 ? this.options.wrap : RepeatWrapping; } setCrossOrigin(value) { this.crossOrigin = value; return this; } setManager(value) { this.manager = value; } setMaterials(materialsInfo) { this.materialsInfo = this.convert(materialsInfo); this.materials = {}; this.materialsArray = []; this.nameLookup = {}; } convert(materialsInfo) { if (!this.options) return materialsInfo; const converted = {}; for (const mn in materialsInfo) { const mat = materialsInfo[mn]; const covmat = {}; converted[mn] = covmat; for (const prop in mat) { let save = true; let value = mat[prop]; const lprop = prop.toLowerCase(); switch (lprop) { case "kd": case "ka": case "ks": if (this.options && this.options.normalizeRGB) { value = [value[0] / 255, value[1] / 255, value[2] / 255]; } if (this.options && this.options.ignoreZeroRGBs) { if (value[0] === 0 && value[1] === 0 && value[2] === 0) { save = false; } } break; default: break; } if (save) { covmat[lprop] = value; } } } return converted; } preload() { for (const mn in this.materialsInfo) { this.create(mn); } } getIndex(materialName) { return this.nameLookup[materialName]; } getAsArray() { let index = 0; for (const mn in this.materialsInfo) { this.materialsArray[index] = this.create(mn); this.nameLookup[mn] = index; index++; } return this.materialsArray; } create(materialName) { if (this.materials[materialName] === void 0) { this.createMaterial_(materialName); } return this.materials[materialName]; } createMaterial_(materialName) { const scope = this; const mat = this.materialsInfo[materialName]; const params = { name: materialName, side: this.side }; function resolveURL(baseUrl, url) { if (typeof url !== "string" || url === "") return ""; if (/^https?:\/\//i.test(url)) return url; return baseUrl + url; } __name(resolveURL, "resolveURL"); function setMapForType(mapType, value) { if (params[mapType]) return; const texParams = scope.getTextureParams(value, params); const map = scope.loadTexture(resolveURL(scope.baseUrl, texParams.url)); map.repeat.copy(texParams.scale); map.offset.copy(texParams.offset); map.wrapS = scope.wrap; map.wrapT = scope.wrap; if (mapType === "map" || mapType === "emissiveMap") { map.colorSpace = SRGBColorSpace; } params[mapType] = map; } __name(setMapForType, "setMapForType"); for (const prop in mat) { const value = mat[prop]; let n; if (value === "") continue; switch (prop.toLowerCase()) { case "kd": params.color = ColorManagement.toWorkingColorSpace(new Color().fromArray(value), SRGBColorSpace); break; case "ks": params.specular = ColorManagement.toWorkingColorSpace(new Color().fromArray(value), SRGBColorSpace); break; case "ke": params.emissive = ColorManagement.toWorkingColorSpace(new Color().fromArray(value), SRGBColorSpace); break; case "map_kd": setMapForType("map", value); break; case "map_ks": setMapForType("specularMap", value); break; case "map_ke": setMapForType("emissiveMap", value); break; case "norm": setMapForType("normalMap", value); break; case "map_bump": case "bump": setMapForType("bumpMap", value); break; case "map_d": setMapForType("alphaMap", value); params.transparent = true; break; case "ns": params.shininess = parseFloat(value); break; case "d": n = parseFloat(value); if (n < 1) { params.opacity = n; params.transparent = true; } break; case "tr": n = parseFloat(value); if (this.options && this.options.invertTrProperty) n = 1 - n; if (n > 0) { params.opacity = 1 - n; params.transparent = true; } break; default: break; } } this.materials[materialName] = new MeshPhongMaterial(params); return this.materials[materialName]; } getTextureParams(value, matParams) { const texParams = { scale: new Vector2(1, 1), offset: new Vector2(0, 0) }; const items = value.split(/\s+/); let pos; pos = items.indexOf("-bm"); if (pos >= 0) { matParams.bumpScale = parseFloat(items[pos + 1]); items.splice(pos, 2); } pos = items.indexOf("-s"); if (pos >= 0) { texParams.scale.set(parseFloat(items[pos + 1]), parseFloat(items[pos + 2])); items.splice(pos, 4); } pos = items.indexOf("-o"); if (pos >= 0) { texParams.offset.set(parseFloat(items[pos + 1]), parseFloat(items[pos + 2])); items.splice(pos, 4); } texParams.url = items.join(" ").trim(); return texParams; } loadTexture(url, mapping, onLoad, onProgress, onError) { const manager = this.manager !== void 0 ? this.manager : DefaultLoadingManager; let loader = manager.getHandler(url); if (loader === null) { loader = new TextureLoader(manager); } if (loader.setCrossOrigin) loader.setCrossOrigin(this.crossOrigin); const texture = loader.load(url, onLoad, onProgress, onError); if (mapping !== void 0) texture.mapping = mapping; return texture; } } /*! fflate - fast JavaScript compression/decompression Licensed under MIT. https://github.com/101arrowz/fflate/blob/master/LICENSE version 0.8.2 */ var ch2 = {}; var wk = /* @__PURE__ */ __name(function(c, id2, msg, transfer, cb) { var w = new Worker(ch2[id2] || (ch2[id2] = URL.createObjectURL(new Blob([ c + ';addEventListener("error",function(e){e=e.error;postMessage({$e$:[e.message,e.code,e.stack]})})' ], { type: "text/javascript" })))); w.onmessage = function(e) { var d = e.data, ed = d.$e$; if (ed) { var err2 = new Error(ed[0]); err2["code"] = ed[1]; err2.stack = ed[2]; cb(err2, null); } else cb(null, d); }; w.postMessage(msg, transfer); return w; }, "wk"); var u8 = Uint8Array, u16 = Uint16Array, i32 = Int32Array; var fleb = new u8([ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, /* unused */ 0, 0, /* impossible */ 0 ]); var fdeb = new u8([ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* unused */ 0, 0 ]); var clim = new u8([16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]); var freb = /* @__PURE__ */ __name(function(eb, start) { var b = new u16(31); for (var i = 0; i < 31; ++i) { b[i] = start += 1 << eb[i - 1]; } var r = new i32(b[30]); for (var i = 1; i < 30; ++i) { for (var j = b[i]; j < b[i + 1]; ++j) { r[j] = j - b[i] << 5 | i; } } return { b, r }; }, "freb"); var _a = freb(fleb, 2), fl = _a.b, revfl = _a.r; fl[28] = 258, revfl[258] = 28; var _b = freb(fdeb, 0), fd = _b.b, revfd = _b.r; var rev = new u16(32768); for (var i = 0; i < 32768; ++i) { var x = (i & 43690) >> 1 | (i & 21845) << 1; x = (x & 52428) >> 2 | (x & 13107) << 2; x = (x & 61680) >> 4 | (x & 3855) << 4; rev[i] = ((x & 65280) >> 8 | (x & 255) << 8) >> 1; } var hMap = /* @__PURE__ */ __name(function(cd, mb, r) { var s = cd.length; var i = 0; var l = new u16(mb); for (; i < s; ++i) { if (cd[i]) ++l[cd[i] - 1]; } var le = new u16(mb); for (i = 1; i < mb; ++i) { le[i] = le[i - 1] + l[i - 1] << 1; } var co; if (r) { co = new u16(1 << mb); var rvb = 15 - mb; for (i = 0; i < s; ++i) { if (cd[i]) { var sv = i << 4 | cd[i]; var r_1 = mb - cd[i]; var v = le[cd[i] - 1]++ << r_1; for (var m = v | (1 << r_1) - 1; v <= m; ++v) { co[rev[v] >> rvb] = sv; } } } } else { co = new u16(s); for (i = 0; i < s; ++i) { if (cd[i]) { co[i] = rev[le[cd[i] - 1]++] >> 15 - cd[i]; } } } return co; }, "hMap"); var flt = new u8(288); for (var i = 0; i < 144; ++i) flt[i] = 8; for (var i = 144; i < 256; ++i) flt[i] = 9; for (var i = 256; i < 280; ++i) flt[i] = 7; for (var i = 280; i < 288; ++i) flt[i] = 8; var fdt = new u8(32); for (var i = 0; i < 32; ++i) fdt[i] = 5; var flm = /* @__PURE__ */ hMap(flt, 9, 0), flrm = /* @__PURE__ */ hMap(flt, 9, 1); var fdm = /* @__PURE__ */ hMap(fdt, 5, 0), fdrm = /* @__PURE__ */ hMap(fdt, 5, 1); var max = /* @__PURE__ */ __name(function(a) { var m = a[0]; for (var i = 1; i < a.length; ++i) { if (a[i] > m) m = a[i]; } return m; }, "max"); var bits = /* @__PURE__ */ __name(function(d, p, m) { var o = p / 8 | 0; return (d[o] | d[o + 1] << 8) >> (p & 7) & m; }, "bits"); var bits16 = /* @__PURE__ */ __name(function(d, p) { var o = p / 8 | 0; return (d[o] | d[o + 1] << 8 | d[o + 2] << 16) >> (p & 7); }, "bits16"); var shft = /* @__PURE__ */ __name(function(p) { return (p + 7) / 8 | 0; }, "shft"); var slc = /* @__PURE__ */ __name(function(v, s, e) { if (s == null || s < 0) s = 0; if (e == null || e > v.length) e = v.length; return new u8(v.subarray(s, e)); }, "slc"); var FlateErrorCode = { UnexpectedEOF: 0, InvalidBlockType: 1, InvalidLengthLiteral: 2, InvalidDistance: 3, StreamFinished: 4, NoStreamHandler: 5, InvalidHeader: 6, NoCallback: 7, InvalidUTF8: 8, ExtraFieldTooLong: 9, InvalidDate: 10, FilenameTooLong: 11, StreamFinishing: 12, InvalidZipData: 13, UnknownCompressionMethod: 14 }; var ec = [ "unexpected EOF", "invalid block type", "invalid length/literal", "invalid distance", "stream finished", "no stream handler", , "no callback", "invalid UTF-8 data", "extra field too long", "date not in range 1980-2099", "filename too long", "stream finishing", "invalid zip data" // determined by unknown compression method ]; ; var err = /* @__PURE__ */ __name(function(ind, msg, nt) { var e = new Error(msg || ec[ind]); e.code = ind; if (Error.captureStackTrace) Error.captureStackTrace(e, err); if (!nt) throw e; return e; }, "err"); var inflt = /* @__PURE__ */ __name(function(dat, st, buf, dict) { var sl = dat.length, dl = dict ? dict.length : 0; if (!sl || st.f && !st.l) return buf || new u8(0); var noBuf = !buf; var resize = noBuf || st.i != 2; var noSt = st.i; if (noBuf) buf = new u8(sl * 3); var cbuf = /* @__PURE__ */ __name(function(l2) { var bl = buf.length; if (l2 > bl) { var nbuf = new u8(Math.max(bl * 2, l2)); nbuf.set(buf); buf = nbuf; } }, "cbuf"); var final = st.f || 0, pos = st.p || 0, bt = st.b || 0, lm = st.l, dm = st.d, lbt = st.m, dbt = st.n; var tbts = sl * 8; do { if (!lm) { final = bits(dat, pos, 1); var type = bits(dat, pos + 1, 3); pos += 3; if (!type) { var s = shft(pos) + 4, l = dat[s - 4] | dat[s - 3] << 8, t = s + l; if (t > sl) { if (noSt) err(0); break; } if (resize) cbuf(bt + l); buf.set(dat.subarray(s, t), bt); st.b = bt += l, st.p = pos = t * 8, st.f = final; continue; } else if (type == 1) lm = flrm, dm = fdrm, lbt = 9, dbt = 5; else if (type == 2) { var hLit = bits(dat, pos, 31) + 257, hcLen = bits(dat, pos + 10, 15) + 4; var tl = hLit + bits(dat, pos + 5, 31) + 1; pos += 14; var ldt = new u8(tl); var clt = new u8(19); for (var i = 0; i < hcLen; ++i) { clt[clim[i]] = bits(dat, pos + i * 3, 7); } pos += hcLen * 3; var clb = max(clt), clbmsk = (1 << clb) - 1; var clm = hMap(clt, clb, 1); for (var i = 0; i < tl; ) { var r = clm[bits(dat, pos, clbmsk)]; pos += r & 15; var s = r >> 4; if (s < 16) { ldt[i++] = s; } else { var c = 0, n = 0; if (s == 16) n = 3 + bits(dat, pos, 3), pos += 2, c = ldt[i - 1]; else if (s == 17) n = 3 + bits(dat, pos, 7), pos += 3; else if (s == 18) n = 11 + bits(dat, pos, 127), pos += 7; while (n--) ldt[i++] = c; } } var lt = ldt.subarray(0, hLit), dt = ldt.subarray(hLit); lbt = max(lt); dbt = max(dt); lm = hMap(lt, lbt, 1); dm = hMap(dt, dbt, 1); } else err(1); if (pos > tbts) { if (noSt) err(0); break; } } if (resize) cbuf(bt + 131072); var lms = (1 << lbt) - 1, dms = (1 << dbt) - 1; var lpos = pos; for (; ; lpos = pos) { var c = lm[bits16(dat, pos) & lms], sym = c >> 4; pos += c & 15; if (pos > tbts) { if (noSt) err(0); break; } if (!c) err(2); if (sym < 256) buf[bt++] = sym; else if (sym == 256) { lpos = pos, lm = null; break; } else { var add = sym - 254; if (sym > 264) { var i = sym - 257, b = fleb[i]; add = bits(dat, pos, (1 << b) - 1) + fl[i]; pos += b; } var d = dm[bits16(dat, pos) & dms], dsym = d >> 4; if (!d) err(3); pos += d & 15; var dt = fd[dsym]; if (dsym > 3) { var b = fdeb[dsym]; dt += bits16(dat, pos) & (1 << b) - 1, pos += b; } if (pos > tbts) { if (noSt) err(0); break; } if (resize) cbuf(bt + 131072); var end = bt + add; if (bt < dt) { var shift = dl - dt, dend = Math.min(dt, end); if (shift + bt < 0) err(3); for (; bt < dend; ++bt) buf[bt] = dict[shift + bt]; } for (; bt < end; ++bt) buf[bt] = buf[bt - dt]; } } st.l = lm, st.p = lpos, st.b = bt, st.f = final; if (lm) final = 1, st.m = lbt, st.d = dm, st.n = dbt; } while (!final); return bt != buf.length && noBuf ? slc(buf, 0, bt) : buf.subarray(0, bt); }, "inflt"); var wbits = /* @__PURE__ */ __name(function(d, p, v) { v <<= p & 7; var o = p / 8 | 0; d[o] |= v; d[o + 1] |= v >> 8; }, "wbits"); var wbits16 = /* @__PURE__ */ __name(function(d, p, v) { v <<= p & 7; var o = p / 8 | 0; d[o] |= v; d[o + 1] |= v >> 8; d[o + 2] |= v >> 16; }, "wbits16"); var hTree = /* @__PURE__ */ __name(function(d, mb) { var t = []; for (var i = 0; i < d.length; ++i) { if (d[i]) t.push({ s: i, f: d[i] }); } var s = t.length; var t2 = t.slice(); if (!s) return { t: et, l: 0 }; if (s == 1) { var v = new u8(t[0].s + 1); v[t[0].s] = 1; return { t: v, l: 1 }; } t.sort(function(a, b) { return a.f - b.f; }); t.push({ s: -1, f: 25001 }); var l = t[0], r = t[1], i0 = 0, i1 = 1, i2 = 2; t[0] = { s: -1, f: l.f + r.f, l, r }; while (i1 != s - 1) { l = t[t[i0].f < t[i2].f ? i0++ : i2++]; r = t[i0 != i1 && t[i0].f < t[i2].f ? i0++ : i2++]; t[i1++] = { s: -1, f: l.f + r.f, l, r }; } var maxSym = t2[0].s; for (var i = 1; i < s; ++i) { if (t2[i].s > maxSym) maxSym = t2[i].s; } var tr = new u16(maxSym + 1); var mbt = ln(t[i1 - 1], tr, 0); if (mbt > mb) { var i = 0, dt = 0; var lft = mbt - mb, cst = 1 << lft; t2.sort(function(a, b) { return tr[b.s] - tr[a.s] || a.f - b.f; }); for (; i < s; ++i) { var i2_1 = t2[i].s; if (tr[i2_1] > mb) { dt += cst - (1 << mbt - tr[i2_1]); tr[i2_1] = mb; } else break; } dt >>= lft; while (dt > 0) { var i2_2 = t2[i].s; if (tr[i2_2] < mb) dt -= 1 << mb - tr[i2_2]++ - 1; else ++i; } for (; i >= 0 && dt; --i) { var i2_3 = t2[i].s; if (tr[i2_3] == mb) { --tr[i2_3]; ++dt; } } mbt = mb; } return { t: new u8(tr), l: mbt }; }, "hTree"); var ln = /* @__PURE__ */ __name(function(n, l, d) { return n.s == -1 ? Math.max(ln(n.l, l, d + 1), ln(n.r, l, d + 1)) : l[n.s] = d; }, "ln"); var lc = /* @__PURE__ */ __name(function(c) { var s = c.length; while (s && !c[--s]) ; var cl = new u16(++s); var cli = 0, cln = c[0], cls = 1; var w = /* @__PURE__ */ __name(function(v) { cl[cli++] = v; }, "w"); for (var i = 1; i <= s; ++i) { if (c[i] == cln && i != s) ++cls; else { if (!cln && cls > 2) { for (; cls > 138; cls -= 138) w(32754); if (cls > 2) { w(cls > 10 ? cls - 11 << 5 | 28690 : cls - 3 << 5 | 12305); cls = 0; } } else if (cls > 3) { w(cln), --cls; for (; cls > 6; cls -= 6) w(8304); if (cls > 2) w(cls - 3 << 5 | 8208), cls = 0; } while (cls--) w(cln); cls = 1; cln = c[i]; } } return { c: cl.subarray(0, cli), n: s }; }, "lc"); var clen = /* @__PURE__ */ __name(function(cf, cl) { var l = 0; for (var i = 0; i < cl.length; ++i) l += cf[i] * cl[i]; return l; }, "clen"); var wfblk = /* @__PURE__ */ __name(function(out, pos, dat) { var s = dat.length; var o = shft(pos + 2); out[o] = s & 255; out[o + 1] = s >> 8; out[o + 2] = out[o] ^ 255; out[o + 3] = out[o + 1] ^ 255; for (var i = 0; i < s; ++i) out[o + i + 4] = dat[i]; return (o + 4 + s) * 8; }, "wfblk"); var wblk = /* @__PURE__ */ __name(function(dat, out, final, syms, lf, df, eb, li, bs, bl, p) { wbits(out, p++, final); ++lf[256]; var _a2 = hTree(lf, 15), dlt = _a2.t, mlb = _a2.l; var _b2 = hTree(df, 15), ddt = _b2.t, mdb = _b2.l; var _c = lc(dlt), lclt = _c.c, nlc = _c.n; var _d = lc(ddt), lcdt = _d.c, ndc = _d.n; var lcfreq = new u16(19); for (var i = 0; i < lclt.length; ++i) ++lcfreq[lclt[i] & 31]; for (var i = 0; i < lcdt.length; ++i) ++lcfreq[lcdt[i] & 31]; var _e = hTree(lcfreq, 7), lct = _e.t, mlcb = _e.l; var nlcc = 19; for (; nlcc > 4 && !lct[clim[nlcc - 1]]; --nlcc) ; var flen = bl + 5 << 3; var ftlen = clen(lf, flt) + clen(df, fdt) + eb; var dtlen = clen(lf, dlt) + clen(df, ddt) + eb + 14 + 3 * nlcc + clen(lcfreq, lct) + 2 * lcfreq[16] + 3 * lcfreq[17] + 7 * lcfreq[18]; if (bs >= 0 && flen <= ftlen && flen <= dtlen) return wfblk(out, p, dat.subarray(bs, bs + bl)); var lm, ll, dm, dl; wbits(out, p, 1 + (dtlen < ftlen)), p += 2; if (dtlen < ftlen) { lm = hMap(dlt, mlb, 0), ll = dlt, dm = hMap(ddt, mdb, 0), dl = ddt; var llm = hMap(lct, mlcb, 0); wbits(out, p, nlc - 257); wbits(out, p + 5, ndc - 1); wbits(out, p + 10, nlcc - 4); p += 14; for (var i = 0; i < nlcc; ++i) wbits(out, p + 3 * i, lct[clim[i]]); p += 3 * nlcc; var lcts = [lclt, lcdt]; for (var it = 0; it < 2; ++it) { var clct = lcts[it]; for (var i = 0; i < clct.length; ++i) { var len = clct[i] & 31; wbits(out, p, llm[len]), p += lct[len]; if (len > 15) wbits(out, p, clct[i] >> 5 & 127), p += clct[i] >> 12; } } } else { lm = flm, ll = flt, dm = fdm, dl = fdt; } for (var i = 0; i < li; ++i) { var sym = syms[i]; if (sym > 255) { var len = sym >> 18 & 31; wbits16(out, p, lm[len + 257]), p += ll[len + 257]; if (len > 7) wbits(out, p, sym >> 23 & 31), p += fleb[len]; var dst = sym & 31; wbits16(out, p, dm[dst]), p += dl[dst]; if (dst > 3) wbits16(out, p, sym >> 5 & 8191), p += fdeb[dst]; } else { wbits16(out, p, lm[sym]), p += ll[sym]; } } wbits16(out, p, lm[256]); return p + ll[256]; }, "wblk"); var deo = /* @__PURE__ */ new i32([65540, 131080, 131088, 131104, 262176, 1048704, 1048832, 2114560, 2117632]); var et = /* @__PURE__ */ new u8(0); var dflt = /* @__PURE__ */ __name(function(dat, lvl, plvl, pre, post, st) { var s = st.z || dat.length; var o = new u8(pre + s + 5 * (1 + Math.ceil(s / 7e3)) + post); var w = o.subarray(pre, o.length - post); var lst = st.l; var pos = (st.r || 0) & 7; if (lvl) { if (pos) w[0] = st.r >> 3; var opt = deo[lvl - 1]; var n = opt >> 13, c = opt & 8191; var msk_1 = (1 << plvl) - 1; var prev = st.p || new u16(32768), head = st.h || new u16(msk_1 + 1); var bs1_1 = Math.ceil(plvl / 3), bs2_1 = 2 * bs1_1; var hsh = /* @__PURE__ */ __name(function(i2) { return (dat[i2] ^ dat[i2 + 1] << bs1_1 ^ dat[i2 + 2] << bs2_1) & msk_1; }, "hsh"); var syms = new i32(25e3); var lf = new u16(288), df = new u16(32); var lc_1 = 0, eb = 0, i = st.i || 0, li = 0, wi = st.w || 0, bs = 0; for (; i + 2 < s; ++i) { var hv = hsh(i); var imod = i & 32767, pimod = head[hv]; prev[imod] = pimod; head[hv] = imod; if (wi <= i) { var rem = s - i; if ((lc_1 > 7e3 || li > 24576) && (rem > 423 || !lst)) { pos = wblk(dat, w, 0, syms, lf, df, eb, li, bs, i - bs, pos); li = lc_1 = eb = 0, bs = i; for (var j = 0; j < 286; ++j) lf[j] = 0; for (var j = 0; j < 30; ++j) df[j] = 0; } var l = 2, d = 0, ch_1 = c, dif = imod - pimod & 32767; if (rem > 2 && hv == hsh(i - dif)) { var maxn = Math.min(n, rem) - 1; var maxd = Math.min(32767, i); var ml = Math.min(258, rem); while (dif <= maxd && --ch_1 && imod != pimod) { if (dat[i + l] == dat[i + l - dif]) { var nl = 0; for (; nl < ml && dat[i + nl] == dat[i + nl - dif]; ++nl) ; if (nl > l) { l = nl, d = dif; if (nl > maxn) break; var mmd = Math.min(dif, nl - 2); var md = 0; for (var j = 0; j < mmd; ++j) { var ti = i - dif + j & 32767; var pti = prev[ti]; var cd = ti - pti & 32767; if (cd > md) md = cd, pimod = ti; } } } imod = pimod, pimod = prev[imod]; dif += imod - pimod & 32767; } } if (d) { syms[li++] = 268435456 | revfl[l] << 18 | revfd[d]; var lin = revfl[l] & 31, din = revfd[d] & 31; eb += fleb[lin] + fdeb[din]; ++lf[257 + lin]; ++df[din]; wi = i + l; ++lc_1; } else { syms[li++] = dat[i]; ++lf[dat[i]]; } } } for (i = Math.max(i, wi); i < s; ++i) { syms[li++] = dat[i]; ++lf[dat[i]]; } pos = wblk(dat, w, lst, syms, lf, df, eb, li, bs, i - bs, pos); if (!lst) { st.r = pos & 7 | w[pos / 8 | 0] << 3; pos -= 7; st.h = head, st.p = prev, st.i = i, st.w = wi; } } else { for (var i = st.w || 0; i < s + lst; i += 65535) { var e = i + 65535; if (e >= s) { w[pos / 8 | 0] = lst; e = s; } pos = wfblk(w, pos + 1, dat.subarray(i, e)); } st.i = s; } return slc(o, 0, pre + shft(pos) + post); }, "dflt"); var crct = /* @__PURE__ */ function() { var t = new Int32Array(256); for (var i = 0; i < 256; ++i) { var c = i, k = 9; while (--k) c = (c & 1 && -306674912) ^ c >>> 1; t[i] = c; } return t; }(); var crc = /* @__PURE__ */ __name(function() { var c = -1; return { p: /* @__PURE__ */ __name(function(d) { var cr = c; for (var i = 0; i < d.length; ++i) cr = crct[cr & 255 ^ d[i]] ^ cr >>> 8; c = cr; }, "p"), d: /* @__PURE__ */ __name(function() { return ~c; }, "d") }; }, "crc"); var adler = /* @__PURE__ */ __name(function() { var a = 1, b = 0; return { p: /* @__PURE__ */ __name(function(d) { var n = a, m = b; var l = d.length | 0; for (var i = 0; i != l; ) { var e = Math.min(i + 2655, l); for (; i < e; ++i) m += n += d[i]; n = (n & 65535) + 15 * (n >> 16), m = (m & 65535) + 15 * (m >> 16); } a = n, b = m; }, "p"), d: /* @__PURE__ */ __name(function() { a %= 65521, b %= 65521; return (a & 255) << 24 | (a & 65280) << 8 | (b & 255) << 8 | b >> 8; }, "d") }; }, "adler"); ; var dopt = /* @__PURE__ */ __name(function(dat, opt, pre, post, st) { if (!st) { st = { l: 1 }; if (opt.dictionary) { var dict = opt.dictionary.subarray(-32768); var newDat = new u8(dict.length + dat.length); newDat.set(dict); newDat.set(dat, dict.length); dat = newDat; st.w = dict.length; } } return dflt(dat, opt.level == null ? 6 : opt.level, opt.mem == null ? st.l ? Math.ceil(Math.max(8, Math.min(13, Math.log(dat.length))) * 1.5) : 20 : 12 + opt.mem, pre, post, st); }, "dopt"); var mrg = /* @__PURE__ */ __name(function(a, b) { var o = {}; for (var k in a) o[k] = a[k]; for (var k in b) o[k] = b[k]; return o; }, "mrg"); var wcln = /* @__PURE__ */ __name(function(fn, fnStr, td2) { var dt = fn(); var st = fn.toString(); var ks = st.slice(st.indexOf("[") + 1, st.lastIndexOf("]")).replace(/\s+/g, "").split(","); for (var i = 0; i < dt.length; ++i) { var v = dt[i], k = ks[i]; if (typeof v == "function") { fnStr += ";" + k + "="; var st_1 = v.toString(); if (v.prototype) { if (st_1.indexOf("[native code]") != -1) { var spInd = st_1.indexOf(" ", 8) + 1; fnStr += st_1.slice(spInd, st_1.indexOf("(", spInd)); } else { fnStr += st_1; for (var t in v.prototype) fnStr += ";" + k + ".prototype." + t + "=" + v.prototype[t].toString(); } } else fnStr += st_1; } else td2[k] = v; } return fnStr; }, "wcln"); var ch = []; var cbfs = /* @__PURE__ */ __name(function(v) { var tl = []; for (var k in v) { if (v[k].buffer) { tl.push((v[k] = new v[k].constructor(v[k])).buffer); } } return tl; }, "cbfs"); var wrkr = /* @__PURE__ */ __name(function(fns, init, id2, cb) { if (!ch[id2]) { var fnStr = "", td_1 = {}, m = fns.length - 1; for (var i = 0; i < m; ++i) fnStr = wcln(fns[i], fnStr, td_1); ch[id2] = { c: wcln(fns[m], fnStr, td_1), e: td_1 }; } var td2 = mrg({}, ch[id2].e); return wk(ch[id2].c + ";onmessage=function(e){for(var k in e.data)self[k]=e.data[k];onmessage=" + init.toString() + "}", id2, td2, cbfs(td2), cb); }, "wrkr"); var bInflt = /* @__PURE__ */ __name(function() { return [u8, u16, i32, fleb, fdeb, clim, fl, fd, flrm, fdrm, rev, ec, hMap, max, bits, bits16, shft, slc, err, inflt, inflateSync, pbf, gopt]; }, "bInflt"); var bDflt = /* @__PURE__ */ __name(function() { return [u8, u16, i32, fleb, fdeb, clim, revfl, revfd, flm, flt, fdm, fdt, rev, deo, et, hMap, wbits, wbits16, hTree, ln, lc, clen, wfblk, wblk, shft, slc, dflt, dopt, deflateSync, pbf]; }, "bDflt"); var gze = /* @__PURE__ */ __name(function() { return [gzh, gzhl, wbytes, crc, crct]; }, "gze"); var guze = /* @__PURE__ */ __name(function() { return [gzs, gzl]; }, "guze"); var zle = /* @__PURE__ */ __name(function() { return [zlh, wbytes, adler]; }, "zle"); var zule = /* @__PURE__ */ __name(function() { return [zls]; }, "zule"); var pbf = /* @__PURE__ */ __name(function(msg) { return postMessage(msg, [msg.buffer]); }, "pbf"); var gopt = /* @__PURE__ */ __name(function(o) { return o && { out: o.size && new u8(o.size), dictionary: o.dictionary }; }, "gopt"); var cbify = /* @__PURE__ */ __name(function(dat, opts, fns, init, id2, cb) { var w = wrkr(fns, init, id2, function(err2, dat2) { w.terminate(); cb(err2, dat2); }); w.postMessage([dat, opts], opts.consume ? [dat.buffer] : []); return function() { w.terminate(); }; }, "cbify"); var astrm = /* @__PURE__ */ __name(function(strm) { strm.ondata = function(dat, final) { return postMessage([dat, final], [dat.buffer]); }; return function(ev) { if (ev.data.length) { strm.push(ev.data[0], ev.data[1]); postMessage([ev.data[0].length]); } else strm.flush(); }; }, "astrm"); var astrmify = /* @__PURE__ */ __name(function(fns, strm, opts, init, id2, flush, ext2) { var t; var w = wrkr(fns, init, id2, function(err2, dat) { if (err2) w.terminate(), strm.ondata.call(strm, err2); else if (!Array.isArray(dat)) ext2(dat); else if (dat.length == 1) { strm.queuedSize -= dat[0]; if (strm.ondrain) strm.ondrain(dat[0]); } else { if (dat[1]) w.terminate(); strm.ondata.call(strm, err2, dat[0], dat[1]); } }); w.postMessage(opts); strm.queuedSize = 0; strm.push = function(d, f) { if (!strm.ondata) err(5); if (t) strm.ondata(err(4, 0, 1), null, !!f); strm.queuedSize += d.length; w.postMessage([d, t = f], [d.buffer]); }; strm.terminate = function() { w.terminate(); }; if (flush) { strm.flush = function() { w.postMessage([]); }; } }, "astrmify"); var b2 = /* @__PURE__ */ __name(function(d, b) { return d[b] | d[b + 1] << 8; }, "b2"); var b4 = /* @__PURE__ */ __name(function(d, b) { return (d[b] | d[b + 1] << 8 | d[b + 2] << 16 | d[b + 3] << 24) >>> 0; }, "b4"); var b8 = /* @__PURE__ */ __name(function(d, b) { return b4(d, b) + b4(d, b + 4) * 4294967296; }, "b8"); var wbytes = /* @__PURE__ */ __name(function(d, b, v) { for (; v; ++b) d[b] = v, v >>>= 8; }, "wbytes"); var gzh = /* @__PURE__ */ __name(function(c, o) { var fn = o.filename; c[0] = 31, c[1] = 139, c[2] = 8, c[8] = o.level < 2 ? 