from nodes import MAX_RESOLUTION, ConditioningZeroOut, ConditioningSetTimestepRange, ConditioningCombine import re class CLIPTextEncodeSDXLSimplified: @classmethod def INPUT_TYPES(s): return {"required": { "width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), "height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), "size_cond_factor": ("INT", {"default": 4, "min": 1, "max": 16 }), "text": ("STRING", {"multiline": True, "dynamicPrompts": True, "default": ""}), "clip": ("CLIP", ), }} RETURN_TYPES = ("CONDITIONING",) FUNCTION = "execute" CATEGORY = "essentials/conditioning" def execute(self, clip, width, height, size_cond_factor, text): crop_w = 0 crop_h = 0 width = width*size_cond_factor height = height*size_cond_factor target_width = width target_height = height text_g = text_l = text tokens = clip.tokenize(text_g) tokens["l"] = clip.tokenize(text_l)["l"] if len(tokens["l"]) != len(tokens["g"]): empty = clip.tokenize("") while len(tokens["l"]) < len(tokens["g"]): tokens["l"] += empty["l"] while len(tokens["l"]) > len(tokens["g"]): tokens["g"] += empty["g"] cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) return ([[cond, {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]], ) class ConditioningCombineMultiple: @classmethod def INPUT_TYPES(s): return { "required": { "conditioning_1": ("CONDITIONING",), "conditioning_2": ("CONDITIONING",), }, "optional": { "conditioning_3": ("CONDITIONING",), "conditioning_4": ("CONDITIONING",), "conditioning_5": ("CONDITIONING",), }, } RETURN_TYPES = ("CONDITIONING",) FUNCTION = "execute" CATEGORY = "essentials/conditioning" def execute(self, conditioning_1, conditioning_2, conditioning_3=None, conditioning_4=None, conditioning_5=None): c = conditioning_1 + conditioning_2 if conditioning_3 is not None: c += conditioning_3 if conditioning_4 is not None: c += conditioning_4 if conditioning_5 is not None: c += conditioning_5 return (c,) class SD3NegativeConditioning: @classmethod def INPUT_TYPES(s): return {"required": { "conditioning": ("CONDITIONING",), "end": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.001 }), }} RETURN_TYPES = ("CONDITIONING",) FUNCTION = "execute" CATEGORY = "essentials/conditioning" def execute(self, conditioning, end): zero_c = ConditioningZeroOut().zero_out(conditioning)[0] if end == 0: return (zero_c, ) c = ConditioningSetTimestepRange().set_range(conditioning, 0, end)[0] zero_c = ConditioningSetTimestepRange().set_range(zero_c, end, 1.0)[0] c = ConditioningCombine().combine(zero_c, c)[0] return (c, ) class FluxAttentionSeeker: @classmethod def INPUT_TYPES(s): return {"required": { "clip": ("CLIP",), "apply_to_query": ("BOOLEAN", { "default": True }), "apply_to_key": ("BOOLEAN", { "default": True }), "apply_to_value": ("BOOLEAN", { "default": True }), "apply_to_out": ("BOOLEAN", { "default": True }), **{f"clip_l_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(12)}, **{f"t5xxl_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(24)}, }} RETURN_TYPES = ("CLIP",) FUNCTION = "execute" CATEGORY = "essentials/conditioning" def execute(self, clip, apply_to_query, apply_to_key, apply_to_value, apply_to_out, **values): if not apply_to_key and not apply_to_query and not apply_to_value and not apply_to_out: return (clip, ) m = clip.clone() sd = m.patcher.model_state_dict() for k in sd: if "self_attn" in k: layer = re.search(r"\.layers\.(\d+)\.", k) layer = int(layer.group(1)) if layer else None if layer is not None and values[f"clip_l_{layer}"] != 1.0: if (apply_to_query and "q_proj" in k) or (apply_to_key and "k_proj" in k) or (apply_to_value and "v_proj" in k) or (apply_to_out and "out_proj" in k): m.add_patches({k: (None,)}, 0.0, values[f"clip_l_{layer}"]) elif "SelfAttention" in k: block = re.search(r"\.block\.(\d+)\.", k) block = int(block.group(1)) if block else None if block is not None and values[f"t5xxl_{block}"] != 1.0: if (apply_to_query and ".q." in k) or (apply_to_key and ".k." in k) or (apply_to_value and ".v." in k) or (apply_to_out and ".o." in k): m.add_patches({k: (None,)}, 0.