4 : o.level == 9 ? 2 : 0, c[9] = 3; if (o.mtime != 0) wbytes(c, 4, Math.floor(new Date(o.mtime || Date.now()) / 1e3)); if (fn) { c[3] = 8; for (var i = 0; i <= fn.length; ++i) c[i + 10] = fn.charCodeAt(i); } }, "gzh"); var gzs = /* @__PURE__ */ __name(function(d) { if (d[0] != 31 || d[1] != 139 || d[2] != 8) err(6, "invalid gzip data"); var flg = d[3]; var st = 10; if (flg & 4) st += (d[10] | d[11] << 8) + 2; for (var zs = (flg >> 3 & 1) + (flg >> 4 & 1); zs > 0; zs -= !d[st++]) ; return st + (flg & 2); }, "gzs"); var gzl = /* @__PURE__ */ __name(function(d) { var l = d.length; return (d[l - 4] | d[l - 3] << 8 | d[l - 2] << 16 | d[l - 1] << 24) >>> 0; }, "gzl"); var gzhl = /* @__PURE__ */ __name(function(o) { return 10 + (o.filename ? o.filename.length + 1 : 0); }, "gzhl"); var zlh = /* @__PURE__ */ __name(function(c, o) { var lv = o.level, fl2 = lv == 0 ? 0 : lv < 6 ? 1 : lv == 9 ? 3 : 2; c[0] = 120, c[1] = fl2 << 6 | (o.dictionary && 32); c[1] |= 31 - (c[0] << 8 | c[1]) % 31; if (o.dictionary) { var h = adler(); h.p(o.dictionary); wbytes(c, 2, h.d()); } }, "zlh"); var zls = /* @__PURE__ */ __name(function(d, dict) { if ((d[0] & 15) != 8 || d[0] >> 4 > 7 || (d[0] << 8 | d[1]) % 31) err(6, "invalid zlib data"); if ((d[1] >> 5 & 1) == +!dict) err(6, "invalid zlib data: " + (d[1] & 32 ? "need" : "unexpected") + " dictionary"); return (d[1] >> 3 & 4) + 2; }, "zls"); function StrmOpt(opts, cb) { if (typeof opts == "function") cb = opts, opts = {}; this.ondata = cb; return opts; } __name(StrmOpt, "StrmOpt"); var Deflate = /* @__PURE__ */ function() { function Deflate2(opts, cb) { if (typeof opts == "function") cb = opts, opts = {}; this.ondata = cb; this.o = opts || {}; this.s = { l: 0, i: 32768, w: 32768, z: 32768 }; this.b = new u8(98304); if (this.o.dictionary) { var dict = this.o.dictionary.subarray(-32768); this.b.set(dict, 32768 - dict.length); this.s.i = 32768 - dict.length; } } __name(Deflate2, "Deflate"); Deflate2.prototype.p = function(c, f) { this.ondata(dopt(c, this.o, 0, 0, this.s), f); }; Deflate2.prototype.push = function(chunk, final) { if (!this.ondata) err(5); if (this.s.l) err(4); var endLen = chunk.length + this.s.z; if (endLen > this.b.length) { if (endLen > 2 * this.b.length - 32768) { var newBuf = new u8(endLen & -32768); newBuf.set(this.b.subarray(0, this.s.z)); this.b = newBuf; } var split = this.b.length - this.s.z; this.b.set(chunk.subarray(0, split), this.s.z); this.s.z = this.b.length; this.p(this.b, false); this.b.set(this.b.subarray(-32768)); this.b.set(chunk.subarray(split), 32768); this.s.z = chunk.length - split + 32768; this.s.i = 32766, this.s.w = 32768; } else { this.b.set(chunk, this.s.z); this.s.z += chunk.length; } this.s.l = final & 1; if (this.s.z > this.s.w + 8191 || final) { this.p(this.b, final || false); this.s.w = this.s.i, this.s.i -= 2; } }; Deflate2.prototype.flush = function() { if (!this.ondata) err(5); if (this.s.l) err(4); this.p(this.b, false); this.s.w = this.s.i, this.s.i -= 2; }; return Deflate2; }(); var AsyncDeflate = /* @__PURE__ */ function() { function AsyncDeflate2(opts, cb) { astrmify([ bDflt, function() { return [astrm, Deflate]; } ], this, StrmOpt.call(this, opts, cb), function(ev) { var strm = new Deflate(ev.data); onmessage = astrm(strm); }, 6, 1); } __name(AsyncDeflate2, "AsyncDeflate"); return AsyncDeflate2; }(); function deflate(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != "function") err(7); return cbify(data, opts, [ bDflt ], function(ev) { return pbf(deflateSync(ev.data[0], ev.data[1])); }, 0, cb); } __name(deflate, "deflate"); function deflateSync(data, opts) { return dopt(data, opts || {}, 0, 0); } __name(deflateSync, "deflateSync"); var Inflate = /* @__PURE__ */ function() { function Inflate2(opts, cb) { if (typeof opts == "function") cb = opts, opts = {}; this.ondata = cb; var dict = opts && opts.dictionary && opts.dictionary.subarray(-32768); this.s = { i: 0, b: dict ? dict.length : 0 }; this.o = new u8(32768); this.p = new u8(0); if (dict) this.o.set(dict); } __name(Inflate2, "Inflate"); Inflate2.prototype.e = function(c) { if (!this.ondata) err(5); if (this.d) err(4); if (!this.p.length) this.p = c; else if (c.length) { var n = new u8(this.p.length + c.length); n.set(this.p), n.set(c, this.p.length), this.p = n; } }; Inflate2.prototype.c = function(final) { this.s.i = +(this.d = final || false); var bts = this.s.b; var dt = inflt(this.p, this.s, this.o); this.ondata(slc(dt, bts, this.s.b), this.d); this.o = slc(dt, this.s.b - 32768), this.s.b = this.o.length; this.p = slc(this.p, this.s.p / 8 | 0), this.s.p &= 7; }; Inflate2.prototype.push = function(chunk, final) { this.e(chunk), this.c(final); }; return Inflate2; }(); var AsyncInflate = /* @__PURE__ */ function() { function AsyncInflate2(opts, cb) { astrmify([ bInflt, function() { return [astrm, Inflate]; } ], this, StrmOpt.call(this, opts, cb), function(ev) { var strm = new Inflate(ev.data); onmessage = astrm(strm); }, 7, 0); } __name(AsyncInflate2, "AsyncInflate"); return AsyncInflate2; }(); function inflate(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != "function") err(7); return cbify(data, opts, [ bInflt ], function(ev) { return pbf(inflateSync(ev.data[0], gopt(ev.data[1]))); }, 1, cb); } __name(inflate, "inflate"); function inflateSync(data, opts) { return inflt(data, { i: 2 }, opts && opts.out, opts && opts.dictionary); } __name(inflateSync, "inflateSync"); var Gzip = /* @__PURE__ */ function() { function Gzip2(opts, cb) { this.c = crc(); this.l = 0; this.v = 1; Deflate.call(this, opts, cb); } __name(Gzip2, "Gzip"); Gzip2.prototype.push = function(chunk, final) { this.c.p(chunk); this.l += chunk.length; Deflate.prototype.push.call(this, chunk, final); }; Gzip2.prototype.p = function(c, f) { var raw = dopt(c, this.o, this.v && gzhl(this.o), f && 8, this.s); if (this.v) gzh(raw, this.o), this.v = 0; if (f) wbytes(raw, raw.length - 8, this.c.d()), wbytes(raw, raw.length - 4, this.l); this.ondata(raw, f); }; Gzip2.prototype.flush = function() { Deflate.prototype.flush.call(this); }; return Gzip2; }(); var AsyncGzip = /* @__PURE__ */ function() { function AsyncGzip2(opts, cb) { astrmify([ bDflt, gze, function() { return [astrm, Deflate, Gzip]; } ], this, StrmOpt.call(this, opts, cb), function(ev) { var strm = new Gzip(ev.data); onmessage = astrm(strm); }, 8, 1); } __name(AsyncGzip2, "AsyncGzip"); return AsyncGzip2; }(); function gzip(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != "function") err(7); return cbify(data, opts, [ bDflt, gze, function() { return [gzipSync]; } ], function(ev) { return pbf(gzipSync(ev.data[0], ev.data[1])); }, 2, cb); } __name(gzip, "gzip"); function gzipSync(data, opts) { if (!opts) opts = {}; var c = crc(), l = data.length; c.p(data); var d = dopt(data, opts, gzhl(opts), 8), s = d.length; return gzh(d, opts), wbytes(d, s - 8, c.d()), wbytes(d, s - 4, l), d; } __name(gzipSync, "gzipSync"); var Gunzip = /* @__PURE__ */ function() { function Gunzip2(opts, cb) { this.v = 1; this.r = 0; Inflate.call(this, opts, cb); } __name(Gunzip2, "Gunzip"); Gunzip2.prototype.push = function(chunk, final) { Inflate.prototype.e.call(this, chunk); this.r += chunk.length; if (this.v) { var p = this.p.subarray(this.v - 1); var s = p.length > 3 ? gzs(p) : 4; if (s > p.length) { if (!final) return; } else if (this.v > 1 && this.onmember) { this.onmember(this.r - p.length); } this.p = p.subarray(s), this.v = 0; } Inflate.prototype.c.call(this, final); if (this.s.f && !this.s.l && !final) { this.v = shft(this.s.p) + 9; this.s = { i: 0 }; this.o = new u8(0); this.push(new u8(0), final); } }; return Gunzip2; }(); var AsyncGunzip = /* @__PURE__ */ function() { function AsyncGunzip2(opts, cb) { var _this = this; astrmify([ bInflt, guze, function() { return [astrm, Inflate, Gunzip]; } ], this, StrmOpt.call(this, opts, cb), function(ev) { var strm = new Gunzip(ev.data); strm.onmember = function(offset) { return postMessage(offset); }; onmessage = astrm(strm); }, 9, 0, function(offset) { return _this.onmember && _this.onmember(offset); }); } __name(AsyncGunzip2, "AsyncGunzip"); return AsyncGunzip2; }(); function gunzip(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != "function") err(7); return cbify(data, opts, [ bInflt, guze, function() { return [gunzipSync]; } ], function(ev) { return pbf(gunzipSync(ev.data[0], ev.data[1])); }, 3, cb); } __name(gunzip, "gunzip"); function gunzipSync(data, opts) { var st = gzs(data); if (st + 8 > data.length) err(6, "invalid gzip data"); return inflt(data.subarray(st, -8), { i: 2 }, opts && opts.out || new u8(gzl(data)), opts && opts.dictionary); } __name(gunzipSync, "gunzipSync"); var Zlib = /* @__PURE__ */ function() { function Zlib2(opts, cb) { this.c = adler(); this.v = 1; Deflate.call(this, opts, cb); } __name(Zlib2, "Zlib"); Zlib2.prototype.push = function(chunk, final) { this.c.p(chunk); Deflate.prototype.push.call(this, chunk, final); }; Zlib2.prototype.p = function(c, f) { var raw = dopt(c, this.o, this.v && (this.o.dictionary ? 6 : 2), f && 4, this.s); if (this.v) zlh(raw, this.o), this.v = 0; if (f) wbytes(raw, raw.length - 4, this.c.d()); this.ondata(raw, f); }; Zlib2.prototype.flush = function() { Deflate.prototype.flush.call(this); }; return Zlib2; }(); var AsyncZlib = /* @__PURE__ */ function() { function AsyncZlib2(opts, cb) { astrmify([ bDflt, zle, function() { return [astrm, Deflate, Zlib]; } ], this, StrmOpt.call(this, opts, cb), function(ev) { var strm = new Zlib(ev.data); onmessage = astrm(strm); }, 10, 1); } __name(AsyncZlib2, "AsyncZlib"); return AsyncZlib2; }(); function zlib(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != "function") err(7); return cbify(data, opts, [ bDflt, zle, function() { return [zlibSync]; } ], function(ev) { return pbf(zlibSync(ev.data[0], ev.data[1])); }, 4, cb); } __name(zlib, "zlib"); function zlibSync(data, opts) { if (!opts) opts = {}; var a = adler(); a.p(data); var d = dopt(data, opts, opts.dictionary ? 6 : 2, 4); return zlh(d, opts), wbytes(d, d.length - 4, a.d()), d; } __name(zlibSync, "zlibSync"); var Unzlib = /* @__PURE__ */ function() { function Unzlib2(opts, cb) { Inflate.call(this, opts, cb); this.v = opts && opts.dictionary ? 2 : 1; } __name(Unzlib2, "Unzlib"); Unzlib2.prototype.push = function(chunk, final) { Inflate.prototype.e.call(this, chunk); if (this.v) { if (this.p.length < 6 && !final) return; this.p = this.p.subarray(zls(this.p, this.v - 1)), this.v = 0; } if (final) { if (this.p.length < 4) err(6, "invalid zlib data"); this.p = this.p.subarray(0, -4); } Inflate.prototype.c.call(this, final); }; return Unzlib2; }(); var AsyncUnzlib = /* @__PURE__ */ function() { function AsyncUnzlib2(opts, cb) { astrmify([ bInflt, zule, function() { return [astrm, Inflate, Unzlib]; } ], this, StrmOpt.call(this, opts, cb), function(ev) { var strm = new Unzlib(ev.data); onmessage = astrm(strm); }, 11, 0); } __name(AsyncUnzlib2, "AsyncUnzlib"); return AsyncUnzlib2; }(); function unzlib(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != "function") err(7); return cbify(data, opts, [ bInflt, zule, function() { return [unzlibSync]; } ], function(ev) { return pbf(unzlibSync(ev.data[0], gopt(ev.data[1]))); }, 5, cb); } __name(unzlib, "unzlib"); function unzlibSync(data, opts) { return inflt(data.subarray(zls(data, opts && opts.dictionary), -4), { i: 2 }, opts && opts.out, opts && opts.dictionary); } __name(unzlibSync, "unzlibSync"); var Decompress = /* @__PURE__ */ function() { function Decompress2(opts, cb) { this.o = StrmOpt.call(this, opts, cb) || {}; this.G = Gunzip; this.I = Inflate; this.Z = Unzlib; } __name(Decompress2, "Decompress"); Decompress2.prototype.i = function() { var _this = this; this.s.ondata = function(dat, final) { _this.ondata(dat, final); }; }; Decompress2.prototype.push = function(chunk, final) { if (!this.ondata) err(5); if (!this.s) { if (this.p && this.p.length) { var n = new u8(this.p.length + chunk.length); n.set(this.p), n.set(chunk, this.p.length); } else this.p = chunk; if (this.p.length > 2) { this.s = this.p[0] == 31 && this.p[1] == 139 && this.p[2] == 8 ? new this.G(this.o) : (this.p[0] & 15) != 8 || this.p[0] >> 4 > 7 || (this.p[0] << 8 | this.p[1]) % 31 ? new this.I(this.o) : new this.Z(this.o); this.i(); this.s.push(this.p, final); this.p = null; } } else this.s.push(chunk, final); }; return Decompress2; }(); var AsyncDecompress = /* @__PURE__ */ function() { function AsyncDecompress2(opts, cb) { Decompress.call(this, opts, cb); this.queuedSize = 0; this.G = AsyncGunzip; this.I = AsyncInflate; this.Z = AsyncUnzlib; } __name(AsyncDecompress2, "AsyncDecompress"); AsyncDecompress2.prototype.i = function() { var _this = this; this.s.ondata = function(err2, dat, final) { _this.ondata(err2, dat, final); }; this.s.ondrain = function(size) { _this.queuedSize -= size; if (_this.ondrain) _this.ondrain(size); }; }; AsyncDecompress2.prototype.push = function(chunk, final) { this.queuedSize += chunk.length; Decompress.prototype.push.call(this, chunk, final); }; return AsyncDecompress2; }(); function decompress(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != "function") err(7); return data[0] == 31 && data[1] == 139 && data[2] == 8 ? gunzip(data, opts, cb) : (data[0] & 15) != 8 || data[0] >> 4 > 7 || (data[0] << 8 | data[1]) % 31 ? inflate(data, opts, cb) : unzlib(data, opts, cb); } __name(decompress, "decompress"); function decompressSync(data, opts) { return data[0] == 31 && data[1] == 139 && data[2] == 8 ? gunzipSync(data, opts) : (data[0] & 15) != 8 || data[0] >> 4 > 7 || (data[0] << 8 | data[1]) % 31 ? inflateSync(data, opts) : unzlibSync(data, opts); } __name(decompressSync, "decompressSync"); var fltn = /* @__PURE__ */ __name(function(d, p, t, o) { for (var k in d) { var val = d[k], n = p + k, op = o; if (Array.isArray(val)) op = mrg(o, val[1]), val = val[0]; if (val instanceof u8) t[n] = [val, op]; else { t[n += "/"] = [new u8(0), op]; fltn(val, n, t, o); } } }, "fltn"); var te = typeof TextEncoder != "undefined" && /* @__PURE__ */ new TextEncoder(); var td = typeof TextDecoder != "undefined" && /* @__PURE__ */ new TextDecoder(); var tds = 0; try { td.decode(et, { stream: true }); tds = 1; } catch (e) { } var dutf8 = /* @__PURE__ */ __name(function(d) { for (var r = "", i = 0; ; ) { var c = d[i++]; var eb = (c > 127) + (c > 223) + (c > 239); if (i + eb > d.length) return { s: r, r: slc(d, i - 1) }; if (!eb) r += String.fromCharCode(c); else if (eb == 3) { c = ((c & 15) << 18 | (d[i++] & 63) << 12 | (d[i++] & 63) << 6 | d[i++] & 63) - 65536, r += String.fromCharCode(55296 | c >> 10, 56320 | c & 1023); } else if (eb & 1) r += String.fromCharCode((c & 31) << 6 | d[i++] & 63); else r += String.fromCharCode((c & 15) << 12 | (d[i++] & 63) << 6 | d[i++] & 63); } }, "dutf8"); var DecodeUTF8 = /* @__PURE__ */ function() { function DecodeUTF82(cb) { this.ondata = cb; if (tds) this.t = new TextDecoder(); else this.p = et; } __name(DecodeUTF82, "DecodeUTF8"); DecodeUTF82.prototype.push = function(chunk, final) { if (!this.ondata) err(5); final = !!final; if (this.t) { this.ondata(this.t.decode(chunk, { stream: true }), final); if (final) { if (this.t.decode().length) err(8); this.t = null; } return; } if (!this.p) err(4); var dat = new u8(this.p.length + chunk.length); dat.set(this.p); dat.set(chunk, this.p.length); var _a2 = dutf8(dat), s = _a2.s, r = _a2.r; if (final) { if (r.length) err(8); this.p = null; } else this.p = r; this.ondata(s, final); }; return DecodeUTF82; }(); var EncodeUTF8 = /* @__PURE__ */ function() { function EncodeUTF82(cb) { this.ondata = cb; } __name(EncodeUTF82, "EncodeUTF8"); EncodeUTF82.prototype.push = function(chunk, final) { if (!this.ondata) err(5); if (this.d) err(4); this.ondata(strToU8(chunk), this.d = final || false); }; return EncodeUTF82; }(); function strToU8(str, latin1) { if (latin1) { var ar_1 = new u8(str.length); for (var i = 0; i < str.length; ++i) ar_1[i] = str.charCodeAt(i); return ar_1; } if (te) return te.encode(str); var l = str.length; var ar = new u8(str.length + (str.length >> 1)); var ai = 0; var w = /* @__PURE__ */ __name(function(v) { ar[ai++] = v; }, "w"); for (var i = 0; i < l; ++i) { if (ai + 5 > ar.length) { var n = new u8(ai + 8 + (l - i << 1)); n.set(ar); ar = n; } var c = str.charCodeAt(i); if (c < 128 || latin1) w(c); else if (c < 2048) w(192 | c >> 6), w(128 | c & 63); else if (c > 55295 && c < 57344) c = 65536 + (c & 1023 << 10) | str.charCodeAt(++i) & 1023, w(240 | c >> 18), w(128 | c >> 12 & 63), w(128 | c >> 6 & 63), w(128 | c & 63); else w(224 | c >> 12), w(128 | c >> 6 & 63), w(128 | c & 63); } return slc(ar, 0, ai); } __name(strToU8, "strToU8"); function strFromU8(dat, latin1) { if (latin1) { var r = ""; for (var i = 0; i < dat.length; i += 16384) r += String.fromCharCode.apply(null, dat.subarray(i, i + 16384)); return r; } else if (td) { return td.decode(dat); } else { var _a2 = dutf8(dat), s = _a2.s, r = _a2.r; if (r.length) err(8); return s; } } __name(strFromU8, "strFromU8"); ; var dbf = /* @__PURE__ */ __name(function(l) { return l == 1 ? 3 : l < 6 ? 2 : l == 9 ? 1 : 0; }, "dbf"); var slzh = /* @__PURE__ */ __name(function(d, b) { return b + 30 + b2(d, b + 26) + b2(d, b + 28); }, "slzh"); var zh = /* @__PURE__ */ __name(function(d, b, z) { var fnl = b2(d, b + 28), fn = strFromU8(d.subarray(b + 46, b + 46 + fnl), !(b2(d, b + 8) & 2048)), es = b + 46 + fnl, bs = b4(d, b + 20); var _a2 = z && bs == 4294967295 ? z64e(d, es) : [bs, b4(d, b + 24), b4(d, b + 42)], sc = _a2[0], su = _a2[1], off = _a2[2]; return [b2(d, b + 10), sc, su, fn, es + b2(d, b + 30) + b2(d, b + 32), off]; }, "zh"); var z64e = /* @__PURE__ */ __name(function(d, b) { for (; b2(d, b) != 1; b += 4 + b2(d, b + 2)) ; return [b8(d, b + 12), b8(d, b + 4), b8(d, b + 20)]; }, "z64e"); var exfl = /* @__PURE__ */ __name(function(ex) { var le = 0; if (ex) { for (var k in ex) { var l = ex[k].length; if (l > 65535) err(9); le += l + 4; } } return le; }, "exfl"); var wzh = /* @__PURE__ */ __name(function(d, b, f, fn, u, c, ce, co) { var fl2 = fn.length, ex = f.extra, col = co && co.length; var exl = exfl(ex); wbytes(d, b, ce != null ? 33639248 : 67324752), b += 4; if (ce != null) d[b++] = 20, d[b++] = f.os; d[b] = 20, b += 2; d[b++] = f.flag << 1 | (c < 0 && 8), d[b++] = u && 8; d[b++] = f.compression & 255, d[b++] = f.compression >> 8; var dt = new Date(f.mtime == null ? Date.now() : f.mtime), y = dt.getFullYear() - 1980; if (y < 0 || y > 119) err(10); wbytes(d, b, y << 25 | dt.getMonth() + 1 << 21 | dt.getDate() << 16 | dt.getHours() << 11 | dt.getMinutes() << 5 | dt.getSeconds() >> 1), b += 4; if (c != -1) { wbytes(d, b, f.crc); wbytes(d, b + 4, c < 0 ? -c - 2 : c); wbytes(d, b + 8, f.size); } wbytes(d, b + 12, fl2); wbytes(d, b + 14, exl), b += 16; if (ce != null) { wbytes(d, b, col); wbytes(d, b + 6, f.attrs); wbytes(d, b + 10, ce), b += 14; } d.set(fn, b); b += fl2; if (exl) { for (var k in ex) { var exf = ex[k], l = exf.length; wbytes(d, b, +k); wbytes(d, b + 2, l); d.set(exf, b + 4), b += 4 + l; } } if (col) d.set(co, b), b += col; return b; }, "wzh"); var wzf = /* @__PURE__ */ __name(function(o, b, c, d, e) { wbytes(o, b, 101010256); wbytes(o, b + 8, c); wbytes(o, b + 10, c); wbytes(o, b + 12, d); wbytes(o, b + 16, e); }, "wzf"); var ZipPassThrough = /* @__PURE__ */ function() { function ZipPassThrough2(filename) { this.filename = filename; this.c = crc(); this.size = 0; this.compression = 0; } __name(ZipPassThrough2, "ZipPassThrough"); ZipPassThrough2.prototype.process = function(chunk, final) { this.ondata(null, chunk, final); }; ZipPassThrough2.prototype.push = function(chunk, final) { if (!this.ondata) err(5); this.c.p(chunk); this.size += chunk.length; if (final) this.crc = this.c.d(); this.process(chunk, final || false); }; return ZipPassThrough2; }(); var ZipDeflate = /* @__PURE__ */ function() { function ZipDeflate2(filename, opts) { var _this = this; if (!opts) opts = {}; ZipPassThrough.call(this, filename); this.d = new Deflate(opts, function(dat, final) { _this.ondata(null, dat, final); }); this.compression = 8; this.flag = dbf(opts.level); } __name(ZipDeflate2, "ZipDeflate"); ZipDeflate2.prototype.process = function(chunk, final) { try { this.d.push(chunk, final); } catch (e) { this.ondata(e, null, final); } }; ZipDeflate2.prototype.push = function(chunk, final) { ZipPassThrough.prototype.push.call(this, chunk, final); }; return ZipDeflate2; }(); var AsyncZipDeflate = /* @__PURE__ */ function() { function AsyncZipDeflate2(filename, opts) { var _this = this; if (!opts) opts = {}; ZipPassThrough.call(this, filename); this.d = new AsyncDeflate(opts, function(err2, dat, final) { _this.ondata(err2, dat, final); }); this.compression = 8; this.flag = dbf(opts.level); this.terminate = this.d.terminate; } __name(AsyncZipDeflate2, "AsyncZipDeflate"); AsyncZipDeflate2.prototype.process = function(chunk, final) { this.d.push(chunk, final); }; AsyncZipDeflate2.prototype.push = function(chunk, final) { ZipPassThrough.prototype.push.call(this, chunk, final); }; return AsyncZipDeflate2; }(); var Zip = /* @__PURE__ */ function() { function Zip2(cb) { this.ondata = cb; this.u = []; this.d = 1; } __name(Zip2, "Zip"); Zip2.prototype.add = function(file2) { var _this = this; if (!this.ondata) err(5); if (this.d & 2) this.ondata(err(4 + (this.d & 1) * 8, 0, 1), null, false); else { var f = strToU8(file2.filename), fl_1 = f.length; var com = file2.comment, o = com && strToU8(com); var u = fl_1 != file2.filename.length || o && com.length != o.length; var hl_1 = fl_1 + exfl(file2.extra) + 30; if (fl_1 > 65535) this.ondata(err(11, 0, 1), null, false); var header = new u8(hl_1); wzh(header, 0, file2, f, u, -1); var chks_1 = [header]; var pAll_1 = /* @__PURE__ */ __name(function() { for (var _i = 0, chks_2 = chks_1; _i < chks_2.length; _i++) { var chk = chks_2[_i]; _this.ondata(null, chk, false); } chks_1 = []; }, "pAll_1"); var tr_1 = this.d; this.d = 0; var ind_1 = this.u.length; var uf_1 = mrg(file2, { f, u, o, t: /* @__PURE__ */ __name(function() { if (file2.terminate) file2.terminate(); }, "t"), r: /* @__PURE__ */ __name(function() { pAll_1(); if (tr_1) { var nxt = _this.u[ind_1 + 1]; if (nxt) nxt.r(); else _this.d = 1; } tr_1 = 1; }, "r") }); var cl_1 = 0; file2.ondata = function(err2, dat, final) { if (err2) { _this.ondata(err2, dat, final); _this.terminate(); } else { cl_1 += dat.length; chks_1.push(dat); if (final) { var dd = new u8(16); wbytes(dd, 0, 134695760); wbytes(dd, 4, file2.crc); wbytes(dd, 8, cl_1); wbytes(dd, 12, file2.size); chks_1.push(dd); uf_1.c = cl_1, uf_1.b = hl_1 + cl_1 + 16, uf_1.crc = file2.crc, uf_1.size = file2.size; if (tr_1) uf_1.r(); tr_1 = 1; } else if (tr_1) pAll_1(); } }; this.u.push(uf_1); } }; Zip2.prototype.end = function() { var _this = this; if (this.d & 2) { this.ondata(err(4 + (this.d & 1) * 8, 0, 1), null, true); return; } if (this.d) this.e(); else this.u.push({ r: /* @__PURE__ */ __name(function() { if (!(_this.d & 1)) return; _this.u.splice(-1, 1); _this.e(); }, "r"), t: /* @__PURE__ */ __name(function() { }, "t") }); this.d = 3; }; Zip2.prototype.e = function() { var bt = 0, l = 0, tl = 0; for (var _i = 0, _a2 = this.u; _i < _a2.length; _i++) { var f = _a2[_i]; tl += 46 + f.f.length + exfl(f.extra) + (f.o ? f.o.length : 0); } var out = new u8(tl + 22); for (var _b2 = 0, _c = this.u; _b2 < _c.length; _b2++) { var f = _c[_b2]; wzh(out, bt, f, f.f, f.u, -f.c - 2, l, f.o); bt += 46 + f.f.length + exfl(f.extra) + (f.o ? f.o.length : 0), l += f.b; } wzf(out, bt, this.u.length, tl, l); this.ondata(null, out, true); this.d = 2; }; Zip2.prototype.terminate = function() { for (var _i = 0, _a2 = this.u; _i < _a2.length; _i++) { var f = _a2[_i]; f.t(); } this.d = 2; }; return Zip2; }(); function zip(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != "function") err(7); var r = {}; fltn(data, "", r, opts); var k = Object.keys(r); var lft = k.length, o = 0, tot = 0; var slft = lft, files = new Array(lft); var term = []; var tAll = /* @__PURE__ */ __name(function() { for (var i2 = 0; i2 < term.length; ++i2) term[i2](); }, "tAll"); var cbd = /* @__PURE__ */ __name(function(a, b) { mt(function() { cb(a, b); }); }, "cbd"); mt(function() { cbd = cb; }); var cbf = /* @__PURE__ */ __name(function() { var out = new u8(tot + 22), oe = o, cdl = tot - o; tot = 0; for (var i2 = 0; i2 < slft; ++i2) { var f = files[i2]; try { var l = f.c.length; wzh(out, tot, f, f.f, f.u, l); var badd = 30 + f.f.length + exfl(f.extra); var loc = tot + badd; out.set(f.c, loc); wzh(out, o, f, f.f, f.u, l, tot, f.m), o += 16 + badd + (f.m ? f.m.length : 0), tot = loc + l; } catch (e) { return cbd(e, null); } } wzf(out, o, files.length, cdl, oe); cbd(null, out); }, "cbf"); if (!lft) cbf(); var _loop_1 = /* @__PURE__ */ __name(function(i2) { var fn = k[i2]; var _a2 = r[fn], file2 = _a2[0], p = _a2[1]; var c = crc(), size = file2.length; c.p(file2); var f = strToU8(fn), s = f.length; var com = p.comment, m = com && strToU8(com), ms = m && m.length; var exl = exfl(p.extra); var compression = p.level == 0 ? 0 : 8; var cbl = /* @__PURE__ */ __name(function(e, d) { if (e) { tAll(); cbd(e, null); } else { var l = d.length; files[i2] = mrg(p, { size, crc: c.d(), c: d, f, m, u: s != fn.length || m && com.length != ms, compression }); o += 30 + s + exl + l; tot += 76 + 2 * (s + exl) + (ms || 0) + l; if (!--lft) cbf(); } }, "cbl"); if (s > 65535) cbl(err(11, 0, 1), null); if (!compression) cbl(null, file2); else if (size < 16e4) { try { cbl(null, deflateSync(file2, p)); } catch (e) { cbl(e, null); } } else term.push(deflate(file2, p, cbl)); }, "_loop_1"); for (var i = 0; i < slft; ++i) { _loop_1(i); } return tAll; } __name(zip, "zip"); function zipSync(data, opts) { if (!opts) opts = {}; var r = {}; var files = []; fltn(data, "", r, opts); var o = 0; var tot = 0; for (var fn in r) { var _a2 = r[fn], file2 = _a2[0], p = _a2[1]; var compression = p.level == 0 ? 0 : 8; var f = strToU8(fn), s = f.length; var com = p.comment, m = com && strToU8(com), ms = m && m.length; var exl = exfl(p.extra); if (s > 65535) err(11); var d = compression ? deflateSync(file2, p) : file2, l = d.length; var c = crc(); c.p(file2); files.push(mrg(p, { size: file2.length, crc: c.d(), c: d, f, m, u: s != fn.length || m && com.length != ms, o, compression })); o += 30 + s + exl + l; tot += 76 + 2 * (s + exl) + (ms || 0) + l; } var out = new u8(tot + 22), oe = o, cdl = tot - o; for (var i = 0; i < files.length; ++i) { var f = files[i]; wzh(out, f.o, f, f.f, f.u, f.c.length); var badd = 30 + f.f.length + exfl(f.extra); out.set(f.c, f.o + badd); wzh(out, o, f, f.f, f.u, f.c.length, f.o, f.m), o += 16 + badd + (f.m ? f.m.length : 0); } wzf(out, o, files.length, cdl, oe); return out; } __name(zipSync, "zipSync"); var UnzipPassThrough = /* @__PURE__ */ function() { function UnzipPassThrough2() { } __name(UnzipPassThrough2, "UnzipPassThrough"); UnzipPassThrough2.prototype.push = function(data, final) { this.ondata(null, data, final); }; UnzipPassThrough2.compression = 0; return UnzipPassThrough2; }(); var UnzipInflate = /* @__PURE__ */ function() { function UnzipInflate2() { var _this = this; this.i = new Inflate(function(dat, final) { _this.ondata(null, dat, final); }); } __name(UnzipInflate2, "UnzipInflate"); UnzipInflate2.prototype.push = function(data, final) { try { this.i.push(data, final); } catch (e) { this.ondata(e, null, final); } }; UnzipInflate2.compression = 8; return UnzipInflate2; }(); var AsyncUnzipInflate = /* @__PURE__ */ function() { function AsyncUnzipInflate2(_, sz) { var _this = this; if (sz < 32e4) { this.i = new Inflate(function(dat, final) { _this.ondata(null, dat, final); }); } else { this.i = new AsyncInflate(function(err2, dat, final) { _this.ondata(err2, dat, final); }); this.terminate = this.i.terminate; } } __name(AsyncUnzipInflate2, "AsyncUnzipInflate"); AsyncUnzipInflate2.prototype.push = function(data, final) { if (this.i.terminate) data = slc(data, 0); this.i.push(data, final); }; AsyncUnzipInflate2.compression = 8; return AsyncUnzipInflate2; }(); var Unzip = /* @__PURE__ */ function() { function Unzip2(cb) { this.onfile = cb; this.k = []; this.o = { 0: UnzipPassThrough }; this.p = et; } __name(Unzip2, "Unzip"); Unzip2.prototype.push = function(chunk, final) { var _this = this; if (!this.onfile) err(5); if (!this.p) err(4); if (this.c > 0) { var len = Math.min(this.c, chunk.length); var toAdd = chunk.subarray(0, len); this.c -= len; if (this.d) this.d.push(toAdd, !this.c); else this.k[0].push(toAdd); chunk = chunk.subarray(len); if (chunk.length) return this.push(chunk, final); } else { var f = 0, i = 0, is = void 0, buf = void 0; if (!this.p.length) buf = chunk; else if (!chunk.length) buf = this.p; else { buf = new u8(this.p.length + chunk.length); buf.set(this.p), buf.set(chunk, this.p.length); } var l = buf.length, oc = this.c, add = oc && this.d; var _loop_2 = /* @__PURE__ */ __name(function() { var _a2; var sig = b4(buf, i); if (sig == 67324752) { f = 1, is = i; this_1.d = null; this_1.c = 0; var bf = b2(buf, i + 6), cmp_1 = b2(buf, i + 8), u = bf & 2048, dd = bf & 8, fnl = b2(buf, i + 26), es = b2(buf, i + 28); if (l > i + 30 + fnl + es) { var chks_3 = []; this_1.k.unshift(chks_3); f = 2; var sc_1 = b4(buf, i + 18), su_1 = b4(buf, i + 22); var fn_1 = strFromU8(buf.subarray(i + 30, i += 30 + fnl), !u); if (sc_1 == 4294967295) { _a2 = dd ? [-2] : z64e(buf, i), sc_1 = _a2[0], su_1 = _a2[1]; } else if (dd) sc_1 = -1; i += es; this_1.c = sc_1; var d_1; var file_1 = { name: fn_1, compression: cmp_1, start: /* @__PURE__ */ __name(function() { if (!file_1.ondata) err(5); if (!sc_1) file_1.ondata(null, et, true); else { var ctr = _this.o[cmp_1]; if (!ctr) file_1.ondata(err(14, "unknown compression type " + cmp_1, 1), null, false); d_1 = sc_1 < 0 ? new ctr(fn_1) : new ctr(fn_1, sc_1, su_1); d_1.ondata = function(err2, dat3, final2) { file_1.ondata(err2, dat3, final2); }; for (var _i = 0, chks_4 = chks_3; _i < chks_4.length; _i++) { var dat2 = chks_4[_i]; d_1.push(dat2, false); } if (_this.k[0] == chks_3 && _this.c) _this.d = d_1; else d_1.push(et, true); } }, "start"), terminate: /* @__PURE__ */ __name(function() { if (d_1 && d_1.terminate) d_1.terminate(); }, "terminate") }; if (sc_1 >= 0) file_1.size = sc_1, file_1.originalSize = su_1; this_1.onfile(file_1); } return "break"; } else if (oc) { if (sig == 134695760) { is = i += 12 + (oc == -2 && 8), f = 3, this_1.c = 0; return "break"; } else if (sig == 33639248) { is = i -= 4, f = 3, this_1.c = 0; return "break"; } } }, "_loop_2"); var this_1 = this; for (; i < l - 4; ++i) { var state_1 = _loop_2(); if (state_1 === "break") break; } this.p = et; if (oc < 0) { var dat = f ? buf.subarray(0, is - 12 - (oc == -2 && 8) - (b4(buf, is - 16) == 134695760 && 4)) : buf.subarray(0, i); if (add) add.push(dat, !!f); else this.k[+(f == 2)].push(dat); } if (f & 2) return this.push(buf.subarray(i), final); this.p = buf.subarray(i); } if (final) { if (this.c) err(13); this.p = null; } }; Unzip2.prototype.register = function(decoder) { this.o[decoder.compression] = decoder; }; return Unzip2; }(); var mt = typeof queueMicrotask == "function" ? queueMicrotask : typeof setTimeout == "function" ? setTimeout : function(fn) { fn(); }; function unzip(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != "function") err(7); var term = []; var tAll = /* @__PURE__ */ __name(function() { for (var i2 = 0; i2 < term.length; ++i2) term[i2](); }, "tAll"); var files = {}; var cbd = /* @__PURE__ */ __name(function(a, b) { mt(function() { cb(a, b); }); }, "cbd"); mt(function() { cbd = cb; }); var e = data.length - 22; for (; b4(data, e) != 101010256; --e) { if (!e || data.length - e > 65558) { cbd(err(13, 0, 1), null); return tAll; } } ; var lft = b2(data, e + 8); if (lft) { var c = lft; var o = b4(data, e + 16); var z = o == 4294967295 || c == 65535; if (z) { var ze = b4(data, e - 12); z = b4(data, ze) == 101075792; if (z) { c = lft = b4(data, ze + 32); o = b4(data, ze + 48); } } var fltr = opts && opts.filter; var _loop_3 = /* @__PURE__ */ __name(function(i2) { var _a2 = zh(data, o, z), c_1 = _a2[0], sc = _a2[1], su = _a2[2], fn = _a2[3], no = _a2[4], off = _a2[5], b = slzh(data, off); o = no; var cbl = /* @__PURE__ */ __name(function(e2, d) { if (e2) { tAll(); cbd(e2, null); } else { if (d) files[fn] = d; if (!--lft) cbd(null, files); } }, "cbl"); if (!fltr || fltr({ name: fn, size: sc, originalSize: su, compression: c_1 })) { if (!c_1) cbl(null, slc(data, b, b + sc)); else if (c_1 == 8) { var infl = data.subarray(b, b + sc); if (su < 524288 || sc > 0.8 * su) { try { cbl(null, inflateSync(infl, { out: new u8(su) })); } catch (e2) { cbl(e2, null); } } else term.push(inflate(infl, { size: su }, cbl)); } else cbl(err(14, "unknown compression type " + c_1, 1), null); } else cbl(null, null); }, "_loop_3"); for (var i = 0; i < c; ++i) { _loop_3(i); } } else cbd(null, {}); return tAll; } __name(unzip, "unzip"); function unzipSync(data, opts) { var files = {}; var e = data.length - 22; for (; b4(data, e) != 101010256; --e) { if (!e || data.length - e > 65558) err(13); } ; var c = b2(data, e + 8); if (!c) return {}; var o = b4(data, e + 16); var z = o == 4294967295 || c == 65535; if (z) { var ze = b4(data, e - 12); z = b4(data, ze) == 101075792; if (z) { c = b4(data, ze + 32); o = b4(data, ze + 48); } } var fltr = opts && opts.filter; for (var i = 0; i < c; ++i) { var _a2 = zh(data, o, z), c_2 = _a2[0], sc = _a2[1], su = _a2[2], fn = _a2[3], no = _a2[4], off = _a2[5], b = slzh(data, off); o = no; if (!fltr || fltr({ name: fn, size: sc, originalSize: su, compression: c_2 })) { if (!c_2) files[fn] = slc(data, b, b + sc); else if (c_2 == 8) files[fn] = inflateSync(data.subarray(b, b + sc), { out: new u8(su) }); else err(14, "unknown compression type " + c_2); } } return files; } __name(unzipSync, "unzipSync"); function findSpan(p, u, U) { const n = U.length - p - 1; if (u >= U[n]) { return n - 1; } if (u <= U[p]) { return p; } let low = p; let high = n; let mid = Math.floor((low + high) / 2); while (u < U[mid] || u >= U[mid + 1]) { if (u < U[mid]) { high = mid; } else { low = mid; } mid = Math.floor((low + high) / 2); } return mid; } __name(findSpan, "findSpan"); function calcBasisFunctions(span, u, p, U) { const N = []; const left = []; const right = []; N[0] = 1; for (let j = 1; j <= p; ++j) { left[j] = u - U[span + 1 - j]; right[j] = U[span + j] - u; let saved = 0; for (let r = 0; r < j; ++r) { const rv = right[r + 1]; const lv = left[j - r]; const temp = N[r] / (rv + lv); N[r] = saved + rv * temp; saved = lv * temp; } N[j] = saved; } return N; } __name(calcBasisFunctions, "calcBasisFunctions"); function calcBSplinePoint(p, U, P, u) { const span = findSpan(p, u, U); const N = calcBasisFunctions(span, u, p, U); const C = new Vector4(0, 0, 0, 0); for (let j = 0; j <= p; ++j) { const point = P[span - p + j]; const Nj = N[j]; const wNj = point.w * Nj; C.x += point.x * wNj; C.y += point.y * wNj; C.z += point.z * wNj; C.w += point.w * Nj; } return C; } __name(calcBSplinePoint, "calcBSplinePoint"); function calcBasisFunctionDerivatives(span, u, p, n, U) { const zeroArr = []; for (let i = 0; i <= p; ++i) zeroArr[i] = 0; const ders = []; for (let i = 0; i <= n; ++i) ders[i] = zeroArr.slice(0); const ndu = []; for (let i = 0; i <= p; ++i) ndu[i] = zeroArr.slice(0); ndu[0][0] = 1; const left = zeroArr.slice(0); const right = zeroArr.slice(0); for (let j = 1; j <= p; ++j) { left[j] = u - U[span + 1 - j]; right[j] = U[span + j] - u; let saved = 0; for (let r2 = 0; r2 < j; ++r2) { const rv = right[r2 + 1]; const lv = left[j - r2]; ndu[j][r2] = rv + lv; const temp = ndu[r2][j - 1] / ndu[j][r2]; ndu[r2][j] = saved + rv * temp; saved = lv * temp; } ndu[j][j] = saved; } for (let j = 0; j <= p; ++j) { ders[0][j] = ndu[j][p]; } for (let r2 = 0; r2 <= p; ++r2) { let s1 = 0; let s2 = 1; const a = []; for (let i = 0; i <= p; ++i) { a[i] = zeroArr.slice(0); } a[0][0] = 1; for (let k = 1; k <= n; ++k) { let d = 0; const rk = r2 - k; const pk = p - k; if (r2 >= k) { a[s2][0] = a[s1][0] / ndu[pk + 1][rk]; d = a[s2][0] * ndu[rk][pk]; } const j1 = rk >= -1 ? 1 : -rk; const j2 = r2 - 1 <= pk ? k - 1 : p - r2; for (let j3 = j1; j3 <= j2; ++j3) { a[s2][j3] = (a[s1][j3] - a[s1][j3 - 1]) / ndu[pk + 1][rk + j3]; d += a[s2][j3] * ndu[rk + j3][pk]; } if (r2 <= pk) { a[s2][k] = -a[s1][k - 1] / ndu[pk + 1][r2]; d += a[s2][k] * ndu[r2][pk]; } ders[k][r2] = d; const j = s1; s1 = s2; s2 = j; } } let r = p; for (let k = 1; k <= n; ++k) { for (let j = 0; j <= p; ++j) { ders[k][j] *= r; } r *= p - k; } return ders; } __name(calcBasisFunctionDerivatives, "calcBasisFunctionDerivatives"); function calcBSplineDerivatives(p, U, P, u, nd) { const du = nd < p ? nd : p; const CK = []; const span = findSpan(p, u, U); const nders = calcBasisFunctionDerivatives(span, u, p, du, U); const Pw = []; for (let i = 0; i < P.length; ++i) { const point = P[i].clone(); const w = point.w; point.x *= w; point.y *= w; point.z *= w; Pw[i] = point; } for (let k = 0; k <= du; ++k) { const point = Pw[span - p].clone().multiplyScalar(nders[k][0]); for (let j = 1; j <= p; ++j) { point.add(Pw[span - p + j].clone().multiplyScalar(nders[k][j])); } CK[k] = point; } for (let k = du + 1; k <= nd + 1; ++k) { CK[k] = new Vector4(0, 0, 0); } return CK; } __name(calcBSplineDerivatives, "calcBSplineDerivatives"); function calcKoverI(k, i) { let nom = 1; for (let j = 2; j <= k; ++j) { nom *= j; } let denom = 1; for (let j = 2; j <= i; ++j) { denom *= j; } for (let j = 2; j <= k - i; ++j) { denom *= j; } return nom / denom; } __name(calcKoverI, "calcKoverI"); function calcRationalCurveDerivatives(Pders) { const nd = Pders.length; const Aders = []; const wders = []; for (let i = 0; i < nd; ++i) { const point = Pders[i]; Aders[i] = new Vector3(point.x, point.y, point.z); wders[i] = point.w; } const CK = []; for (let k = 0; k < nd; ++k) { const v = Aders[k].clone(); for (let i = 1; i <= k; ++i) { v.sub(CK[k - i].clone().multiplyScalar(calcKoverI(k, i) * wders[i])); } CK[k] = v.divideScalar(wders[0]); } return CK; } __name(calcRationalCurveDerivatives, "calcRationalCurveDerivatives"); function calcNURBSDerivatives(p, U, P, u, nd) { const Pders = calcBSplineDerivatives(p, U, P, u, nd); return calcRationalCurveDerivatives(Pders); } __name(calcNURBSDerivatives, "calcNURBSDerivatives"); function calcSurfacePoint(p, q, U, V, P, u, v, target) { const uspan = findSpan(p, u, U); const vspan = findSpan(q, v, V); const Nu = calcBasisFunctions(uspan, u, p, U); const Nv = calcBasisFunctions(vspan, v, q, V); const temp = []; for (let l = 0; l <= q; ++l) { temp[l] = new Vector4(0, 0, 0, 0); for (let k = 0; k <= p; ++k) { const point = P[uspan - p + k][vspan - q + l].clone(); const w = point.w; point.x *= w; point.y *= w; point.z *= w; temp[l].add(point.multiplyScalar(Nu[k])); } } const Sw = new Vector4(0, 0, 0, 0); for (let l = 0; l <= q; ++l) { Sw.add(temp[l].multiplyScalar(Nv[l])); } Sw.divideScalar(Sw.w); target.set(Sw.x, Sw.y, Sw.z); } __name(calcSurfacePoint, "calcSurfacePoint"); function calcVolumePoint(p, q, r, U, V, W, P, u, v, w, target) { const uspan = findSpan(p, u, U); const vspan = findSpan(q, v, V); const wspan = findSpan(r, w, W); const Nu = calcBasisFunctions(uspan, u, p, U); const Nv = calcBasisFunctions(vspan, v, q, V); const Nw = calcBasisFunctions(wspan, w, r, W); const temp = []; for (let m = 0; m <= r; ++m) { temp[m] = []; for (let l = 0; l <= q; ++l) { temp[m][l] = new Vector4(0, 0, 0, 0); for (let k = 0; k <= p; ++k) { const point = P[uspan - p + k][vspan - q + l][wspan - r + m].clone(); const w2 = point.w; point.x *= w2; point.y *= w2; point.z *= w2; temp[m][l].add(point.multiplyScalar(Nu[k])); } } } const Sw = new Vector4(0, 0, 0, 0); for (let m = 0; m <= r; ++m) { for (let l = 0; l <= q; ++l) { Sw.add(temp[m][l].multiplyScalar(Nw[m]).multiplyScalar(Nv[l])); } } Sw.divideScalar(Sw.w); target.set(Sw.x, Sw.y, Sw.z); } __name(calcVolumePoint, "calcVolumePoint"); class NURBSCurve extends Curve { static { __name(this, "NURBSCurve"); } constructor(degree, knots, controlPoints, startKnot, endKnot) { super(); const knotsLength = knots ? knots.length - 1 : 0; const pointsLength = controlPoints ? controlPoints.length : 0; this.degree = degree; this.knots = knots; this.controlPoints = []; this.startKnot = startKnot || 0; this.endKnot = endKnot || knotsLength; for (let i = 0; i < pointsLength; ++i) { const point = controlPoints[i]; this.controlPoints[i] = new Vector4(point.x, point.y, point.z, point.w); } } getPoint(t, optionalTarget = new Vector3()) { const point = optionalTarget; const u = this.knots[this.startKnot] + t * (this.knots[this.endKnot] - this.knots[this.startKnot]); const hpoint = calcBSplinePoint(this.degree, this.knots, this.controlPoints, u); if (hpoint.w !== 1) { hpoint.divideScalar(hpoint.w); } return point.set(hpoint.x, hpoint.y, hpoint.z); } getTangent(t, optionalTarget = new Vector3()) { const tangent = optionalTarget; const u = this.knots[0] + t * (this.knots[this.knots.length - 1] - this.knots[0]); const ders = calcNURBSDerivatives(this.degree, this.knots, this.controlPoints, u, 1); tangent.copy(ders[1]).normalize(); return tangent; } toJSON() { const data = super.toJSON(); data.degree = this.degree; data.knots = [...this.knots]; data.controlPoints = this.controlPoints.map((p) => p.toArray()); data.startKnot = this.startKnot; data.endKnot = this.endKnot; return data; } fromJSON(json) { super.fromJSON(json); this.degree = json.degree; this.knots = [...json.knots]; this.controlPoints = json.controlPoints.map((p) => new Vector4(p[0], p[1], p[2], p[3])); this.startKnot = json.startKnot; this.endKnot = json.endKnot; return this; } } let fbxTree; let connections; let sceneGraph; class FBXLoader extends Loader { static { __name(this, "FBXLoader"); } constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const path = scope.path === "" ? LoaderUtils.extractUrlBase(url) : scope.path; const loader = new FileLoader(this.manager); loader.setPath(scope.path); loader.setResponseType("arraybuffer"); loader.setRequestHeader(scope.requestHeader); loader.setWithCredentials(scope.withCredentials); loader.load(url, function(buffer) { try { onLoad(scope.parse(buffer, path)); } catch (e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } }, onProgress, onError); } parse(FBXBuffer, path) { if (isFbxFormatBinary(FBXBuffer)) { fbxTree = new BinaryParser().parse(FBXBuffer); } else { const FBXText = convertArrayBufferToString(FBXBuffer); if (!isFbxFormatASCII(FBXText)) { throw new Error("THREE.FBXLoader: Unknown format."); } if (getFbxVersion(FBXText) < 7e3) { throw new Error("THREE.FBXLoader: FBX version not supported, FileVersion: " + getFbxVersion(FBXText)); } fbxTree = new TextParser().parse(FBXText); } const textureLoader = new TextureLoader(this.manager).setPath(this.resourcePath || path).setCrossOrigin(this.crossOrigin); return new FBXTreeParser(textureLoader, this.manager).parse(fbxTree); } } class FBXTreeParser { static { __name(this, "FBXTreeParser"); } constructor(textureLoader, manager) { this.textureLoader = textureLoader; this.manager = manager; } parse() { connections = this.parseConnections(); const images = this.parseImages(); const textures = this.parseTextures(images); const materials = this.parseMaterials(textures); const deformers = this.parseDeformers(); const geometryMap = new GeometryParser().parse(deformers); this.parseScene(deformers, geometryMap, materials); return sceneGraph; } // Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry ) // and details the connection type parseConnections() { const connectionMap = /* @__PURE__ */ new Map(); if ("Connections" in fbxTree) { const rawConnections = fbxTree.Connections.connections; rawConnections.forEach(function(rawConnection) { const fromID = rawConnection[0]; const toID = rawConnection[1]; const relationship = rawConnection[2]; if (!connectionMap.has(fromID)) { connectionMap.set(fromID, { parents: [], children: [] }); } const parentRelationship = { ID: toID, relationship }; connectionMap.get(fromID).parents.push(parentRelationship); if (!connectionMap.has(toID)) { connectionMap.set(toID, { parents: [], children: [] }); } const childRelationship = { ID: fromID, relationship }; connectionMap.get(toID).children.push(childRelationship); }); } return connectionMap; } // Parse FBXTree.Objects.Video for embedded image data // These images are connected to textures in FBXTree.Objects.Textures // via FBXTree.Connections. parseImages() { const images = {}; const blobs = {}; if ("Video" in fbxTree.Objects) { const videoNodes = fbxTree.Objects.Video; for (const nodeID in videoNodes) { const videoNode = videoNodes[nodeID]; const id2 = parseInt(nodeID); images[id2] = videoNode.RelativeFilename || videoNode.Filename; if ("Content" in videoNode) { const arrayBufferContent = videoNode.Content instanceof ArrayBuffer && videoNode.Content.byteLength > 0; const base64Content = typeof videoNode.Content === "string" && videoNode.Content !== ""; if (arrayBufferContent || base64Content) { const image = this.parseImage(videoNodes[nodeID]); blobs[videoNode.RelativeFilename || videoNode.Filename] = image; } } } } for (const id2 in images) { const filename = images[id2]; if (blobs[filename] !== void 0) images[id2] = blobs[filename]; else images[id2] = images[id2].split("\\").pop(); } return images; } // Parse embedded image data in FBXTree.Video.Content parseImage(videoNode) { const content = videoNode.Content; const fileName = videoNode.RelativeFilename || videoNode.Filename; const extension = fileName.slice(fileName.lastIndexOf(".") + 1).toLowerCase(); let type; switch (extension) { case "bmp": type = "image/bmp"; break; case "jpg": case "jpeg": type = "image/jpeg"; break; case "png": type = "image/png"; break; case "tif": type = "image/tiff"; break; case "tga": if (this.manager.getHandler(".tga") === null) { console.warn("FBXLoader: TGA loader not found, skipping ", fileName); } type = "image/tga"; break; default: console.warn('FBXLoader: Image type "' + extension + '" is not supported.'); return; } if (typeof content === "string") { return "data:" + type + ";base64," + content; } else { const array = new Uint8Array(content); return window.URL.createObjectURL(new Blob([array], { type })); } } // Parse nodes in FBXTree.Objects.Texture // These contain details such as UV scaling, cropping, rotation etc and are connected // to images in FBXTree.Objects.Video parseTextures(images) { const textureMap = /* @__PURE__ */ new Map(); if ("Texture" in fbxTree.Objects) { const textureNodes = fbxTree.Objects.Texture; for (const nodeID in textureNodes) { const texture = this.parseTexture(textureNodes[nodeID], images); textureMap.set(parseInt(nodeID), texture); } } return textureMap; } // Parse individual node in FBXTree.Objects.Texture parseTexture(textureNode, images) { const texture = this.loadTexture(textureNode, images); texture.ID = textureNode.id; texture.name = textureNode.attrName; const wrapModeU = textureNode.WrapModeU; const wrapModeV = textureNode.WrapModeV; const valueU = wrapModeU !== void 0 ? wrapModeU.value : 0; const valueV = wrapModeV !== void 0 ? wrapModeV.value : 0; texture.wrapS = valueU === 0 ? RepeatWrapping : ClampToEdgeWrapping; texture.wrapT = valueV === 0 ? RepeatWrapping : ClampToEdgeWrapping; if ("Scaling" in textureNode) { const values = textureNode.Scaling.value; texture.repeat.x = values[0]; texture.repeat.y = values[1]; } if ("Translation" in textureNode) { const values = textureNode.Translation.value; texture.offset.x = values[0]; texture.offset.y = values[1]; } return texture; } // load a texture specified as a blob or data URI, or via an external URL using TextureLoader loadTexture(textureNode, images) { const nonNativeExtensions = /* @__PURE__ */ new Set(["tga", "tif", "tiff", "exr", "dds", "hdr", "ktx2"]); const extension = textureNode.FileName.split(".").pop().toLowerCase(); const loader = nonNativeExtensions.has(extension) ? this.manager.getHandler(`.${extension}`) : this.textureLoader; if (!loader) { console.warn( `FBXLoader: ${extension.toUpperCase()} loader not found, creating placeholder texture for`, textureNode.RelativeFilename ); return new Texture(); } const loaderPath = loader.path; if (!loaderPath) { loader.setPath(this.textureLoader.path); } const children = connections.get(textureNode.id).children; let fileName; if (children !== void 0 && children.length > 0 && images[children[0].ID] !== void 0) { fileName = images[children[0].ID]; if (fileName.indexOf("blob:") === 0 || fileName.indexOf("data:") === 0) { loader.setPath(void 0); } } const texture = loader.load(fileName); loader.setPath(loaderPath); return texture; } // Parse nodes in FBXTree.Objects.Material parseMaterials(textureMap) { const materialMap = /* @__PURE__ */ new Map(); if ("Material" in fbxTree.Objects) { const materialNodes = fbxTree.Objects.Material; for (const nodeID in materialNodes) { const material = this.parseMaterial(materialNodes[nodeID], textureMap); if (material !== null) materialMap.set(parseInt(nodeID), material); } } return materialMap; } // Parse single node in FBXTree.Objects.Material // Materials are connected to texture maps in FBXTree.Objects.Textures // FBX format currently only supports Lambert and Phong shading models parseMaterial(materialNode, textureMap) { const ID = materialNode.id; const name = materialNode.attrName; let type = materialNode.ShadingModel; if (typeof type === "object") { type = type.value; } if (!connections.has(ID)) return null; const parameters = this.parseParameters(materialNode, textureMap, ID); let material; switch (type.toLowerCase()) { case "phong": material = new MeshPhongMaterial(); break; case "lambert": material = new MeshLambertMaterial(); break; default: console.warn('THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type); material = new MeshPhongMaterial(); break; } material.setValues(parameters); material.name = name; return material; } // Parse FBX material and return parameters suitable for a three.js material // Also parse the texture map and return any textures associated with the material parseParameters(materialNode, textureMap, ID) { const parameters = {}; if (materialNode.BumpFactor) { parameters.bumpScale = materialNode.BumpFactor.value; } if (materialNode.Diffuse) { parameters.color = ColorManagement.toWorkingColorSpace(new Color().fromArray(materialNode.Diffuse.value), SRGBColorSpace); } else if (materialNode.DiffuseColor && (materialNode.DiffuseColor.type === "Color" || materialNode.DiffuseColor.type === "ColorRGB")) { parameters.color = ColorManagement.toWorkingColorSpace(new Color().fromArray(materialNode.DiffuseColor.value), SRGBColorSpace); } if (materialNode.DisplacementFactor) { parameters.displacementScale = materialNode.DisplacementFactor.value; } if (materialNode.Emissive) { parameters.emissive = ColorManagement.toWorkingColorSpace(new Color().fromArray(materialNode.Emissive.value), SRGBColorSpace); } else if (materialNode.EmissiveColor && (materialNode.EmissiveColor.type === "Color" || materialNode.EmissiveColor.type === "ColorRGB")) { parameters.emissive = ColorManagement.toWorkingColorSpace(new Color().fromArray(materialNode.EmissiveColor.value), SRGBColorSpace); } if (materialNode.EmissiveFactor) { parameters.emissiveIntensity = parseFloat(materialNode.EmissiveFactor.value); } parameters.opacity = 1 - (materialNode.TransparencyFactor ? parseFloat(materialNode.TransparencyFactor.value) : 0); if (parameters.opacity === 1 || parameters.opacity === 0) { parameters.opacity = materialNode.Opacity ? parseFloat(materialNode.Opacity.value) : null; if (parameters.opacity === null) { parameters.opacity = 1 - (materialNode.TransparentColor ? parseFloat(materialNode.TransparentColor.value[0]) : 0); } } if (parameters.opacity < 1) { parameters.transparent = true; } if (materialNode.ReflectionFactor) { parameters.reflectivity = materialNode.ReflectionFactor.value; } if (materialNode.Shininess) { parameters.shininess = materialNode.Shininess.value; } if (materialNode.Specular) { parameters.specular = ColorManagement.toWorkingColorSpace(new Color().fromArray(materialNode.Specular.value), SRGBColorSpace); } else if (materialNode.SpecularColor && materialNode.SpecularColor.type === "Color") { parameters.specular = ColorManagement.toWorkingColorSpace(new Color().fromArray(materialNode.SpecularColor.value), SRGBColorSpace); } const scope = this; connections.get(ID).children.forEach(function(child) { const type = child.relationship; switch (type) { case "Bump": parameters.bumpMap = scope.getTexture(textureMap, child.ID); break; case "Maya|TEX_ao_map": parameters.aoMap = scope.getTexture(textureMap, child.ID); break; case "DiffuseColor": case "Maya|TEX_color_map": parameters.map = scope.getTexture(textureMap, child.ID); if (parameters.map !== void 0) { parameters.map.colorSpace = SRGBColorSpace; } break; case "DisplacementColor": parameters.displacementMap = scope.getTexture(textureMap, child.ID); break; case "EmissiveColor": parameters.emissiveMap = scope.getTexture(textureMap, child.ID); if (parameters.emissiveMap !== void 0) { parameters.emissiveMap.colorSpace = SRGBColorSpace; } break; case "NormalMap": case "Maya|TEX_normal_map": parameters.normalMap = scope.getTexture(textureMap, child.ID); break; case "ReflectionColor": parameters.envMap = scope.getTexture(textureMap, child.ID); if (parameters.envMap !== void 0) { parameters.envMap.mapping = EquirectangularReflectionMapping; parameters.envMap.colorSpace = SRGBColorSpace; } break; case "SpecularColor": parameters.specularMap = scope.getTexture(textureMap, child.ID); if (parameters.specularMap !== void 0) { parameters.specularMap.colorSpace = SRGBColorSpace; } break; case "TransparentColor": case "TransparencyFactor": parameters.alphaMap = scope.getTexture(textureMap, child.ID); parameters.transparent = true; break; case "AmbientColor": case "ShininessExponent": case "SpecularFactor": case "VectorDisplacementColor": default: console.warn("THREE.FBXLoader: %s map is not supported in three.js, skipping texture.", type); break; } }); return parameters; } // get a texture from the textureMap for use by a material. getTexture(textureMap, id2) { if ("LayeredTexture" in fbxTree.Objects && id2 in fbxTree.Objects.LayeredTexture) { console.warn("THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer."); id2 = connections.get(id2).children[0].ID; } return textureMap.get(id2); } // Parse nodes in FBXTree.Objects.Deformer // Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here // Generates map of Skeleton-like objects for use later when generating and binding skeletons. parseDeformers() { const skeletons = {}; const morphTargets = {}; if ("Deformer" in fbxTree.Objects) { const DeformerNodes = fbxTree.Objects.Deformer; for (const nodeID in DeformerNodes) { const deformerNode = DeformerNodes[nodeID]; const relationships = connections.get(parseInt(nodeID)); if (deformerNode.attrType === "Skin") { const skeleton = this.parseSkeleton(relationships, DeformerNodes); skeleton.ID = nodeID; if (relationships.parents.length > 1) console.warn("THREE.FBXLoader: skeleton attached to more than one geometry is not supported."); skeleton.geometryID = relationships.parents[0].ID; skeletons[nodeID] = skeleton; } else if (deformerNode.attrType === "BlendShape") { const morphTarget = { id: nodeID }; morphTarget.rawTargets = this.parseMorphTargets(relationships, DeformerNodes); morphTarget.id = nodeID; if (relationships.parents.length > 1) console.warn("THREE.FBXLoader: morph target attached to more than one geometry is not supported."); morphTargets[nodeID] = morphTarget; } } } return { skeletons, morphTargets }; } // Parse single nodes in FBXTree.Objects.Deformer // The top level skeleton node has type 'Skin' and sub nodes have type 'Cluster' // Each skin node represents a skeleton and each cluster node represents a bone parseSkeleton(relationships, deformerNodes) { const rawBones = []; relationships.children.forEach(function(child) { const boneNode = deformerNodes[child.ID]; if (boneNode.attrType !== "Cluster") return; const rawBone = { ID: child.ID, indices: [], weights: [], transformLink: new Matrix4().fromArray(boneNode.TransformLink.a) // transform: new Matrix4().fromArray( boneNode.Transform.a ), // linkMode: boneNode.Mode, }; if ("Indexes" in boneNode) { rawBone.indices = boneNode.Indexes.a; rawBone.weights = boneNode.Weights.a; } rawBones.push(rawBone); }); return { rawBones, bones: [] }; } // The top level morph deformer node has type "BlendShape" and sub nodes have type "BlendShapeChannel" parseMorphTargets(relationships, deformerNodes) { const rawMorphTargets = []; for (let i = 0; i < relationships.children.length; i++) { const child = relationships.children[i]; const morphTargetNode = deformerNodes[child.ID]; const rawMorphTarget = { name: morphTargetNode.attrName, initialWeight: morphTargetNode.DeformPercent, id: morphTargetNode.id, fullWeights: morphTargetNode.FullWeights.a }; if (morphTargetNode.attrType !== "BlendShapeChannel") return; rawMorphTarget.geoID = connections.get(parseInt(child.ID)).children.filter(function(child2) { return child2.relationship === void 0; })[0].ID; rawMorphTargets.push(rawMorphTarget); } return rawMorphTargets; } // create the main Group() to be returned by the loader parseScene(deformers, geometryMap, materialMap) { sceneGraph = new Group(); const modelMap = this.parseModels(deformers.skeletons, geometryMap, materialMap); const modelNodes = fbxTree.Objects.Model; const scope = this; modelMap.forEach(function(model) { const modelNode = modelNodes[model.ID]; scope.setLookAtProperties(model, modelNode); const parentConnections = connections.get(model.ID).parents; parentConnections.forEach(function(connection) { const parent = modelMap.get(connection.ID); if (parent !== void 0) parent.add(model); }); if (model.parent === null) { sceneGraph.add(model); } }); this.bindSkeleton(deformers.skeletons, geometryMap, modelMap); this.addGlobalSceneSettings(); sceneGraph.traverse(function(node) { if (node.userData.transformData) { if (node.parent) { node.userData.transformData.parentMatrix = node.parent.matrix; node.userData.transformData.parentMatrixWorld = node.parent.matrixWorld; } const transform = generateTransform(node.userData.transformData); node.applyMatrix4(transform); node.updateWorldMatrix(); } }); const animations = new AnimationParser().parse(); if (sceneGraph.children.length === 1 && sceneGraph.children[0].isGroup) { sceneGraph.children[0].animations = animations; sceneGraph = sceneGraph.children[0]; } sceneGraph.animations = animations; } // parse nodes in FBXTree.Objects.Model parseModels(skeletons, geometryMap, materialMap) { const modelMap = /* @__PURE__ */ new Map(); const modelNodes = fbxTree.Objects.Model; for (const nodeID in modelNodes) { const id2 = parseInt(nodeID); const node = modelNodes[nodeID]; const relationships = connections.get(id2); let model = this.buildSkeleton(relationships, skeletons, id2, node.attrName); if (!model) { switch (node.attrType) { case "Camera": model = this.createCamera(relationships); break; case "Light": model = this.createLight(relationships); break; case "Mesh": model = this.createMesh(relationships, geometryMap, materialMap); break; case "NurbsCurve": model = this.createCurve(relationships, geometryMap); break; case "LimbNode": case "Root": model = new Bone(); break; case "Null": default: model = new Group(); break; } model.name = node.attrName ? PropertyBinding.sanitizeNodeName(node.attrName) : ""; model.userData.originalName = node.attrName; model.ID = id2; } this.getTransformData(model, node); modelMap.set(id2, model); } return modelMap; } buildSkeleton(relationships, skeletons, id2, name) { let bone = null; relationships.parents.forEach(function(parent) { for (const ID in skeletons) { const skeleton = skeletons[ID]; skeleton.rawBones.forEach(function(rawBone, i) { if (rawBone.ID === parent.ID) { const subBone = bone; bone = new Bone(); bone.matrixWorld.copy(rawBone.transformLink); bone.name = name ? PropertyBinding.sanitizeNodeName(name) : ""; bone.userData.originalName = name; bone.ID = id2; skeleton.bones[i] = bone; if (subBone !== null) { bone.add(subBone); } } }); } }); return bone; } // create a PerspectiveCamera or OrthographicCamera createCamera(relationships) { let model; let cameraAttribute; relationships.children.forEach(function(child) { const attr = fbxTree.Objects.NodeAttribute[child.ID]; if (attr !== void 0) { cameraAttribute = attr; } }); if (cameraAttribute === void 0) { model = new Object3D(); } else { let type = 0; if (cameraAttribute.CameraProjectionType !== void 0 && cameraAttribute.CameraProjectionType.value === 1) { type = 1; } let nearClippingPlane = 1; if (cameraAttribute.NearPlane !== void 0) { nearClippingPlane = cameraAttribute.NearPlane.value / 1e3; } let farClippingPlane = 1e3; if (cameraAttribute.FarPlane !== void 0) { farClippingPlane = cameraAttribute.FarPlane.value / 1e3; } let width = window.innerWidth; let height = window.innerHeight; if (cameraAttribute.AspectWidth !== void 0 && cameraAttribute.AspectHeight !== void 0) { width = cameraAttribute.AspectWidth.value; height = cameraAttribute.AspectHeight.value; } const aspect2 = width / height; let fov2 = 45; if (cameraAttribute.FieldOfView !== void 0) { fov2 = cameraAttribute.FieldOfView.value; } const focalLength = cameraAttribute.FocalLength ? cameraAttribute.FocalLength.value : null; switch (type) { case 0: model = new PerspectiveCamera(fov2, aspect2, nearClippingPlane, farClippingPlane); if (focalLength !== null) model.setFocalLength(focalLength); break; case 1: console.warn("THREE.FBXLoader: Orthographic cameras not supported yet."); model = new Object3D(); break; default: console.warn("THREE.FBXLoader: Unknown camera type " + type + "."); model = new Object3D(); break; } } return model; } // Create a DirectionalLight, PointLight or SpotLight createLight(relationships) { let model; let lightAttribute; relationships.children.forEach(function(child) { const attr = fbxTree.Objects.NodeAttribute[child.ID]; if (attr !== void 0) { lightAttribute = attr; } }); if (lightAttribute === void 0) { model = new Object3D(); } else { let type; if (lightAttribute.LightType === void 0) { type = 0; } else { type = lightAttribute.LightType.value; } let color = 16777215; if (lightAttribute.Color !== void 0) { color = ColorManagement.toWorkingColorSpace(new Color().fromArray(lightAttribute.Color.value), SRGBColorSpace); } let intensity = lightAttribute.Intensity === void 0 ? 1 : lightAttribute.Intensity.value / 100; if (lightAttribute.CastLightOnObject !== void 0 && lightAttribute.CastLightOnObject.value === 0) { intensity = 0; } let distance = 0; if (lightAttribute.FarAttenuationEnd !== void 0) { if (lightAttribute.EnableFarAttenuation !== void 0 && lightAttribute.EnableFarAttenuation.value === 0) { distance = 0; } else { distance = lightAttribute.FarAttenuationEnd.value; } } const decay = 1; switch (type) { case 0: model = new PointLight(color, intensity, distance, decay); break; case 1: model = new DirectionalLight(color, intensity); break; case 2: let angle = Math.PI / 3; if (lightAttribute.InnerAngle !== void 0) { angle = MathUtils.degToRad(lightAttribute.InnerAngle.value); } let penumbra = 0; if (lightAttribute.OuterAngle !== void 0) { penumbra = MathUtils.degToRad(lightAttribute.OuterAngle.value); penumbra = Math.max(penumbra, 1); } model = new SpotLight(color, intensity, distance, angle, penumbra, decay); break; default: console.warn("THREE.FBXLoader: Unknown light type " + lightAttribute.LightType.value + ", defaulting to a PointLight."); model = new PointLight(color, intensity); break; } if (lightAttribute.CastShadows !== void 0 && lightAttribute.CastShadows.value === 1) { model.castShadow = true; } } return model; } createMesh(relationships, geometryMap, materialMap) { let model; let geometry = null; let material = null; const materials = []; relationships.children.forEach(function(child) { if (geometryMap.has(child.ID)) { geometry = geometryMap.get(child.ID); } if (materialMap.has(child.ID)) { materials.push(materialMap.get(child.ID)); } }); if (materials.length > 1) { material = materials; } else if (materials.length > 0) { material = materials[0]; } else { material = new MeshPhongMaterial({ name: Loader.DEFAULT_MATERIAL_NAME, color: 13421772 }); materials.push(material); } if ("color" in geometry.attributes) { materials.forEach(function(material2) { material2.vertexColors = true; }); } if (geometry.FBX_Deformer) { model = new SkinnedMesh(geometry, material); model.normalizeSkinWeights(); } else { model = new Mesh(geometry, material); } return model; } createCurve(relationships, geometryMap) { const geometry = relationships.children.reduce(function(geo, child) { if (geometryMap.has(child.ID)) geo = geometryMap.get(child.ID); return geo; }, null); const material = new LineBasicMaterial({ name: Loader.DEFAULT_MATERIAL_NAME, color: 3342591, linewidth: 1 }); return new Line(geometry, material); } // parse the model node for transform data getTransformData(model, modelNode) { const transformData = {}; if ("InheritType" in modelNode) transformData.inheritType = parseInt(modelNode.InheritType.value); if ("RotationOrder" in modelNode) transformData.eulerOrder = getEulerOrder(modelNode.RotationOrder.value); else transformData.eulerOrder = getEulerOrder(0); if ("Lcl_Translation" in modelNode) transformData.translation = modelNode.Lcl_Translation.value; if ("PreRotation" in modelNode) transformData.preRotation = modelNode.PreRotation.value; if ("Lcl_Rotation" in modelNode) transformData.rotation = modelNode.Lcl_Rotation.value; if ("PostRotation" in modelNode) transformData.postRotation = modelNode.PostRotation.value; if ("Lcl_Scaling" in modelNode) transformData.scale = modelNode.Lcl_Scaling.value; if ("ScalingOffset" in modelNode) transformData.scalingOffset = modelNode.ScalingOffset.value; if ("ScalingPivot" in modelNode) transformData.scalingPivot = modelNode.ScalingPivot.value; if ("RotationOffset" in modelNode) transformData.rotationOffset = modelNode.RotationOffset.value; if ("RotationPivot" in modelNode) transformData.rotationPivot = modelNode.RotationPivot.value; model.userData.transformData = transformData; } setLookAtProperties(model, modelNode) { if ("LookAtProperty" in modelNode) { const children = connections.get(model.ID).children; children.forEach(function(child) { if (child.relationship === "LookAtProperty") { const lookAtTarget = fbxTree.Objects.Model[child.ID]; if ("Lcl_Translation" in lookAtTarget) { const pos = lookAtTarget.Lcl_Translation.value; if (model.target !== void 0) { model.target.position.fromArray(pos); sceneGraph.add(model.target); } else { model.lookAt(new Vector3().fromArray(pos)); } } } }); } } bindSkeleton(skeletons, geometryMap, modelMap) { const bindMatrices = this.parsePoseNodes(); for (const ID in skeletons) { const skeleton = skeletons[ID]; const parents = connections.get(parseInt(skeleton.ID)).parents; parents.forEach(function(parent) { if (geometryMap.has(parent.ID)) { const geoID = parent.ID; const geoRelationships = connections.get(geoID); geoRelationships.parents.forEach(function(geoConnParent) { if (modelMap.has(geoConnParent.ID)) { const model = modelMap.get(geoConnParent.ID); model.bind(new Skeleton(skeleton.bones), bindMatrices[geoConnParent.ID]); } }); } }); } } parsePoseNodes() { const bindMatrices = {}; if ("Pose" in fbxTree.Objects) { const BindPoseNode = fbxTree.Objects.Pose; for (const nodeID in BindPoseNode) { if (BindPoseNode[nodeID].attrType === "BindPose" && BindPoseNode[nodeID].NbPoseNodes > 0) { const poseNodes = BindPoseNode[nodeID].PoseNode; if (Array.isArray(poseNodes)) { poseNodes.forEach(function(poseNode) { bindMatrices[poseNode.Node] = new Matrix4().fromArray(poseNode.Matrix.a); }); } else { bindMatrices[poseNodes.Node] = new Matrix4().fromArray(poseNodes.Matrix.a); } } } } return bindMatrices; } addGlobalSceneSettings() { if ("GlobalSettings" in fbxTree) { if ("AmbientColor" in fbxTree.GlobalSettings) { const ambientColor = fbxTree.GlobalSettings.AmbientColor.value; const r = ambientColor[0]; const g = ambientColor[1]; const b = ambientColor[2]; if (r !== 0 || g !== 0 || b !== 0) { const color = new Color().setRGB(r, g, b, SRGBColorSpace); sceneGraph.add(new AmbientLight(color, 1)); } } if ("UnitScaleFactor" in fbxTree.GlobalSettings) { sceneGraph.userData.unitScaleFactor = fbxTree.GlobalSettings.UnitScaleFactor.value; } } } } class GeometryParser { static { __name(this, "GeometryParser"); } constructor() { this.negativeMaterialIndices = false; } // Parse nodes in FBXTree.Objects.Geometry parse(deformers) { const geometryMap = /* @__PURE__ */ new Map(); if ("Geometry" in fbxTree.Objects) { const geoNodes = fbxTree.Objects.Geometry; for (const nodeID in geoNodes) { const relationships = connections.get(parseInt(nodeID)); const geo = this.parseGeometry(relationships, geoNodes[nodeID], deformers); geometryMap.set(parseInt(nodeID), geo); } } if (this.negativeMaterialIndices === true) { console.warn("THREE.FBXLoader: The FBX file contains invalid (negative) material indices. The asset might not render as expected."); } return geometryMap; } // Parse single node in FBXTree.Objects.Geometry parseGeometry(relationships, geoNode, deformers) { switch (geoNode.attrType) { case "Mesh": return this.parseMeshGeometry(relationships, geoNode, deformers); break; case "NurbsCurve": return this.parseNurbsGeometry(geoNode); break; } } // Parse single node mesh geometry in FBXTree.Objects.Geometry parseMeshGeometry(relationships, geoNode, deformers) { const skeletons = deformers.skeletons; const morphTargets = []; const modelNodes = relationships.parents.map(function(parent) { return fbxTree.Objects.Model[parent.ID]; }); if (modelNodes.length === 0) return; const skeleton = relationships.children.reduce(function(skeleton2, child) { if (skeletons[child.ID] !== void 0) skeleton2 = skeletons[child.ID]; return skeleton2; }, null); relationships.children.forEach(function(child) { if (deformers.morphTargets[child.ID] !== void 0) { morphTargets.push(deformers.morphTargets[child.ID]); } }); const modelNode = modelNodes[0]; const transformData = {}; if ("RotationOrder" in modelNode) transformData.eulerOrder = getEulerOrder(modelNode.RotationOrder.value); if ("InheritType" in modelNode) transformData.inheritType = parseInt(modelNode.InheritType.value); if ("GeometricTranslation" in modelNode) transformData.translation = modelNode.GeometricTranslation.value; if ("GeometricRotation" in modelNode) transformData.rotation = modelNode.GeometricRotation.value; if ("GeometricScaling" in modelNode) transformData.scale = modelNode.GeometricScaling.value; const transform = generateTransform(transformData); return this.genGeometry(geoNode, skeleton, morphTargets, transform); } // Generate a BufferGeometry from a node in FBXTree.Objects.Geometry genGeometry(geoNode, skeleton, morphTargets, preTransform) { const geo = new BufferGeometry(); if (geoNode.attrName) geo.name = geoNode.attrName; const geoInfo = this.parseGeoNode(geoNode, skeleton); const buffers = this.genBuffers(geoInfo); const positionAttribute = new Float32BufferAttribute(buffers.vertex, 3); positionAttribute.applyMatrix4(preTransform); geo.setAttribute("position", positionAttribute); if (buffers.colors.length > 0) { geo.setAttribute("color", new Float32BufferAttribute(buffers.colors, 3)); } if (skeleton) { geo.setAttribute("skinIndex", new Uint16BufferAttribute(buffers.weightsIndices, 4)); geo.setAttribute("skinWeight", new Float32BufferAttribute(buffers.vertexWeights, 4)); geo.FBX_Deformer = skeleton; } if (buffers.normal.length > 0) { const normalMatrix = new Matrix3().getNormalMatrix(preTransform); const normalAttribute = new Float32BufferAttribute(buffers.normal, 3); normalAttribute.applyNormalMatrix(normalMatrix); geo.setAttribute("normal", normalAttribute); } buffers.uvs.forEach(function(uvBuffer, i) { const name = i === 0 ? "uv" : `uv${i}`; geo.setAttribute(name, new Float32BufferAttribute(buffers.uvs[i], 2)); }); if (geoInfo.material && geoInfo.material.mappingType !== "AllSame") { let prevMaterialIndex = buffers.materialIndex[0]; let startIndex = 0; buffers.materialIndex.forEach(function(currentIndex, i) { if (currentIndex !== prevMaterialIndex) { geo.addGroup(startIndex, i - startIndex, prevMaterialIndex); prevMaterialIndex = currentIndex; startIndex = i; } }); if (geo.groups.length > 0) { const lastGroup = geo.groups[geo.groups.length - 1]; const lastIndex = lastGroup.start + lastGroup.count; if (lastIndex !== buffers.materialIndex.length) { geo.addGroup(lastIndex, buffers.materialIndex.length - lastIndex, prevMaterialIndex); } } if (geo.groups.length === 0) { geo.addGroup(0, buffers.materialIndex.length, buffers.materialIndex[0]); } } this.addMorphTargets(geo, geoNode, morphTargets, preTransform); return geo; } parseGeoNode(geoNode, skeleton) { const geoInfo = {}; geoInfo.vertexPositions = geoNode.Vertices !== void 0 ? geoNode.Vertices.a : []; geoInfo.vertexIndices = geoNode.PolygonVertexIndex !== void 0 ? geoNode.PolygonVertexIndex.a : []; if (geoNode.LayerElementColor) { geoInfo.color = this.parseVertexColors(geoNode.LayerElementColor[0]); } if (geoNode.LayerElementMaterial) { geoInfo.material = this.parseMaterialIndices(geoNode.LayerElementMaterial[0]); } if (geoNode.LayerElementNormal) { geoInfo.normal = this.parseNormals(geoNode.LayerElementNormal[0]); } if (geoNode.LayerElementUV) { geoInfo.uv = []; let i = 0; while (geoNode.LayerElementUV[i]) { if (geoNode.LayerElementUV[i].UV) { geoInfo.uv.push(this.parseUVs(geoNode.LayerElementUV[i])); } i++; } } geoInfo.weightTable = {}; if (skeleton !== null) { geoInfo.skeleton = skeleton; skeleton.rawBones.forEach(function(rawBone, i) { rawBone.indices.forEach(function(index, j) { if (geoInfo.weightTable[index] === void 0) geoInfo.weightTable[index] = []; geoInfo.weightTable[index].push({ id: i, weight: rawBone.weights[j] }); }); }); } return geoInfo; } genBuffers(geoInfo) { const buffers = { vertex: [], normal: [], colors: [], uvs: [], materialIndex: [], vertexWeights: [], weightsIndices: [] }; let polygonIndex = 0; let faceLength = 0; let displayedWeightsWarning = false; let facePositionIndexes = []; let faceNormals = []; let faceColors = []; let faceUVs = []; let faceWeights = []; let faceWeightIndices = []; const scope = this; geoInfo.vertexIndices.forEach(function(vertexIndex, polygonVertexIndex) { let materialIndex; let endOfFace = false; if (vertexIndex < 0) { vertexIndex = vertexIndex ^ -1; endOfFace = true; } let weightIndices = []; let weights = []; facePositionIndexes.push(vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2); if (geoInfo.color) { const data = getData(polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.color); faceColors.push(data[0], data[1], data[2]); } if (geoInfo.skeleton) { if (geoInfo.weightTable[vertexIndex] !== void 0) { geoInfo.weightTable[vertexIndex].forEach(function(wt) { weights.push(wt.weight); weightIndices.push(wt.id); }); } if (weights.length > 4) { if (!displayedWeightsWarning) { console.warn("THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights."); displayedWeightsWarning = true; } const wIndex = [0, 0, 0, 0]; const Weight = [0, 0, 0, 0]; weights.forEach(function(weight, weightIndex) { let currentWeight = weight; let currentIndex = weightIndices[weightIndex]; Weight.forEach(function(comparedWeight, comparedWeightIndex, comparedWeightArray) { if (currentWeight > comparedWeight) { comparedWeightArray[comparedWeightIndex] = currentWeight; currentWeight = comparedWeight; const tmp2 = wIndex[comparedWeightIndex]; wIndex[comparedWeightIndex] = currentIndex; currentIndex = tmp2; } }); }); weightIndices = wIndex; weights = Weight; } while (weights.length < 4) { weights.push(0); weightIndices.push(0); } for (let i = 0; i < 4; ++i) { faceWeights.push(weights[i]); faceWeightIndices.push(weightIndices[i]); } } if (geoInfo.normal) { const data = getData(polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.normal); faceNormals.push(data[0], data[1], data[2]); } if (geoInfo.material && geoInfo.material.mappingType !== "AllSame") { materialIndex = getData(polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.material)[0]; if (materialIndex < 0) { scope.negativeMaterialIndices = true; materialIndex = 0; } } if (geoInfo.uv) { geoInfo.uv.forEach(function(uv, i) { const data = getData(polygonVertexIndex, polygonIndex, vertexIndex, uv); if (faceUVs[i] === void 0) { faceUVs[i] = []; } faceUVs[i].push(data[0]); faceUVs[i].push(data[1]); }); } faceLength++; if (endOfFace) { scope.genFace(buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength); polygonIndex++; faceLength = 0; facePositionIndexes = []; faceNormals = []; faceColors = []; faceUVs = []; faceWeights = []; faceWeightIndices = []; } }); return buffers; } // See https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal getNormalNewell(vertices) { const normal = new Vector3(0, 0, 0); for (let i = 0; i < vertices.length; i++) { const current = vertices[i]; const next = vertices[(i + 1) % vertices.length]; normal.x += (current.y - next.y) * (current.z + next.z); normal.y += (current.z - next.z) * (current.x + next.x); normal.z += (current.x - next.x) * (current.y + next.y); } normal.normalize(); return normal; } getNormalTangentAndBitangent(vertices) { const normalVector = this.getNormalNewell(vertices); const up = Math.abs(normalVector.z) > 0.5 ? new Vector3(0, 1, 0) : new Vector3(0, 0, 1); const tangent = up.cross(normalVector).normalize(); const bitangent = normalVector.clone().cross(tangent).normalize(); return { normal: normalVector, tangent, bitangent }; } flattenVertex(vertex2, normalTangent, normalBitangent) { return new Vector2( vertex2.dot(normalTangent), vertex2.dot(normalBitangent) ); } // Generate data for a single face in a geometry. If the face is a quad then split it into 2 tris genFace(buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength) { let triangles; if (faceLength > 3) { const vertices = []; const positions = geoInfo.baseVertexPositions || geoInfo.vertexPositions; for (let i = 0; i < facePositionIndexes.length; i += 3) { vertices.push( new Vector3( positions[facePositionIndexes[i]], positions[facePositionIndexes[i + 1]], positions[facePositionIndexes[i + 2]] ) ); } const { tangent, bitangent } = this.getNormalTangentAndBitangent(vertices); const triangulationInput = []; for (const vertex2 of vertices) { triangulationInput.push(this.flattenVertex(vertex2, tangent, bitangent)); } triangles = ShapeUtils.triangulateShape(triangulationInput, []); } else { triangles = [[0, 1, 2]]; } for (const [i0, i1, i2] of triangles) { buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i0 * 3]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i0 * 3 + 1]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i0 * 3 + 2]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i1 * 3]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i1 * 3 + 1]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i1 * 3 + 2]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i2 * 3]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i2 * 3 + 1]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i2 * 3 + 2]]); if (geoInfo.skeleton) { buffers.vertexWeights.push(faceWeights[i0 * 4]); buffers.vertexWeights.push(faceWeights[i0 * 4 + 1]); buffers.vertexWeights.push(faceWeights[i0 * 4 + 2]); buffers.vertexWeights.push(faceWeights[i0 * 4 + 3]); buffers.vertexWeights.push(faceWeights[i1 * 4]); buffers.vertexWeights.push(faceWeights[i1 * 4 + 1]); buffers.vertexWeights.push(faceWeights[i1 * 4 + 2]); buffers.vertexWeights.push(faceWeights[i1 * 4 + 3]); buffers.vertexWeights.push(faceWeights[i2 * 4]); buffers.vertexWeights.push(faceWeights[i2 * 4 + 1]); buffers.vertexWeights.push(faceWeights[i2 * 4 + 2]); buffers.vertexWeights.push(faceWeights[i2 * 4 + 3]); buffers.weightsIndices.push(faceWeightIndices[i0 * 4]); buffers.weightsIndices.push(faceWeightIndices[i0 * 4 + 1]); buffers.weightsIndices.push(faceWeightIndices[i0 * 4 + 2]); buffers.weightsIndices.push(faceWeightIndices[i0 * 4 + 3]); buffers.weightsIndices.push(faceWeightIndices[i1 * 4]); buffers.weightsIndices.push(faceWeightIndices[i1 * 4 + 1]); buffers.weightsIndices.push(faceWeightIndices[i1 * 4 + 2]); buffers.weightsIndices.push(faceWeightIndices[i1 * 4 + 3]); buffers.weightsIndices.push(faceWeightIndices[i2 * 4]); buffers.weightsIndices.push(faceWeightIndices[i2 * 4 + 1]); buffers.weightsIndices.push(faceWeightIndices[i2 * 4 + 2]); buffers.weightsIndices.push(faceWeightIndices[i2 * 4 + 3]); } if (geoInfo.color) { buffers.colors.push(faceColors[i0 * 3]); buffers.colors.push(faceColors[i0 * 3 + 1]); buffers.colors.push(faceColors[i0 * 3 + 2]); buffers.colors.push(faceColors[i1 * 3]); buffers.colors.push(faceColors[i1 * 3 + 1]); buffers.colors.push(faceColors[i1 * 3 + 2]); buffers.colors.push(faceColors[i2 * 3]); buffers.colors.push(faceColors[i2 * 3 + 1]); buffers.colors.push(faceColors[i2 * 3 + 2]); } if (geoInfo.material && geoInfo.material.mappingType !== "AllSame") { buffers.materialIndex.push(materialIndex); buffers.materialIndex.push(materialIndex); buffers.materialIndex.push(materialIndex); } if (geoInfo.normal) { buffers.normal.push(faceNormals[i0 * 3]); buffers.normal.push(faceNormals[i0 * 3 + 1]); buffers.normal.push(faceNormals[i0 * 3 + 2]); buffers.normal.push(faceNormals[i1 * 3]); buffers.normal.push(faceNormals[i1 * 3 + 1]); buffers.normal.push(faceNormals[i1 * 3 + 2]); buffers.normal.push(faceNormals[i2 * 3]); buffers.normal.push(faceNormals[i2 * 3 + 1]); buffers.normal.push(faceNormals[i2 * 3 + 2]); } if (geoInfo.uv) { geoInfo.uv.forEach(function(uv, j) { if (buffers.uvs[j] === void 0) buffers.uvs[j] = []; buffers.uvs[j].push(faceUVs[j][i0 * 2]); buffers.uvs[j].push(faceUVs[j][i0 * 2 + 1]); buffers.uvs[j].push(faceUVs[j][i1 * 2]); buffers.uvs[j].push(faceUVs[j][i1 * 2 + 1]); buffers.uvs[j].push(faceUVs[j][i2 * 2]); buffers.uvs[j].push(faceUVs[j][i2 * 2 + 1]); }); } } } addMorphTargets(parentGeo, parentGeoNode, morphTargets, preTransform) { if (morphTargets.length === 0) return; parentGeo.morphTargetsRelative = true; parentGeo.morphAttributes.position = []; const scope = this; morphTargets.forEach(function(morphTarget) { morphTarget.rawTargets.forEach(function(rawTarget) { const morphGeoNode = fbxTree.Objects.Geometry[rawTarget.geoID]; if (morphGeoNode !== void 0) { scope.genMorphGeometry(parentGeo, parentGeoNode, morphGeoNode, preTransform, rawTarget.name); } }); }); } // a morph geometry node is similar to a standard node, and the node is also contained // in FBXTree.Objects.Geometry, however it can only have attributes for position, normal // and a special attribute Index defining which vertices of the original geometry are affected // Normal and position attributes only have data for the vertices that are affected by the morph genMorphGeometry(parentGeo, parentGeoNode, morphGeoNode, preTransform, name) { const basePositions = parentGeoNode.Vertices !== void 0 ? parentGeoNode.Vertices.a : []; const baseIndices = parentGeoNode.PolygonVertexIndex !== void 0 ? parentGeoNode.PolygonVertexIndex.a : []; const morphPositionsSparse = morphGeoNode.Vertices !== void 0 ? morphGeoNode.Vertices.a : []; const morphIndices = morphGeoNode.Indexes !== void 0 ? morphGeoNode.Indexes.a : []; const length = parentGeo.attributes.position.count * 3; const morphPositions = new Float32Array(length); for (let i = 0; i < morphIndices.length; i++) { const morphIndex = morphIndices[i] * 3; morphPositions[morphIndex] = morphPositionsSparse[i * 3]; morphPositions[morphIndex + 1] = morphPositionsSparse[i * 3 + 1]; morphPositions[morphIndex + 2] = morphPositionsSparse[i * 3 + 2]; } const morphGeoInfo = { vertexIndices: baseIndices, vertexPositions: morphPositions, baseVertexPositions: basePositions }; const morphBuffers = this.genBuffers(morphGeoInfo); const positionAttribute = new Float32BufferAttribute(morphBuffers.vertex, 3); positionAttribute.name = name || morphGeoNode.attrName; positionAttribute.applyMatrix4(preTransform); parentGeo.morphAttributes.position.push(positionAttribute); } // Parse normal from FBXTree.Objects.Geometry.LayerElementNormal if it exists parseNormals(NormalNode) { const mappingType = NormalNode.MappingInformationType; const referenceType = NormalNode.ReferenceInformationType; const buffer = NormalNode.Normals.a; let indexBuffer = []; if (referenceType === "IndexToDirect") { if ("NormalIndex" in NormalNode) { indexBuffer = NormalNode.NormalIndex.a; } else if ("NormalsIndex" in NormalNode) { indexBuffer = NormalNode.NormalsIndex.a; } } return { dataSize: 3, buffer, indices: indexBuffer, mappingType, referenceType }; } // Parse UVs from FBXTree.Objects.Geometry.LayerElementUV if it exists parseUVs(UVNode) { const mappingType = UVNode.MappingInformationType; const referenceType = UVNode.ReferenceInformationType; const buffer = UVNode.UV.a; let indexBuffer = []; if (referenceType === "IndexToDirect") { indexBuffer = UVNode.UVIndex.a; } return { dataSize: 2, buffer, indices: indexBuffer, mappingType, referenceType }; } // Parse Vertex Colors from FBXTree.Objects.Geometry.LayerElementColor if it exists parseVertexColors(ColorNode) { const mappingType = ColorNode.MappingInformationType; const referenceType = ColorNode.ReferenceInformationType; const buffer = ColorNode.Colors.a; let indexBuffer = []; if (referenceType === "IndexToDirect") { indexBuffer = ColorNode.ColorIndex.a; } for (let i = 0, c = new Color(); i < buffer.length; i += 4) { c.fromArray(buffer, i); ColorManagement.toWorkingColorSpace(c, SRGBColorSpace); c.toArray(buffer, i); } return { dataSize: 4, buffer, indices: indexBuffer, mappingType, referenceType }; } // Parse mapping and material data in FBXTree.Objects.Geometry.LayerElementMaterial if it exists parseMaterialIndices(MaterialNode) { const mappingType = MaterialNode.MappingInformationType; const referenceType = MaterialNode.ReferenceInformationType; if (mappingType === "NoMappingInformation") { return { dataSize: 1, buffer: [0], indices: [0], mappingType: "AllSame", referenceType }; } const materialIndexBuffer = MaterialNode.Materials.a; const materialIndices = []; for (let i = 0; i < materialIndexBuffer.length; ++i) { materialIndices.push(i); } return { dataSize: 1, buffer: materialIndexBuffer, indices: materialIndices, mappingType, referenceType }; } // Generate a NurbGeometry from a node in FBXTree.Objects.Geometry parseNurbsGeometry(geoNode) { const order = parseInt(geoNode.Order); if (isNaN(order)) { console.error("THREE.FBXLoader: Invalid Order %s given for geometry ID: %s", geoNode.Order, geoNode.id); return new BufferGeometry(); } const degree = order - 1; const knots = geoNode.KnotVector.a; const controlPoints = []; const pointsValues = geoNode.Points.a; for (let i = 0, l = pointsValues.length; i < l; i += 4) { controlPoints.push(new Vector4().fromArray(pointsValues, i)); } let startKnot, endKnot; if (geoNode.Form === "Closed") { controlPoints.push(controlPoints[0]); } else if (geoNode.Form === "Periodic") { startKnot = degree; endKnot = knots.length - 1 - startKnot; for (let i = 0; i < degree; ++i) { controlPoints.push(controlPoints[i]); } } const curve = new NURBSCurve(degree, knots, controlPoints, startKnot, endKnot); const points = curve.getPoints(controlPoints.length * 12); return new BufferGeometry().setFromPoints(points); } } class AnimationParser { static { __name(this, "AnimationParser"); } // take raw animation clips and turn them into three.js animation clips parse() { const animationClips = []; const rawClips = this.parseClips(); if (rawClips !== void 0) { for (const key in rawClips) { const rawClip = rawClips[key]; const clip = this.addClip(rawClip); animationClips.push(clip); } } return animationClips; } parseClips() { if (fbxTree.Objects.AnimationCurve === void 0) return void 0; const curveNodesMap = this.parseAnimationCurveNodes(); this.parseAnimationCurves(curveNodesMap); const layersMap = this.parseAnimationLayers(curveNodesMap); const rawClips = this.parseAnimStacks(layersMap); return rawClips; } // parse nodes in FBXTree.Objects.AnimationCurveNode // each AnimationCurveNode holds data for an animation transform for a model (e.g. left arm rotation ) // and is referenced by an AnimationLayer parseAnimationCurveNodes() { const rawCurveNodes = fbxTree.Objects.AnimationCurveNode; const curveNodesMap = /* @__PURE__ */ new Map(); for (const nodeID in rawCurveNodes) { const rawCurveNode = rawCurveNodes[nodeID]; if (rawCurveNode.attrName.match(/S|R|T|DeformPercent/) !== null) { const curveNode = { id: rawCurveNode.id, attr: rawCurveNode.attrName, curves: {} }; curveNodesMap.set(curveNode.id, curveNode); } } return curveNodesMap; } // parse nodes in FBXTree.Objects.AnimationCurve and connect them up to // previously parsed AnimationCurveNodes. Each AnimationCurve holds data for a single animated // axis ( e.g. times and values of x rotation) parseAnimationCurves(curveNodesMap) { const rawCurves = fbxTree.Objects.AnimationCurve; for (const nodeID in rawCurves) { const animationCurve = { id: rawCurves[nodeID].id, times: rawCurves[nodeID].KeyTime.a.map(convertFBXTimeToSeconds), values: rawCurves[nodeID].KeyValueFloat.a }; const relationships = connections.get(animationCurve.id); if (relationships !== void 0) { const animationCurveID = relationships.parents[0].ID; const animationCurveRelationship = relationships.parents[0].relationship; if (animationCurveRelationship.match(/X/)) { curveNodesMap.get(animationCurveID).curves["x"] = animationCurve; } else if (animationCurveRelationship.match(/Y/)) { curveNodesMap.get(animationCurveID).curves["y"] = animationCurve; } else if (animationCurveRelationship.match(/Z/)) { curveNodesMap.get(animationCurveID).curves["z"] = animationCurve; } else if (animationCurveRelationship.match(/DeformPercent/) && curveNodesMap.has(animationCurveID)) { curveNodesMap.get(animationCurveID).curves["morph"] = animationCurve; } } } } // parse nodes in FBXTree.Objects.AnimationLayer. Each layers holds references // to various AnimationCurveNodes and is referenced by an AnimationStack node // note: theoretically a stack can have multiple layers, however in practice there always seems to be one per stack parseAnimationLayers(curveNodesMap) { const rawLayers = fbxTree.Objects.AnimationLayer; const layersMap = /* @__PURE__ */ new Map(); for (const nodeID in rawLayers) { const layerCurveNodes = []; const connection = connections.get(parseInt(nodeID)); if (connection !== void 0) { const children = connection.children; children.forEach(function(child, i) { if (curveNodesMap.has(child.ID)) { const curveNode = curveNodesMap.get(child.ID); if (curveNode.curves.x !== void 0 || curveNode.curves.y !== void 0 || curveNode.curves.z !== void 0) { if (layerCurveNodes[i] === void 0) { const modelID = connections.get(child.ID).parents.filter(function(parent) { return parent.relationship !== void 0; })[0].ID; if (modelID !== void 0) { const rawModel = fbxTree.Objects.Model[modelID.toString()]; if (rawModel === void 0) { console.warn("THREE.FBXLoader: Encountered a unused curve.", child); return; } const node = { modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName(rawModel.attrName) : "", ID: rawModel.id, initialPosition: [0, 0, 0], initialRotation: [0, 0, 0], initialScale: [1, 1, 1] }; sceneGraph.traverse(function(child2) { if (child2.ID === rawModel.id) { node.transform = child2.matrix; if (child2.userData.transformData) node.eulerOrder = child2.userData.transformData.eulerOrder; } }); if (!node.transform) node.transform = new Matrix4(); if ("PreRotation" in rawModel) node.preRotation = rawModel.PreRotation.value; if ("PostRotation" in rawModel) node.postRotation = rawModel.PostRotation.value; layerCurveNodes[i] = node; } } if (layerCurveNodes[i]) layerCurveNodes[i][curveNode.attr] = curveNode; } else if (curveNode.curves.morph !== void 0) { if (layerCurveNodes[i] === void 0) { const deformerID = connections.get(child.ID).parents.filter(function(parent) { return parent.relationship !== void 0; })[0].ID; const morpherID = connections.get(deformerID).parents[0].ID; const geoID = connections.get(morpherID).parents[0].ID; const modelID = connections.get(geoID).parents[0].ID; const rawModel = fbxTree.Objects.Model[modelID]; const node = { modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName(rawModel.attrName) : "", morphName: fbxTree.Objects.Deformer[deformerID].attrName }; layerCurveNodes[i] = node; } layerCurveNodes[i][curveNode.attr] = curveNode; } } }); layersMap.set(parseInt(nodeID), layerCurveNodes); } } return layersMap; } // parse nodes in FBXTree.Objects.AnimationStack. These are the top level node in the animation // hierarchy. Each Stack node will be used to create a AnimationClip parseAnimStacks(layersMap) { const rawStacks = fbxTree.Objects.AnimationStack; const rawClips = {}; for (const nodeID in rawStacks) { const children = connections.get(parseInt(nodeID)).children; if (children.length > 1) { console.warn("THREE.FBXLoader: Encountered an animation stack with multiple layers, this is currently not supported. Ignoring subsequent layers."); } const layer = layersMap.get(children[0].ID); rawClips[nodeID] = { name: rawStacks[nodeID].attrName, layer }; } return rawClips; } addClip(rawClip) { let tracks = []; const scope = this; rawClip.layer.forEach(function(rawTracks) { tracks = tracks.concat(scope.generateTracks(rawTracks)); }); return new AnimationClip(rawClip.name, -1, tracks); } generateTracks(rawTracks) { const tracks = []; let initialPosition = new Vector3(); let initialScale = new Vector3(); if (rawTracks.transform) rawTracks.transform.decompose(initialPosition, new Quaternion(), initialScale); initialPosition = initialPosition.toArray(); initialScale = initialScale.toArray(); if (rawTracks.T !== void 0 && Object.keys(rawTracks.T.curves).length > 0) { const positionTrack = this.generateVectorTrack(rawTracks.modelName, rawTracks.T.curves, initialPosition, "position"); if (positionTrack !== void 0) tracks.push(positionTrack); } if (rawTracks.R !== void 0 && Object.keys(rawTracks.R.curves).length > 0) { const rotationTrack = this.generateRotationTrack(rawTracks.modelName, rawTracks.R.curves, rawTracks.preRotation, rawTracks.postRotation, rawTracks.eulerOrder); if (rotationTrack !== void 0) tracks.push(rotationTrack); } if (rawTracks.S !== void 0 && Object.keys(rawTracks.S.curves).length > 0) { const scaleTrack = this.generateVectorTrack(rawTracks.modelName, rawTracks.S.curves, initialScale, "scale"); if (scaleTrack !== void 0) tracks.push(scaleTrack); } if (rawTracks.DeformPercent !== void 0) { const morphTrack = this.generateMorphTrack(rawTracks); if (morphTrack !== void 0) tracks.push(morphTrack); } return tracks; } generateVectorTrack(modelName, curves, initialValue, type) { const times = this.getTimesForAllAxes(curves); const values = this.getKeyframeTrackValues(times, curves, initialValue); return new VectorKeyframeTrack(modelName + "." + type, times, values); } generateRotationTrack(modelName, curves, preRotation, postRotation, eulerOrder) { let times; let values; if (curves.x !== void 0 && curves.y !== void 0 && curves.z !== void 0) { const result = this.interpolateRotations(curves.x, curves.y, curves.z, eulerOrder); times = result[0]; values = result[1]; } const defaultEulerOrder = getEulerOrder(0); if (preRotation !== void 0) { preRotation = preRotation.map(MathUtils.degToRad); preRotation.push(defaultEulerOrder); preRotation = new Euler().fromArray(preRotation); preRotation = new Quaternion().setFromEuler(preRotation); } if (postRotation !== void 0) { postRotation = postRotation.map(MathUtils.degToRad); postRotation.push(defaultEulerOrder); postRotation = new Euler().fromArray(postRotation); postRotation = new Quaternion().setFromEuler(postRotation).invert(); } const quaternion = new Quaternion(); const euler = new Euler(); const quaternionValues = []; if (!values || !times) return new QuaternionKeyframeTrack(modelName + ".quaternion", [0], [0]); for (let i = 0; i < values.length; i += 3) { euler.set(values[i], values[i + 1], values[i + 2], eulerOrder); quaternion.setFromEuler(euler); if (preRotation !== void 0) quaternion.premultiply(preRotation); if (postRotation !== void 0) quaternion.multiply(postRotation); if (i > 2) { const prevQuat = new Quaternion().fromArray( quaternionValues, (i - 3) / 3 * 4 ); if (prevQuat.dot(quaternion) < 0) { quaternion.set(-quaternion.x, -quaternion.y, -quaternion.z, -quaternion.w); } } quaternion.toArray(quaternionValues, i / 3 * 4); } return new QuaternionKeyframeTrack(modelName + ".quaternion", times, quaternionValues); } generateMorphTrack(rawTracks) { const curves = rawTracks.DeformPercent.curves.morph; const values = curves.values.map(function(val) { return val / 100; }); const morphNum = sceneGraph.getObjectByName(rawTracks.modelName).morphTargetDictionary[rawTracks.morphName]; return new NumberKeyframeTrack(rawTracks.modelName + ".morphTargetInfluences[" + morphNum + "]", curves.times, values); } // For all animated objects, times are defined separately for each axis // Here we'll combine the times into one sorted array without duplicates getTimesForAllAxes(curves) { let times = []; if (curves.x !== void 0) times = times.concat(curves.x.times); if (curves.y !== void 0) times = times.concat(curves.y.times); if (curves.z !== void 0) times = times.concat(curves.z.times); times = times.sort(function(a, b) { return a - b; }); if (times.length > 1) { let targetIndex = 1; let lastValue = times[0]; for (let i = 1; i < times.length; i++) { const currentValue = times[i]; if (currentValue !== lastValue) { times[targetIndex] = currentValue; lastValue = currentValue; targetIndex++; } } times = times.slice(0, targetIndex); } return times; } getKeyframeTrackValues(times, curves, initialValue) { const prevValue = initialValue; const values = []; let xIndex = -1; let yIndex = -1; let zIndex = -1; times.forEach(function(time) { if (curves.x) xIndex = curves.x.times.indexOf(time); if (curves.y) yIndex = curves.y.times.indexOf(time); if (curves.z) zIndex = curves.z.times.indexOf(time); if (xIndex !== -1) { const xValue = curves.x.values[xIndex]; values.push(xValue); prevValue[0] = xValue; } else { values.push(prevValue[0]); } if (yIndex !== -1) { const yValue = curves.y.values[yIndex]; values.push(yValue); prevValue[1] = yValue; } else { values.push(prevValue[1]); } if (zIndex !== -1) { const zValue = curves.z.values[zIndex]; values.push(zValue); prevValue[2] = zValue; } else { values.push(prevValue[2]); } }); return values; } // Rotations are defined as Euler angles which can have values of any size // These will be converted to quaternions which don't support values greater than // PI, so we'll interpolate large rotations interpolateRotations(curvex, curvey, curvez, eulerOrder) { const times = []; const values = []; times.push(curvex.times[0]); values.push(MathUtils.degToRad(curvex.values[0])); values.push(MathUtils.degToRad(curvey.values[0])); values.push(MathUtils.degToRad(curvez.values[0])); for (let i = 1; i < curvex.values.length; i++) { const initialValue = [ curvex.values[i - 1], curvey.values[i - 1], curvez.values[i - 1] ]; if (isNaN(initialValue[0]) || isNaN(initialValue[1]) || isNaN(initialValue[2])) { continue; } const initialValueRad = initialValue.map(MathUtils.degToRad); const currentValue = [ curvex.values[i], curvey.values[i], curvez.values[i] ]; if (isNaN(currentValue[0]) || isNaN(currentValue[1]) || isNaN(currentValue[2])) { continue; } const currentValueRad = currentValue.map(MathUtils.degToRad); const valuesSpan = [ currentValue[0] - initialValue[0], currentValue[1] - initialValue[1], currentValue[2] - initialValue[2] ]; const absoluteSpan = [ Math.abs(valuesSpan[0]), Math.abs(valuesSpan[1]), Math.abs(valuesSpan[2]) ]; if (absoluteSpan[0] >= 180 || absoluteSpan[1] >= 180 || absoluteSpan[2] >= 180) { const maxAbsSpan = Math.max(...absoluteSpan); const numSubIntervals = maxAbsSpan / 180; const E1 = new Euler(...initialValueRad, eulerOrder); const E2 = new Euler(...currentValueRad, eulerOrder); const Q1 = new Quaternion().setFromEuler(E1); const Q2 = new Quaternion().setFromEuler(E2); if (Q1.dot(Q2)) { Q2.set(-Q2.x, -Q2.y, -Q2.z, -Q2.w); } const initialTime = curvex.times[i - 1]; const timeSpan = curvex.times[i] - initialTime; const Q = new Quaternion(); const E = new Euler(); for (let t = 0; t < 1; t += 1 / numSubIntervals) { Q.copy(Q1.clone().slerp(Q2.clone(), t)); times.push(initialTime + t * timeSpan); E.setFromQuaternion(Q, eulerOrder); values.push(E.x); values.push(E.y); values.push(E.z); } } else { times.push(curvex.times[i]); values.push(MathUtils.degToRad(curvex.values[i])); values.push(MathUtils.degToRad(curvey.values[i])); values.push(MathUtils.degToRad(curvez.values[i])); } } return [times, values]; } } class TextParser { static { __name(this, "TextParser"); } getPrevNode() { return this.nodeStack[this.currentIndent - 2]; } getCurrentNode() { return this.nodeStack[this.currentIndent - 1]; } getCurrentProp() { return this.currentProp; } pushStack(node) { this.nodeStack.push(node); this.currentIndent += 1; } popStack() { this.nodeStack.pop(); this.currentIndent -= 1; } setCurrentProp(val, name) { this.currentProp = val; this.currentPropName = name; } parse(text) { this.currentIndent = 0; this.allNodes = new FBXTree(); this.nodeStack = []; this.currentProp = []; this.currentPropName = ""; const scope = this; const split = text.split(/[\r\n]+/); split.forEach(function(line, i) { const matchComment = line.match(/^[\s\t]*;/); const matchEmpty = line.match(/^[\s\t]*$/); if (matchComment || matchEmpty) return; const matchBeginning = line.match("^\\t{" + scope.currentIndent + "}(\\w+):(.*){", ""); const matchProperty = line.match("^\\t{" + scope.currentIndent + "}(\\w+):[\\s\\t\\r\\n](.*)"); const matchEnd = line.match("^\\t{" + (scope.currentIndent - 1) + "}}"); if (matchBeginning) { scope.parseNodeBegin(line, matchBeginning); } else if (matchProperty) { scope.parseNodeProperty(line, matchProperty, split[++i]); } else if (matchEnd) { scope.popStack(); } else if (line.match(/^[^\s\t}]/)) { scope.parseNodePropertyContinued(line); } }); return this.allNodes; } parseNodeBegin(line, property) { const nodeName = property[1].trim().replace(/^"/, "").replace(/"$/, ""); const nodeAttrs = property[2].split(",").map(function(attr) { return attr.trim().replace(/^"/, "").replace(/"$/, ""); }); const node = { name: nodeName }; const attrs = this.parseNodeAttr(nodeAttrs); const currentNode = this.getCurrentNode(); if (this.currentIndent === 0) { this.allNodes.add(nodeName, node); } else { if (nodeName in currentNode) { if (nodeName === "PoseNode") { currentNode.PoseNode.push(node); } else if (currentNode[nodeName].id !== void 0) { currentNode[nodeName] = {}; currentNode[nodeName][currentNode[nodeName].id] = currentNode[nodeName]; } if (attrs.id !== "") currentNode[nodeName][attrs.id] = node; } else if (typeof attrs.id === "number") { currentNode[nodeName] = {}; currentNode[nodeName][attrs.id] = node; } else if (nodeName !== "Properties70") { if (nodeName === "PoseNode") currentNode[nodeName] = [node]; else currentNode[nodeName] = node; } } if (typeof attrs.id === "number") node.id = attrs.id; if (attrs.name !== "") node.attrName = attrs.name; if (attrs.type !== "") node.attrType = attrs.type; this.pushStack(node); } parseNodeAttr(attrs) { let id2 = attrs[0]; if (attrs[0] !== "") { id2 = parseInt(attrs[0]); if (isNaN(id2)) { id2 = attrs[0]; } } let name = "", type = ""; if (attrs.length > 1) { name = attrs[1].replace(/^(\w+)::/, ""); type = attrs[2]; } return { id: id2, name, type }; } parseNodeProperty(line, property, contentLine) { let propName = property[1].replace(/^"/, "").replace(/"$/, "").trim(); let propValue = property[2].replace(/^"/, "").replace(/"$/, "").trim(); if (propName === "Content" && propValue === ",") { propValue = contentLine.replace(/"/g, "").replace(/,$/, "").trim(); } const currentNode = this.getCurrentNode(); const parentName = currentNode.name; if (parentName === "Properties70") { this.parseNodeSpecialProperty(line, propName, propValue); return; } if (propName === "C") { const connProps = propValue.split(",").slice(1); const from = parseInt(connProps[0]); const to = parseInt(connProps[1]); let rest = propValue.split(",").slice(3); rest = rest.map(function(elem) { return elem.trim().replace(/^"/, ""); }); propName = "connections"; propValue = [from, to]; append(propValue, rest); if (currentNode[propName] === void 0) { currentNode[propName] = []; } } if (propName === "Node") currentNode.id = propValue; if (propName in currentNode && Array.isArray(currentNode[propName])) { currentNode[propName].push(propValue); } else { if (propName !== "a") currentNode[propName] = propValue; else currentNode.a = propValue; } this.setCurrentProp(currentNode, propName); if (propName === "a" && propValue.slice(-1) !== ",") { currentNode.a = parseNumberArray(propValue); } } parseNodePropertyContinued(line) { const currentNode = this.getCurrentNode(); currentNode.a += line; if (line.slice(-1) !== ",") { currentNode.a = parseNumberArray(currentNode.a); } } // parse "Property70" parseNodeSpecialProperty(line, propName, propValue) { const props = propValue.split('",').map(function(prop) { return prop.trim().replace(/^\"/, "").replace(/\s/, "_"); }); const innerPropName = props[0]; const innerPropType1 = props[1]; const innerPropType2 = props[2]; const innerPropFlag = props[3]; let innerPropValue = props[4]; switch (innerPropType1) { case "int": case "enum": case "bool": case "ULongLong": case "double": case "Number": case "FieldOfView": innerPropValue = parseFloat(innerPropValue); break; case "Color": case "ColorRGB": case "Vector3D": case "Lcl_Translation": case "Lcl_Rotation": case "Lcl_Scaling": innerPropValue = parseNumberArray(innerPropValue); break; } this.getPrevNode()[innerPropName] = { "type": innerPropType1, "type2": innerPropType2, "flag": innerPropFlag, "value": innerPropValue }; this.setCurrentProp(this.getPrevNode(), innerPropName); } } class BinaryParser { static { __name(this, "BinaryParser"); } parse(buffer) { const reader = new BinaryReader(buffer); reader.skip(23); const version = reader.getUint32(); if (version < 6400) { throw new Error("THREE.FBXLoader: FBX version not supported, FileVersion: " + version); } const allNodes = new FBXTree(); while (!this.endOfContent(reader)) { const node = this.parseNode(reader, version); if (node !== null) allNodes.add(node.name, node); } return allNodes; } // Check if reader has reached the end of content. endOfContent(reader) { if (reader.size() % 16 === 0) { return (reader.getOffset() + 160 + 16 & ~15) >= reader.size(); } else { return reader.getOffset() + 160 + 16 >= reader.size(); } } // recursively parse nodes until the end of the file is reached parseNode(reader, version) { const node = {}; const endOffset = version >= 7500 ? reader.getUint64() : reader.getUint32(); const numProperties = version >= 7500 ? reader.getUint64() : reader.getUint32(); version >= 7500 ? reader.getUint64() : reader.getUint32(); const nameLen = reader.getUint8(); const name = reader.getString(nameLen); if (endOffset === 0) return null; const propertyList = []; for (let i = 0; i < numProperties; i++) { propertyList.push(this.parseProperty(reader)); } const id2 = propertyList.length > 0 ? propertyList[0] : ""; const attrName = propertyList.length > 1 ? propertyList[1] : ""; const attrType = propertyList.length > 2 ? propertyList[2] : ""; node.singleProperty = numProperties === 1 && reader.getOffset() === endOffset ? true : false; while (endOffset > reader.getOffset()) { const subNode = this.parseNode(reader, version); if (subNode !== null) this.parseSubNode(name, node, subNode); } node.propertyList = propertyList; if (typeof id2 === "number") node.id = id2; if (attrName !== "") node.attrName = attrName; if (attrType !== "") node.attrType = attrType; if (name !== "") node.name = name; return node; } parseSubNode(name, node, subNode) { if (subNode.singleProperty === true) { const value = subNode.propertyList[0]; if (Array.isArray(value)) { node[subNode.name] = subNode; subNode.a = value; } else { node[subNode.name] = value; } } else if (name === "Connections" && subNode.name === "C") { const array = []; subNode.propertyList.forEach(function(property, i) { if (i !== 0) array.push(property); }); if (node.connections === void 0) { node.connections = []; } node.connections.push(array); } else if (subNode.name === "Properties70") { const keys = Object.keys(subNode); keys.forEach(function(key) { node[key] = subNode[key]; }); } else if (name === "Properties70" && subNode.name === "P") { let innerPropName = subNode.propertyList[0]; let innerPropType1 = subNode.propertyList[1]; const innerPropType2 = subNode.propertyList[2]; const innerPropFlag = subNode.propertyList[3]; let innerPropValue; if (innerPropName.indexOf("Lcl ") === 0) innerPropName = innerPropName.replace("Lcl ", "Lcl_"); if (innerPropType1.indexOf("Lcl ") === 0) innerPropType1 = innerPropType1.replace("Lcl ", "Lcl_"); if (innerPropType1 === "Color" || innerPropType1 === "ColorRGB" || innerPropType1 === "Vector" || innerPropType1 === "Vector3D" || innerPropType1.indexOf("Lcl_") === 0) { innerPropValue = [ subNode.propertyList[4], subNode.propertyList[5], subNode.propertyList[6] ]; } else { innerPropValue = subNode.propertyList[4]; } node[innerPropName] = { "type": innerPropType1, "type2": innerPropType2, "flag": innerPropFlag, "value": innerPropValue }; } else if (node[subNode.name] === void 0) { if (typeof subNode.id === "number") { node[subNode.name] = {}; node[subNode.name][subNode.id] = subNode; } else { node[subNode.name] = subNode; } } else { if (subNode.name === "PoseNode") { if (!Array.isArray(node[subNode.name])) { node[subNode.name] = [node[subNode.name]]; } node[subNode.name].push(subNode); } else if (node[subNode.name][subNode.id] === void 0) { node[subNode.name][subNode.id] = subNode; } } } parseProperty(reader) { const type = reader.getString(1); let length; switch (type) { case "C": return reader.getBoolean(); case "D": return reader.getFloat64(); case "F": return reader.getFloat32(); case "I": return reader.getInt32(); case "L": return reader.getInt64(); case "R": length = reader.getUint32(); return reader.getArrayBuffer(length); case "S": length = reader.getUint32(); return reader.getString(length); case "Y": return reader.getInt16(); case "b": case "c": case "d": case "f": case "i": case "l": const arrayLength = reader.getUint32(); const encoding = reader.getUint32(); const compressedLength = reader.getUint32(); if (encoding === 0) { switch (type) { case "b": case "c": return reader.getBooleanArray(arrayLength); case "d": return reader.getFloat64Array(arrayLength); case "f": return reader.getFloat32Array(arrayLength); case "i": return reader.getInt32Array(arrayLength); case "l": return reader.getInt64Array(arrayLength); } } const data = unzlibSync(new Uint8Array(reader.getArrayBuffer(compressedLength))); const reader2 = new BinaryReader(data.buffer); switch (type) { case "b": case "c": return reader2.getBooleanArray(arrayLength); case "d": return reader2.getFloat64Array(arrayLength); case "f": return reader2.getFloat32Array(arrayLength); case "i": return reader2.getInt32Array(arrayLength); case "l": return reader2.getInt64Array(arrayLength); } break; default: throw new Error("THREE.FBXLoader: Unknown property type " + type); } } } class BinaryReader { static { __name(this, "BinaryReader"); } constructor(buffer, littleEndian) { this.dv = new DataView(buffer); this.offset = 0; this.littleEndian = littleEndian !== void 0 ? littleEndian : true; this._textDecoder = new TextDecoder(); } getOffset() { return this.offset; } size() { return this.dv.buffer.byteLength; } skip(length) { this.offset += length; } // seems like true/false representation depends on exporter. // true: 1 or 'Y'(=0x59), false: 0 or 'T'(=0x54) // then sees LSB. getBoolean() { return (this.getUint8() & 1) === 1; } getBooleanArray(size) { const a = []; for (let i = 0; i < size; i++) { a.push(this.getBoolean()); } return a; } getUint8() { const value = this.dv.getUint8(this.offset); this.offset += 1; return value; } getInt16() { const value = this.dv.getInt16(this.offset, this.littleEndian); this.offset += 2; return value; } getInt32() { const value = this.dv.getInt32(this.offset, this.littleEndian); this.offset += 4; return value; } getInt32Array(size) { const a = []; for (let i = 0; i < size; i++) { a.push(this.getInt32()); } return a; } getUint32() { const value = this.dv.getUint32(this.offset, this.littleEndian); this.offset += 4; return value; } // JavaScript doesn't support 64-bit integer so calculate this here // 1 << 32 will return 1 so using multiply operation instead here. // There's a possibility that this method returns wrong value if the value // is out of the range between Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER. // TODO: safely handle 64-bit integer getInt64() { let low, high; if (this.littleEndian) { low = this.getUint32(); high = this.getUint32(); } else { high = this.getUint32(); low = this.getUint32(); } if (high & 2147483648) { high = ~high & 4294967295; low = ~low & 4294967295; if (low === 4294967295) high = high + 1 & 4294967295; low = low + 1 & 4294967295; return -(high * 4294967296 + low); } return high * 4294967296 + low; } getInt64Array(size) { const a = []; for (let i = 0; i < size; i++) { a.push(this.getInt64()); } return a; } // Note: see getInt64() comment getUint64() { let low, high; if (this.littleEndian) { low = this.getUint32(); high = this.getUint32(); } else { high = this.getUint32(); low = this.getUint32(); } return high * 4294967296 + low; } getFloat32() { const value = this.dv.getFloat32(this.offset, this.littleEndian); this.offset += 4; return value; } getFloat32Array(size) { const a = []; for (let i = 0; i < size; i++) { a.push(this.getFloat32()); } return a; } getFloat64() { const value = this.dv.getFloat64(this.offset, this.littleEndian); this.offset += 8; return value; } getFloat64Array(size) { const a = []; for (let i = 0; i < size; i++) { a.push(this.getFloat64()); } return a; } getArrayBuffer(size) { const value = this.dv.buffer.slice(this.offset, this.offset + size); this.offset += size; return value; } getString(size) { const start = this.offset; let a = new Uint8Array(this.dv.buffer, start, size); this.skip(size); const nullByte = a.indexOf(0); if (nullByte >= 0) a = new Uint8Array(this.dv.buffer, start, nullByte); return this._textDecoder.decode(a); } } class FBXTree { static { __name(this, "FBXTree"); } add(key, val) { this[key] = val; } } function isFbxFormatBinary(buffer) { const CORRECT = "Kaydara FBX Binary \0"; return buffer.byteLength >= CORRECT.length && CORRECT === convertArrayBufferToString(buffer, 0, CORRECT.length); } __name(isFbxFormatBinary, "isFbxFormatBinary"); function isFbxFormatASCII(text) { const CORRECT = ["K", "a", "y", "d", "a", "r", "a", "\\", "F", "B", "X", "\\", "B", "i", "n", "a", "r", "y", "\\", "\\"]; let cursor = 0; function read(offset) { const result = text[offset - 1]; text = text.slice(cursor + offset); cursor++; return result; } __name(read, "read"); for (let i = 0; i < CORRECT.length; ++i) { const num = read(1); if (num === CORRECT[i]) { return false; } } return true; } __name(isFbxFormatASCII, "isFbxFormatASCII"); function getFbxVersion(text) { const versionRegExp = /FBXVersion: (\d+)/; const match = text.match(versionRegExp); if (match) { const version = parseInt(match[1]); return version; } throw new Error("THREE.FBXLoader: Cannot find the version number for the file given."); } __name(getFbxVersion, "getFbxVersion"); function convertFBXTimeToSeconds(time) { return time / 46186158e3; } __name(convertFBXTimeToSeconds, "convertFBXTimeToSeconds"); const dataArray = []; function getData(polygonVertexIndex, polygonIndex, vertexIndex, infoObject) { let index; switch (infoObject.mappingType) { case "ByPolygonVertex": index = polygonVertexIndex; break; case "ByPolygon": index = polygonIndex; break; case "ByVertice": index = vertexIndex; break; case "AllSame": index = infoObject.indices[0]; break; default: console.warn("THREE.FBXLoader: unknown attribute mapping type " + infoObject.mappingType); } if (infoObject.referenceType === "IndexToDirect") index = infoObject.indices[index]; const from = index * infoObject.dataSize; const to = from + infoObject.dataSize; return slice(dataArray, infoObject.buffer, from, to); } __name(getData, "getData"); const tempEuler = new Euler(); const tempVec = new Vector3(); function generateTransform(transformData) { const lTranslationM = new Matrix4(); const lPreRotationM = new Matrix4(); const lRotationM = new Matrix4(); const lPostRotationM = new Matrix4(); const lScalingM = new Matrix4(); const lScalingPivotM = new Matrix4(); const lScalingOffsetM = new Matrix4(); const lRotationOffsetM = new Matrix4(); const lRotationPivotM = new Matrix4(); const lParentGX = new Matrix4(); const lParentLX = new Matrix4(); const lGlobalT = new Matrix4(); const inheritType = transformData.inheritType ? transformData.inheritType : 0; if (transformData.translation) lTranslationM.setPosition(tempVec.fromArray(transformData.translation)); const defaultEulerOrder = getEulerOrder(0); if (transformData.preRotation) { const array = transformData.preRotation.map(MathUtils.degToRad); array.push(defaultEulerOrder); lPreRotationM.makeRotationFromEuler(tempEuler.fromArray(array)); } if (transformData.rotation) { const array = transformData.rotation.map(MathUtils.degToRad); array.push(transformData.eulerOrder || defaultEulerOrder); lRotationM.makeRotationFromEuler(tempEuler.fromArray(array)); } if (transformData.postRotation) { const array = transformData.postRotation.map(MathUtils.degToRad); array.push(defaultEulerOrder); lPostRotationM.makeRotationFromEuler(tempEuler.fromArray(array)); lPostRotationM.invert(); } if (transformData.scale) lScalingM.scale(tempVec.fromArray(transformData.scale)); if (transformData.scalingOffset) lScalingOffsetM.setPosition(tempVec.fromArray(transformData.scalingOffset)); if (transformData.scalingPivot) lScalingPivotM.setPosition(tempVec.fromArray(transformData.scalingPivot)); if (transformData.rotationOffset) lRotationOffsetM.setPosition(tempVec.fromArray(transformData.rotationOffset)); if (transformData.rotationPivot) lRotationPivotM.setPosition(tempVec.fromArray(transformData.rotationPivot)); if (transformData.parentMatrixWorld) { lParentLX.copy(transformData.parentMatrix); lParentGX.copy(transformData.parentMatrixWorld); } const lLRM = lPreRotationM.clone().multiply(lRotationM).multiply(lPostRotationM); const lParentGRM = new Matrix4(); lParentGRM.extractRotation(lParentGX); const lParentTM = new Matrix4(); lParentTM.copyPosition(lParentGX); const lParentGRSM = lParentTM.clone().invert().multiply(lParentGX); const lParentGSM = lParentGRM.clone().invert().multiply(lParentGRSM); const lLSM = lScalingM; const lGlobalRS = new Matrix4(); if (inheritType === 0) { lGlobalRS.copy(lParentGRM).multiply(lLRM).multiply(lParentGSM).multiply(lLSM); } else if (inheritType === 1) { lGlobalRS.copy(lParentGRM).multiply(lParentGSM).multiply(lLRM).multiply(lLSM); } else { const lParentLSM = new Matrix4().scale(new Vector3().setFromMatrixScale(lParentLX)); const lParentLSM_inv = lParentLSM.clone().invert(); const lParentGSM_noLocal = lParentGSM.clone().multiply(lParentLSM_inv); lGlobalRS.copy(lParentGRM).multiply(lLRM).multiply(lParentGSM_noLocal).multiply(lLSM); } const lRotationPivotM_inv = lRotationPivotM.clone().invert(); const lScalingPivotM_inv = lScalingPivotM.clone().invert(); let lTransform = lTranslationM.clone().multiply(lRotationOffsetM).multiply(lRotationPivotM).multiply(lPreRotationM).multiply(lRotationM).multiply(lPostRotationM).multiply(lRotationPivotM_inv).multiply(lScalingOffsetM).multiply(lScalingPivotM).multiply(lScalingM).multiply(lScalingPivotM_inv); const lLocalTWithAllPivotAndOffsetInfo = new Matrix4().copyPosition(lTransform); const lGlobalTranslation = lParentGX.clone().multiply(lLocalTWithAllPivotAndOffsetInfo); lGlobalT.copyPosition(lGlobalTranslation); lTransform = lGlobalT.clone().multiply(lGlobalRS); lTransform.premultiply(lParentGX.invert()); return lTransform; } __name(generateTransform, "generateTransform"); function getEulerOrder(order) { order = order || 0; const enums = [ "ZYX", // -> XYZ extrinsic "YZX", // -> XZY extrinsic "XZY", // -> YZX extrinsic "ZXY", // -> YXZ extrinsic "YXZ", // -> ZXY extrinsic "XYZ" // -> ZYX extrinsic //'SphericXYZ', // not possible to support ]; if (order === 6) { console.warn("THREE.FBXLoader: unsupported Euler Order: Spherical XYZ. Animations and rotations may be incorrect."); return enums[0]; } return enums[order]; } __name(getEulerOrder, "getEulerOrder"); function parseNumberArray(value) { const array = value.split(",").map(function(val) { return parseFloat(val); }); return array; } __name(parseNumberArray, "parseNumberArray"); function convertArrayBufferToString(buffer, from, to) { if (from === void 0) from = 0; if (to === void 0) to = buffer.byteLength; return new TextDecoder().decode(new Uint8Array(buffer, from, to)); } __name(convertArrayBufferToString, "convertArrayBufferToString"); function append(a, b) { for (let i = 0, j = a.length, l = b.length; i < l; i++, j++) { a[j] = b[i]; } } __name(append, "append"); function slice(a, b, from, to) { for (let i = from, j = 0; i < to; i++, j++) { a[j] = b[i]; } return a; } __name(slice, "slice"); class STLLoader extends Loader { static { __name(this, "STLLoader"); } constructor(manager) { super(manager); } load(url, onLoad, onProgress, onError) { const scope = this; const loader = new FileLoader(this.manager); loader.setPath(this.path); loader.setResponseType("arraybuffer"); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(this.withCredentials); loader.load(url, function(text) { try { onLoad(scope.parse(text)); } catch (e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } }, onProgress, onError); } parse(data) { function isBinary(data2) { const reader = new DataView(data2); const face_size = 32 / 8 * 3 + 32 / 8 * 3 * 3 + 16 / 8; const n_faces = reader.getUint32(80, true); const expect = 80 + 32 / 8 + n_faces * face_size; if (expect === reader.byteLength) { return true; } const solid = [115, 111, 108, 105, 100]; for (let off = 0; off < 5; off++) { if (matchDataViewAt(solid, reader, off)) return false; } return true; } __name(isBinary, "isBinary"); function matchDataViewAt(query, reader, offset) { for (let i = 0, il = query.length; i < il; i++) { if (query[i] !== reader.getUint8(offset + i)) return false; } return true; } __name(matchDataViewAt, "matchDataViewAt"); function parseBinary(data2) { const reader = new DataView(data2); const faces = reader.getUint32(80, true); let r, g, b, hasColors = false, colors; let defaultR, defaultG, defaultB, alpha; for (let index = 0; index < 80 - 10; index++) { if (reader.getUint32(index, false) == 1129270351 && reader.getUint8(index + 4) == 82 && reader.getUint8(index + 5) == 61) { hasColors = true; colors = new Float32Array(faces * 3 * 3); defaultR = reader.getUint8(index + 6) / 255; defaultG = reader.getUint8(index + 7) / 255; defaultB = reader.getUint8(index + 8) / 255; alpha = reader.getUint8(index + 9) / 255; } } const dataOffset = 84; const faceLength = 12 * 4 + 2; const geometry = new BufferGeometry(); const vertices = new Float32Array(faces * 3 * 3); const normals = new Float32Array(faces * 3 * 3); const color = new Color(); for (let face = 0; face < faces; face++) { const start = dataOffset + face * faceLength; const normalX = reader.getFloat32(start, true); const normalY = reader.getFloat32(start + 4, true); const normalZ = reader.getFloat32(start + 8, true); if (hasColors) { const packedColor = reader.getUint16(start + 48, true); if ((packedColor & 32768) === 0) { r = (packedColor & 31) / 31; g = (packedColor >> 5 & 31) / 31; b = (packedColor >> 10 & 31) / 31; } else { r = defaultR; g = defaultG; b = defaultB; } } for (let i = 1; i <= 3; i++) { const vertexstart = start + i * 12; const componentIdx = face * 3 * 3 + (i - 1) * 3; vertices[componentIdx] = reader.getFloat32(vertexstart, true); vertices[componentIdx + 1] = reader.getFloat32(vertexstart + 4, true); vertices[componentIdx + 2] = reader.getFloat32(vertexstart + 8, true); normals[componentIdx] = normalX; normals[componentIdx + 1] = normalY; normals[componentIdx + 2] = normalZ; if (hasColors) { color.setRGB(r, g, b, SRGBColorSpace); colors[componentIdx] = color.r; colors[componentIdx + 1] = color.g; colors[componentIdx + 2] = color.b; } } } geometry.setAttribute("position", new BufferAttribute(vertices, 3)); geometry.setAttribute("normal", new BufferAttribute(normals, 3)); if (hasColors) { geometry.setAttribute("color", new BufferAttribute(colors, 3)); geometry.hasColors = true; geometry.alpha = alpha; } return geometry; } __name(parseBinary, "parseBinary"); function parseASCII(data2) { const geometry = new BufferGeometry(); const patternSolid = /solid([\s\S]*?)endsolid/g; const patternFace = /facet([\s\S]*?)endfacet/g; const patternName = /solid\s(.+)/; let faceCounter = 0; const patternFloat = /[\s]+([+-]?(?:\d*)(?:\.\d*)?(?:[eE][+-]?\d+)?)/.source; const patternVertex = new RegExp("vertex" + patternFloat + patternFloat + patternFloat, "g"); const patternNormal = new RegExp("normal" + patternFloat + patternFloat + patternFloat, "g"); const vertices = []; const normals = []; const groupNames = []; const normal = new Vector3(); let result; let groupCount = 0; let startVertex = 0; let endVertex = 0; while ((result = patternSolid.exec(data2)) !== null) { startVertex = endVertex; const solid = result[0]; const name = (result = patternName.exec(solid)) !== null ? result[1] : ""; groupNames.push(name); while ((result = patternFace.exec(solid)) !== null) { let vertexCountPerFace = 0; let normalCountPerFace = 0; const text = result[0]; while ((result = patternNormal.exec(text)) !== null) { normal.x = parseFloat(result[1]); normal.y = parseFloat(result[2]); normal.z = parseFloat(result[3]); normalCountPerFace++; } while ((result = patternVertex.exec(text)) !== null) { vertices.push(parseFloat(result[1]), parseFloat(result[2]), parseFloat(result[3])); normals.push(normal.x, normal.y, normal.z); vertexCountPerFace++; endVertex++; } if (normalCountPerFace !== 1) { console.error("THREE.STLLoader: Something isn't right with the normal of face number " + faceCounter); } if (vertexCountPerFace !== 3) { console.error("THREE.STLLoader: Something isn't right with the vertices of face number " + faceCounter); } faceCounter++; } const start = startVertex; const count = endVertex - startVertex; geometry.userData.groupNames = groupNames; geometry.addGroup(start, count, groupCount); groupCount++; } geometry.setAttribute("position", new Float32BufferAttribute(vertices, 3)); geometry.setAttribute("normal", new Float32BufferAttribute(normals, 3)); return geometry; } __name(parseASCII, "parseASCII"); function ensureString(buffer) { if (typeof buffer !== "string") { return new TextDecoder().decode(buffer); } return buffer; } __name(ensureString, "ensureString"); function ensureBinary(buffer) { if (typeof buffer === "string") { const array_buffer = new Uint8Array(buffer.length); for (let i = 0; i < buffer.length; i++) { array_buffer[i] = buffer.charCodeAt(i) & 255; } return array_buffer.buffer || array_buffer; } else { return buffer; } } __name(ensureBinary, "ensureBinary"); const binData = ensureBinary(data); return isBinary(binData) ? parseBinary(binData) : parseASCII(ensureString(data)); } } async function uploadFile(load3d, file2, fileInput) { let uploadPath; try { const body = new FormData(); body.append("image", file2); body.append("subfolder", "3d"); const resp = await api.fetchApi("/upload/image", { method: "POST", body }); if (resp.status === 200) { const data = await resp.json(); let path = data.name; if (data.subfolder) path = data.subfolder + "/" + path; uploadPath = path; const modelUrl = api.apiURL( getResourceURL(...splitFilePath(path), "input") ); await load3d.loadModel(modelUrl, file2.name); const fileExt = file2.name.split(".").pop()?.toLowerCase(); if (fileExt === "obj" && fileInput?.files) { try { const mtlFile = Array.from(fileInput.files).find( (f) => f.name.toLowerCase().endsWith(".mtl") ); if (mtlFile) { const mtlFormData = new FormData(); mtlFormData.append("image", mtlFile); mtlFormData.append("subfolder", "3d"); await api.fetchApi("/upload/image", { method: "POST", body: mtlFormData }); } } catch (mtlError) { console.warn("Failed to upload MTL file:", mtlError); } } } else { useToastStore().addAlert(resp.status + " - " + resp.statusText); } } catch (error) { console.error("Upload error:", error); useToastStore().addAlert( error instanceof Error ? error.message : "Upload failed" ); } return uploadPath; } __name(uploadFile, "uploadFile"); class Load3d { static { __name(this, "Load3d"); } scene; perspectiveCamera; orthographicCamera; activeCamera; renderer; controls; gltfLoader; objLoader; mtlLoader; fbxLoader; stlLoader; currentModel = null; originalModel = null; node; animationFrameId = null; gridHelper; lights = []; clock; normalMaterial; standardMaterial; wireframeMaterial; depthMaterial; originalMaterials = /* @__PURE__ */ new WeakMap(); materialMode = "original"; currentUpDirection = "original"; originalRotation = null; constructor(container) { this.scene = new Scene(); this.perspectiveCamera = new PerspectiveCamera(75, 1, 0.1, 1e3); this.perspectiveCamera.position.set(5, 5, 5); const frustumSize = 10; this.orthographicCamera = new OrthographicCamera( -frustumSize / 2, frustumSize / 2, frustumSize / 2, -frustumSize / 2, 0.1, 1e3 ); this.orthographicCamera.position.set(5, 5, 5); this.activeCamera = this.perspectiveCamera; this.perspectiveCamera.lookAt(0, 0, 0); this.orthographicCamera.lookAt(0, 0, 0); this.renderer = new WebGLRenderer({ antialias: true }); this.renderer.setSize(300, 300); this.renderer.setClearColor(2631720); const rendererDomElement = this.renderer.domElement; container.appendChild(rendererDomElement); this.controls = new OrbitControls( this.activeCamera, this.renderer.domElement ); this.controls.enableDamping = true; this.gltfLoader = new GLTFLoader(); this.objLoader = new OBJLoader(); this.mtlLoader = new MTLLoader(); this.fbxLoader = new FBXLoader(); this.stlLoader = new STLLoader(); this.clock = new Clock(); this.setupLights(); this.gridHelper = new GridHelper(10, 10); this.gridHelper.position.set(0, 0, 0); this.scene.add(this.gridHelper); this.normalMaterial = new MeshNormalMaterial({ flatShading: false, side: DoubleSide, normalScale: new Vector2(1, 1), transparent: false, opacity: 1 }); this.wireframeMaterial = new MeshBasicMaterial({ color: 16777215, wireframe: true, transparent: false, opacity: 1 }); this.depthMaterial = new MeshDepthMaterial({ depthPacking: BasicDepthPacking, side: DoubleSide }); this.standardMaterial = this.createSTLMaterial(); this.animate(); this.handleResize(); this.startAnimation(); } getCameraState() { const currentType = this.getCurrentCameraType(); return { position: this.activeCamera.position.clone(), target: this.controls.target.clone(), zoom: this.activeCamera instanceof OrthographicCamera ? this.activeCamera.zoom : this.activeCamera.zoom, cameraType: currentType }; } setCameraState(state) { if (this.activeCamera !== (state.cameraType === "perspective" ? this.perspectiveCamera : this.orthographicCamera)) { this.toggleCamera(state.cameraType); } this.activeCamera.position.copy(state.position); this.controls.target.copy(state.target); if (this.activeCamera instanceof OrthographicCamera) { this.activeCamera.zoom = state.zoom; this.activeCamera.updateProjectionMatrix(); } else if (this.activeCamera instanceof PerspectiveCamera) { this.activeCamera.zoom = state.zoom; this.activeCamera.updateProjectionMatrix(); } this.controls.update(); } setUpDirection(direction) { if (!this.currentModel) return; if (!this.originalRotation && this.currentModel.rotation) { this.originalRotation = this.currentModel.rotation.clone(); } this.currentUpDirection = direction; if (this.originalRotation) { this.currentModel.rotation.copy(this.originalRotation); } switch (direction) { case "original": break; case "-x": this.currentModel.rotation.z = Math.PI / 2; break; case "+x": this.currentModel.rotation.z = -Math.PI / 2; break; case "-y": this.currentModel.rotation.x = Math.PI; break; case "+y": break; case "-z": this.currentModel.rotation.x = Math.PI / 2; break; case "+z": this.currentModel.rotation.x = -Math.PI / 2; break; } this.renderer.render(this.scene, this.activeCamera); } setMaterialMode(mode) { this.materialMode = mode; if (this.currentModel) { if (mode === "depth") { this.renderer.outputColorSpace = LinearSRGBColorSpace; } else { this.renderer.outputColorSpace = SRGBColorSpace; } this.currentModel.traverse((child) => { if (child instanceof Mesh) { switch (mode) { case "depth": if (!this.originalMaterials.has(child)) { this.originalMaterials.set(child, child.material); } const depthMat = new MeshDepthMaterial({ depthPacking: BasicDepthPacking, side: DoubleSide }); depthMat.onBeforeCompile = (shader) => { shader.uniforms.cameraType = { value: this.activeCamera instanceof OrthographicCamera ? 1 : 0 }; shader.fragmentShader = ` uniform float cameraType; ${shader.fragmentShader} `; shader.fragmentShader = shader.fragmentShader.replace( /gl_FragColor\s*=\s*vec4\(\s*vec3\(\s*1.0\s*-\s*fragCoordZ\s*\)\s*,\s*opacity\s*\)\s*;/, ` float depth = 1.0 - fragCoordZ; if (cameraType > 0.5) { depth = pow(depth, 400.0); } else { depth = pow(depth, 0.6); } gl_FragColor = vec4(vec3(depth), opacity); ` ); }; depthMat.customProgramCacheKey = () => { return this.activeCamera instanceof OrthographicCamera ? "ortho" : "persp"; }; child.material = depthMat; break; case "normal": if (!this.originalMaterials.has(child)) { this.originalMaterials.set(child, child.material); } child.material = new MeshNormalMaterial({ flatShading: false, side: DoubleSide, normalScale: new Vector2(1, 1), transparent: false, opacity: 1 }); child.geometry.computeVertexNormals(); break; case "wireframe": if (!this.originalMaterials.has(child)) { this.originalMaterials.set(child, child.material); } child.material = new MeshBasicMaterial({ color: 16777215, wireframe: true, transparent: false, opacity: 1 }); break; case "original": const originalMaterial = this.originalMaterials.get(child); if (originalMaterial) { child.material = originalMaterial; } else { child.material = this.standardMaterial; } break; } } }); this.renderer.render(this.scene, this.activeCamera); } } setupLights() { const ambientLight = new AmbientLight(16777215, 0.5); this.scene.add(ambientLight); this.lights.push(ambientLight); const mainLight = new DirectionalLight(16777215, 0.8); mainLight.position.set(0, 10, 10); this.scene.add(mainLight); this.lights.push(mainLight); const backLight = new DirectionalLight(16777215, 0.5); backLight.position.set(0, 10, -10); this.scene.add(backLight); this.lights.push(backLight); const leftFillLight = new DirectionalLight(16777215, 0.3); leftFillLight.position.set(-10, 0, 0); this.scene.add(leftFillLight); this.lights.push(leftFillLight); const rightFillLight = new DirectionalLight(16777215, 0.3); rightFillLight.position.set(10, 0, 0); this.scene.add(rightFillLight); this.lights.push(rightFillLight); const bottomLight = new DirectionalLight(16777215, 0.2); bottomLight.position.set(0, -10, 0); this.scene.add(bottomLight); this.lights.push(bottomLight); } toggleCamera(cameraType) { const oldCamera = this.activeCamera; const position = oldCamera.position.clone(); const rotation = oldCamera.rotation.clone(); const target = this.controls.target.clone(); if (!cameraType) { this.activeCamera = oldCamera === this.perspectiveCamera ? this.orthographicCamera : this.perspectiveCamera; } else { this.activeCamera = cameraType === "perspective" ? this.perspectiveCamera : this.orthographicCamera; if (oldCamera === this.activeCamera) { return; } } this.activeCamera.position.copy(position); this.activeCamera.rotation.copy(rotation); if (this.materialMode === "depth" && oldCamera !== this.activeCamera) { this.setMaterialMode("depth"); } this.controls.object = this.activeCamera; this.controls.target.copy(target); this.controls.update(); this.handleResize(); } getCurrentCameraType() { return this.activeCamera === this.perspectiveCamera ? "perspective" : "orthographic"; } toggleGrid(showGrid) { if (this.gridHelper) { this.gridHelper.visible = showGrid; } } setLightIntensity(intensity) { this.lights.forEach((light) => { if (light instanceof DirectionalLight) { if (light === this.lights[1]) { light.intensity = intensity * 0.8; } else if (light === this.lights[2]) { light.intensity = intensity * 0.5; } else if (light === this.lights[5]) { light.intensity = intensity * 0.2; } else { light.intensity = intensity * 0.3; } } else if (light instanceof AmbientLight) { light.intensity = intensity * 0.5; } }); } startAnimation() { const animate = /* @__PURE__ */ __name(() => { this.animationFrameId = requestAnimationFrame(animate); this.controls.update(); this.renderer.render(this.scene, this.activeCamera); }, "animate"); animate(); } clearModel() { const objectsToRemove = []; this.scene.traverse((object) => { const isEnvironmentObject = object === this.gridHelper || this.lights.includes(object) || object === this.perspectiveCamera || object === this.orthographicCamera; if (!isEnvironmentObject) { objectsToRemove.push(object); } }); objectsToRemove.forEach((obj) => { if (obj.parent && obj.parent !== this.scene) { obj.parent.remove(obj); } else { this.scene.remove(obj); } if (obj instanceof Mesh) { obj.geometry?.dispose(); if (Array.isArray(obj.material)) { obj.material.forEach((material) => material.dispose()); } else { obj.material?.dispose(); } } }); this.resetScene(); } resetScene() { this.currentModel = null; this.originalRotation = null; const defaultDistance = 10; this.perspectiveCamera.position.set( defaultDistance, defaultDistance, defaultDistance ); this.orthographicCamera.position.set( defaultDistance, defaultDistance, defaultDistance ); this.perspectiveCamera.lookAt(0, 0, 0); this.orthographicCamera.lookAt(0, 0, 0); const frustumSize = 10; const aspect2 = this.renderer.domElement.width / this.renderer.domElement.height; this.orthographicCamera.left = -frustumSize * aspect2 / 2; this.orthographicCamera.right = frustumSize * aspect2 / 2; this.orthographicCamera.top = frustumSize / 2; this.orthographicCamera.bottom = -frustumSize / 2; this.perspectiveCamera.updateProjectionMatrix(); this.orthographicCamera.updateProjectionMatrix(); this.controls.target.set(0, 0, 0); this.controls.update(); this.renderer.render(this.scene, this.activeCamera); this.materialMode = "original"; this.originalMaterials = /* @__PURE__ */ new WeakMap(); this.renderer.outputColorSpace = SRGBColorSpace; } remove() { if (this.animationFrameId !== null) { cancelAnimationFrame(this.animationFrameId); } this.controls.dispose(); this.renderer.dispose(); this.renderer.domElement.remove(); this.scene.clear(); } async loadModelInternal(url, fileExtension) { let model = null; switch (fileExtension) { case "stl": const geometry = await this.stlLoader.loadAsync(url); this.originalModel = geometry; geometry.computeVertexNormals(); const mesh = new Mesh(geometry, this.standardMaterial); const group = new Group(); group.add(mesh); model = group; break; case "fbx": const fbxModel = await this.fbxLoader.loadAsync(url); this.originalModel = fbxModel; model = fbxModel; fbxModel.traverse((child) => { if (child instanceof Mesh) { this.originalMaterials.set(child, child.material); } }); break; case "obj": if (this.materialMode === "original") { const mtlUrl = url.replace(/\.obj([^.]*$)/, ".mtl$1"); try { const materials = await this.mtlLoader.loadAsync(mtlUrl); materials.preload(); this.objLoader.setMaterials(materials); } catch (e) { console.log( "No MTL file found or error loading it, continuing without materials" ); } } model = await this.objLoader.loadAsync(url); model.traverse((child) => { if (child instanceof Mesh) { this.originalMaterials.set(child, child.material); } }); break; case "gltf": case "glb": const gltf = await this.gltfLoader.loadAsync(url); this.originalModel = gltf; model = gltf.scene; gltf.scene.traverse((child) => { if (child instanceof Mesh) { child.geometry.computeVertexNormals(); this.originalMaterials.set(child, child.material); } }); break; } return model; } async loadModel(url, originalFileName) { try { this.clearModel(); let fileExtension; if (originalFileName) { fileExtension = originalFileName.split(".").pop()?.toLowerCase(); } else { const filename = new URLSearchParams(url.split("?")[1]).get("filename"); fileExtension = filename?.split(".").pop()?.toLowerCase(); } if (!fileExtension) { useToastStore().addAlert("Could not determine file type"); return; } let model = await this.loadModelInternal(url, fileExtension); if (model) { this.currentModel = model; await this.setupModel(model); } } catch (error) { console.error("Error loading model:", error); } } async setupModel(model) { const box = new Box3().setFromObject(model); const size = box.getSize(new Vector3()); const center = box.getCenter(new Vector3()); const maxDim = Math.max(size.x, size.y, size.z); const targetSize = 5; const scale = targetSize / maxDim; model.scale.multiplyScalar(scale); box.setFromObject(model); box.getCenter(center); box.getSize(size); model.position.set(-center.x, -box.min.y, -center.z); this.scene.add(model); if (this.materialMode !== "original") { this.setMaterialMode(this.materialMode); } if (this.currentUpDirection !== "original") { this.setUpDirection(this.currentUpDirection); } await this.setupCamera(size); } async setupCamera(size) { const distance = Math.max(size.x, size.z) * 2; const height = size.y * 2; this.perspectiveCamera.position.set(distance, height, distance); this.orthographicCamera.position.set(distance, height, distance); if (this.activeCamera === this.perspectiveCamera) { this.perspectiveCamera.lookAt(0, size.y / 2, 0); this.perspectiveCamera.updateProjectionMatrix(); } else { const frustumSize = Math.max(size.x, size.y, size.z) * 2; const aspect2 = this.renderer.domElement.width / this.renderer.domElement.height; this.orthographicCamera.left = -frustumSize * aspect2 / 2; this.orthographicCamera.right = frustumSize * aspect2 / 2; this.orthographicCamera.top = frustumSize / 2; this.orthographicCamera.bottom = -frustumSize / 2; this.orthographicCamera.lookAt(0, size.y / 2, 0); this.orthographicCamera.updateProjectionMatrix(); } this.controls.target.set(0, size.y / 2, 0); this.controls.update(); this.renderer.outputColorSpace = SRGBColorSpace; this.renderer.toneMapping = ACESFilmicToneMapping; this.renderer.toneMappingExposure = 1; this.handleResize(); } handleResize() { const parentElement = this.renderer?.domElement?.parentElement; if (!parentElement) { console.warn("Parent element not found"); return; } const width = parentElement?.clientWidth; const height = parentElement?.clientHeight; if (this.activeCamera === this.perspectiveCamera) { this.perspectiveCamera.aspect = width / height; this.perspectiveCamera.updateProjectionMatrix(); } else { const frustumSize = 10; const aspect2 = width / height; this.orthographicCamera.left = -frustumSize * aspect2 / 2; this.orthographicCamera.right = frustumSize * aspect2 / 2; this.orthographicCamera.top = frustumSize / 2; this.orthographicCamera.bottom = -frustumSize / 2; this.orthographicCamera.updateProjectionMatrix(); } this.renderer.setSize(width, height); } animate = /* @__PURE__ */ __name(() => { requestAnimationFrame(this.animate); this.controls.update(); this.renderer.render(this.scene, this.activeCamera); }, "animate"); captureScene(width, height) { return new Promise((resolve, reject) => { try { const originalWidth = this.renderer.domElement.width; const originalHeight = this.renderer.domElement.height; this.renderer.setSize(width, height); if (this.activeCamera === this.perspectiveCamera) { this.perspectiveCamera.aspect = width / height; this.perspectiveCamera.updateProjectionMatrix(); } else { const frustumSize = 10; const aspect2 = width / height; this.orthographicCamera.left = -frustumSize * aspect2 / 2; this.orthographicCamera.right = frustumSize * aspect2 / 2; this.orthographicCamera.top = frustumSize / 2; this.orthographicCamera.bottom = -frustumSize / 2; this.orthographicCamera.updateProjectionMatrix(); } this.renderer.render(this.scene, this.activeCamera); const imageData = this.renderer.domElement.toDataURL("image/png"); this.renderer.setSize(originalWidth, originalHeight); this.handleResize(); resolve(imageData); } catch (error) { reject(error); } }); } createSTLMaterial() { return new MeshStandardMaterial({ color: 8421504, metalness: 0.1, roughness: 0.8, flatShading: false, side: DoubleSide }); } setViewPosition(position) { const box = new Box3(); let center = new Vector3(); let size = new Vector3(); if (this.currentModel) { box.setFromObject(this.currentModel); box.getCenter(center); box.getSize(size); } const maxDim = Math.max(size.x, size.y, size.z); const distance = maxDim * 2; switch (position) { case "front": this.activeCamera.position.set(0, 0, distance); break; case "top": this.activeCamera.position.set(0, distance, 0); break; case "right": this.activeCamera.position.set(distance, 0, 0); break; case "isometric": this.activeCamera.position.set(distance, distance, distance); break; } this.activeCamera.lookAt(center); this.controls.target.copy(center); this.controls.update(); } setBackgroundColor(color) { this.renderer.setClearColor(new Color(color)); this.renderer.render(this.scene, this.activeCamera); } } class Load3dAnimation extends Load3d { static { __name(this, "Load3dAnimation"); } currentAnimation = null; animationActions = []; animationClips = []; selectedAnimationIndex = 0; isAnimationPlaying = false; animationSpeed = 1; constructor(container) { super(container); } async setupModel(model) { await super.setupModel(model); if (this.currentAnimation) { this.currentAnimation.stopAllAction(); this.animationActions = []; } let animations = []; if (model.animations?.length > 0) { animations = model.animations; } else if (this.originalModel && "animations" in this.originalModel) { animations = this.originalModel.animations; } if (animations.length > 0) { this.animationClips = animations; if (model.type === "Scene") { this.currentAnimation = new AnimationMixer(model); } else { this.currentAnimation = new AnimationMixer(this.currentModel); } if (this.animationClips.length > 0) { this.updateSelectedAnimation(0); } } } setAnimationSpeed(speed) { this.animationSpeed = speed; this.animationActions.forEach((action) => { action.setEffectiveTimeScale(speed); }); } updateSelectedAnimation(index) { if (!this.currentAnimation || !this.animationClips || index >= this.animationClips.length) { console.warn("Invalid animation update request"); return; } this.animationActions.forEach((action2) => { action2.stop(); }); this.currentAnimation.stopAllAction(); this.animationActions = []; this.selectedAnimationIndex = index; const clip = this.animationClips[index]; const action = this.currentAnimation.clipAction(clip); action.setEffectiveTimeScale(this.animationSpeed); action.reset(); action.clampWhenFinished = false; action.loop = LoopRepeat; if (this.isAnimationPlaying) { action.play(); } else { action.play(); action.paused = true; } this.animationActions = [action]; } clearModel() { if (this.currentAnimation) { this.animationActions.forEach((action) => { action.stop(); }); this.currentAnimation = null; } this.animationActions = []; this.animationClips = []; this.selectedAnimationIndex = 0; this.isAnimationPlaying = false; this.animationSpeed = 1; super.clearModel(); } getAnimationNames() { return this.animationClips.map((clip, index) => { return clip.name || `Animation ${index + 1}`; }); } toggleAnimation(play) { if (!this.currentAnimation || this.animationActions.length === 0) { console.warn("No animation to toggle"); return; } this.isAnimationPlaying = play ?? !this.isAnimationPlaying; this.animationActions.forEach((action) => { if (this.isAnimationPlaying) { action.paused = false; if (action.time === 0 || action.time === action.getClip().duration) { action.reset(); } } else { action.paused = true; } }); } animate = /* @__PURE__ */ __name(() => { requestAnimationFrame(this.animate); if (this.currentAnimation && this.isAnimationPlaying) { const delta = this.clock.getDelta(); this.currentAnimation.update(delta); } this.controls.update(); this.renderer.render(this.scene, this.activeCamera); }, "animate"); } function splitFilePath(path) { const folder_separator = path.lastIndexOf("/"); if (folder_separator === -1) { return ["", path]; } return [ path.substring(0, folder_separator), path.substring(folder_separator + 1) ]; } __name(splitFilePath, "splitFilePath"); function getResourceURL(subfolder, filename, type = "input") { const params = [ "filename=" + encodeURIComponent(filename), "type=" + type, "subfolder=" + subfolder, app.getRandParam().substring(1) ].join("&"); return `/view?${params}`; } __name(getResourceURL, "getResourceURL"); const load3dCSSCLASS = `display: flex; flex-direction: column; background: transparent; flex: 1; position: relative; overflow: hidden;`; const load3dCanvasCSSCLASS = `display: flex; width: 100% !important; height: 100% !important;`; const containerToLoad3D = /* @__PURE__ */ new Map(); function configureLoad3D(load3d, loadFolder, modelWidget, showGrid, cameraType, view, material, bgColor, lightIntensity, upDirection, cameraState, postModelUpdateFunc) { const createModelUpdateHandler = /* @__PURE__ */ __name(() => { let isFirstLoad = true; return async (value) => { if (!value) return; const filename = value; const modelUrl = api.apiURL( getResourceURL(...splitFilePath(filename), loadFolder) ); await load3d.loadModel(modelUrl, filename); load3d.setMaterialMode( material.value ); load3d.setUpDirection( upDirection.value ); if (postModelUpdateFunc) { postModelUpdateFunc(load3d); } if (isFirstLoad && cameraState && typeof cameraState === "object") { try { load3d.setCameraState(cameraState); } catch (error) { console.warn("Failed to restore camera state:", error); } isFirstLoad = false; } }; }, "createModelUpdateHandler"); const onModelWidgetUpdate = createModelUpdateHandler(); if (modelWidget.value) { onModelWidgetUpdate(modelWidget.value); } modelWidget.callback = onModelWidgetUpdate; load3d.toggleGrid(showGrid.value); showGrid.callback = (value) => { load3d.toggleGrid(value); }; load3d.toggleCamera(cameraType.value); cameraType.callback = (value) => { load3d.toggleCamera(value); }; view.callback = (value) => { load3d.setViewPosition(value); }; material.callback = (value) => { load3d.setMaterialMode(value); }; load3d.setMaterialMode(material.value); load3d.setBackgroundColor(bgColor.value); bgColor.callback = (value) => { load3d.setBackgroundColor(value); }; load3d.setLightIntensity(lightIntensity.value); lightIntensity.callback = (value) => { load3d.setLightIntensity(value); }; upDirection.callback = (value) => { load3d.setUpDirection(value); }; load3d.setUpDirection( upDirection.value ); } __name(configureLoad3D, "configureLoad3D"); app.registerExtension({ name: "Comfy.Load3D", getCustomWidgets(app2) { return { LOAD_3D(node, inputName) { let load3dNode = app2.graph._nodes.filter((wi) => wi.type == "Load3D"); node.addProperty("Camera Info", ""); const container = document.createElement("div"); container.id = `comfy-load-3d-${load3dNode.length}`; container.classList.add("comfy-load-3d"); const load3d = new Load3d(container); containerToLoad3D.set(container.id, load3d); node.onResize = function() { if (load3d) { load3d.handleResize(); } }; const origOnRemoved = node.onRemoved; node.onRemoved = function() { if (load3d) { load3d.remove(); } containerToLoad3D.delete(container.id); origOnRemoved?.apply(this, []); }; node.onDrawBackground = function() { load3d.renderer.domElement.hidden = this.flags.collapsed ?? false; }; const fileInput = document.createElement("input"); fileInput.type = "file"; fileInput.accept = ".gltf,.glb,.obj,.mtl,.fbx,.stl"; fileInput.style.display = "none"; fileInput.onchange = async () => { if (fileInput.files?.length) { const modelWidget = node.widgets?.find( (w) => w.name === "model_file" ); const uploadPath = await uploadFile( load3d, fileInput.files[0], fileInput ).catch((error) => { console.error("File upload failed:", error); useToastStore().addAlert("File upload failed"); }); if (uploadPath && modelWidget) { if (!modelWidget.options?.values?.includes(uploadPath)) { modelWidget.options?.values?.push(uploadPath); } modelWidget.value = uploadPath; } } }; node.addWidget("button", "upload 3d model", "upload3dmodel", () => { fileInput.click(); }); node.addWidget("button", "clear", "clear", () => { load3d.clearModel(); const modelWidget = node.widgets?.find( (w) => w.name === "model_file" ); if (modelWidget) { modelWidget.value = ""; } }); return { widget: node.addDOMWidget(inputName, "LOAD_3D", container) }; } }; }, init() { const style = document.createElement("style"); style.innerText = ` .comfy-load-3d { ${load3dCSSCLASS} } .comfy-load-3d canvas { ${load3dCanvasCSSCLASS} } `; document.head.appendChild(style); }, async nodeCreated(node) { if (node.constructor.comfyClass !== "Load3D") return; const [oldWidth, oldHeight] = node.size; node.setSize([Math.max(oldWidth, 300), Math.max(oldHeight, 600)]); await nextTick(); const sceneWidget = node.widgets.find((w2) => w2.name === "image"); const container = sceneWidget.element; const load3d = containerToLoad3D.get(container.id); const modelWidget = node.widgets.find( (w2) => w2.name === "model_file" ); const showGrid = node.widgets.find((w2) => w2.name === "show_grid"); const cameraType = node.widgets.find( (w2) => w2.name === "camera_type" ); const view = node.widgets.find((w2) => w2.name === "view"); const material = node.widgets.find((w2) => w2.name === "material"); const bgColor = node.widgets.find((w2) => w2.name === "bg_color"); const lightIntensity = node.widgets.find( (w2) => w2.name === "light_intensity" ); const upDirection = node.widgets.find( (w2) => w2.name === "up_direction" ); let cameraState; try { const cameraInfo = node.properties["Camera Info"]; if (cameraInfo && typeof cameraInfo === "string" && cameraInfo.trim() !== "") { cameraState = JSON.parse(cameraInfo); } } catch (error) { console.warn("Failed to parse camera state:", error); cameraState = void 0; } configureLoad3D( load3d, "input", modelWidget, showGrid, cameraType, view, material, bgColor, lightIntensity, upDirection, cameraState ); const w = node.widgets.find((w2) => w2.name === "width"); const h = node.widgets.find((w2) => w2.name === "height"); sceneWidget.serializeValue = async () => { node.properties["Camera Info"] = JSON.stringify(load3d.getCameraState()); const imageData = await load3d.captureScene(w.value, h.value); const blob = await fetch(imageData).then((r) => r.blob()); const name = `scene_${Date.now()}.png`; const file2 = new File([blob], name); const body = new FormData(); body.append("image", file2); body.append("subfolder", "threed"); body.append("type", "temp"); const resp = await api.fetchApi("/upload/image", { method: "POST", body }); if (resp.status !== 200) { const err2 = `Error uploading scene capture: ${resp.status} - ${resp.statusText}`; useToastStore().addAlert(err2); throw new Error(err2); } const data = await resp.json(); return `threed/${data.name} [temp]`; }; } }); app.registerExtension({ name: "Comfy.Load3DAnimation", getCustomWidgets(app2) { return { LOAD_3D_ANIMATION(node, inputName) { let load3dNode = app2.graph._nodes.filter( (wi) => wi.type == "Load3DAnimation" ); node.addProperty("Camera Info", ""); const container = document.createElement("div"); container.id = `comfy-load-3d-animation-${load3dNode.length}`; container.classList.add("comfy-load-3d-animation"); const load3d = new Load3dAnimation(container); containerToLoad3D.set(container.id, load3d); node.onResize = function() { if (load3d) { load3d.handleResize(); } }; const origOnRemoved = node.onRemoved; node.onRemoved = function() { if (load3d) { load3d.remove(); } containerToLoad3D.delete(container.id); origOnRemoved?.apply(this, []); }; node.onDrawBackground = function() { load3d.renderer.domElement.hidden = this.flags.collapsed ?? false; }; const fileInput = document.createElement("input"); fileInput.type = "file"; fileInput.accept = ".fbx,glb,gltf"; fileInput.style.display = "none"; fileInput.onchange = async () => { if (fileInput.files?.length) { const modelWidget = node.widgets?.find( (w) => w.name === "model_file" ); const uploadPath = await uploadFile( load3d, fileInput.files[0], fileInput ).catch((error) => { console.error("File upload failed:", error); useToastStore().addAlert("File upload failed"); }); if (uploadPath && modelWidget) { if (!modelWidget.options?.values?.includes(uploadPath)) { modelWidget.options?.values?.push(uploadPath); } modelWidget.value = uploadPath; } } }; node.addWidget("button", "upload 3d model", "upload3dmodel", () => { fileInput.click(); }); node.addWidget("button", "clear", "clear", () => { load3d.clearModel(); const modelWidget = node.widgets?.find( (w) => w.name === "model_file" ); if (modelWidget) { modelWidget.value = ""; } const animationSelect2 = node.widgets?.find( (w) => w.name === "animation" ); if (animationSelect2) { animationSelect2.options.values = []; animationSelect2.value = ""; } const speedSelect = node.widgets?.find( (w) => w.name === "animation_speed" ); if (speedSelect) { speedSelect.value = "1"; } }); node.addWidget( "button", "Play/Pause Animation", "toggle_animation", () => { load3d.toggleAnimation(); } ); const animationSelect = node.addWidget( "combo", "animation", "", () => "", { values: [] } ); animationSelect.callback = (value) => { const names = load3d.getAnimationNames(); const index = names.indexOf(value); if (index !== -1) { const wasPlaying = load3d.isAnimationPlaying; if (wasPlaying) { load3d.toggleAnimation(false); } load3d.updateSelectedAnimation(index); if (wasPlaying) { load3d.toggleAnimation(true); } } }; return { widget: node.addDOMWidget(inputName, "LOAD_3D_ANIMATION", container) }; } }; }, init() { const style = document.createElement("style"); style.innerText = ` .comfy-load-3d-animation { ${load3dCSSCLASS} } .comfy-load-3d-animation canvas { ${load3dCanvasCSSCLASS} } `; document.head.appendChild(style); }, async nodeCreated(node) { if (node.constructor.comfyClass !== "Load3DAnimation") return; const [oldWidth, oldHeight] = node.size; node.setSize([Math.max(oldWidth, 300), Math.max(oldHeight, 700)]); await nextTick(); const sceneWidget = node.widgets.find((w2) => w2.name === "image"); const container = sceneWidget.element; const load3d = containerToLoad3D.get(container.id); const modelWidget = node.widgets.find( (w2) => w2.name === "model_file" ); const showGrid = node.widgets.find((w2) => w2.name === "show_grid"); const cameraType = node.widgets.find( (w2) => w2.name === "camera_type" ); const view = node.widgets.find((w2) => w2.name === "view"); const material = node.widgets.find((w2) => w2.name === "material"); const bgColor = node.widgets.find((w2) => w2.name === "bg_color"); const lightIntensity = node.widgets.find( (w2) => w2.name === "light_intensity" ); const upDirection = node.widgets.find( (w2) => w2.name === "up_direction" ); const speedSelect = node.widgets.find( (w2) => w2.name === "animation_speed" ); speedSelect.callback = (value) => { const load3d2 = containerToLoad3D.get(container.id); if (load3d2) { load3d2.setAnimationSpeed(parseFloat(value)); } }; let cameraState; try { const cameraInfo = node.properties["Camera Info"]; if (cameraInfo && typeof cameraInfo === "string" && cameraInfo.trim() !== "") { cameraState = JSON.parse(cameraInfo); } } catch (error) { console.warn("Failed to parse camera state:", error); cameraState = void 0; } configureLoad3D( load3d, "input", modelWidget, showGrid, cameraType, view, material, bgColor, lightIntensity, upDirection, cameraState, (load3d2) => { const animationLoad3d = load3d2; const names = animationLoad3d.getAnimationNames(); const animationSelect = node.widgets.find( (w2) => w2.name === "animation" ); animationSelect.options.values = names; if (names.length) { animationSelect.value = names[0]; } } ); const w = node.widgets.find((w2) => w2.name === "width"); const h = node.widgets.find((w2) => w2.name === "height"); sceneWidget.serializeValue = async () => { node.properties["Camera Info"] = JSON.stringify(load3d.getCameraState()); load3d.toggleAnimation(false); const imageData = await load3d.captureScene(w.value, h.value); const blob = await fetch(imageData).then((r) => r.blob()); const name = `scene_${Date.now()}.png`; const file2 = new File([blob], name); const body = new FormData(); body.append("image", file2); body.append("subfolder", "threed"); body.append("type", "temp"); const resp = await api.fetchApi("/upload/image", { method: "POST", body }); if (resp.status !== 200) { const err2 = `Error uploading scene capture: ${resp.status} - ${resp.statusText}`; useToastStore().addAlert(err2); throw new Error(err2); } const data = await resp.json(); return `threed/${data.name} [temp]`; }; } }); app.registerExtension({ name: "Comfy.Preview3D", getCustomWidgets(app2) { return { PREVIEW_3D(node, inputName) { let load3dNode = app2.graph._nodes.filter((wi) => wi.type == "Preview3D"); const container = document.createElement("div"); container.id = `comfy-preview-3d-${load3dNode.length}`; container.classList.add("comfy-preview-3d"); const load3d = new Load3d(container); containerToLoad3D.set(container.id, load3d); node.onResize = function() { if (load3d) { load3d.handleResize(); } }; const origOnRemoved = node.onRemoved; node.onRemoved = function() { if (load3d) { load3d.remove(); } containerToLoad3D.delete(container.id); origOnRemoved?.apply(this, []); }; node.onDrawBackground = function() { load3d.renderer.domElement.hidden = this.flags.collapsed ?? false; }; return { widget: node.addDOMWidget(inputName, "PREVIEW_3D", container) }; } }; }, init() { const style = document.createElement("style"); style.innerText = ` .comfy-preview-3d { ${load3dCSSCLASS} } .comfy-preview-3d canvas { ${load3dCanvasCSSCLASS} } `; document.head.appendChild(style); }, async nodeCreated(node) { if (node.constructor.comfyClass !== "Preview3D") return; const [oldWidth, oldHeight] = node.size; node.setSize([Math.max(oldWidth, 300), Math.max(oldHeight, 550)]); await nextTick(); const sceneWidget = node.widgets.find((w) => w.name === "image"); const container = sceneWidget.element; const load3d = containerToLoad3D.get(container.id); const modelWidget = node.widgets.find( (w) => w.name === "model_file" ); const showGrid = node.widgets.find((w) => w.name === "show_grid"); const cameraType = node.widgets.find( (w) => w.name === "camera_type" ); const view = node.widgets.find((w) => w.name === "view"); const material = node.widgets.find((w) => w.name === "material"); const bgColor = node.widgets.find((w) => w.name === "bg_color"); const lightIntensity = node.widgets.find( (w) => w.name === "light_intensity" ); const upDirection = node.widgets.find( (w) => w.name === "up_direction" ); configureLoad3D( load3d, "output", modelWidget, showGrid, cameraType, view, material, bgColor, lightIntensity, upDirection ); } }); //# sourceMappingURL=index-Ba7IybyO.js.map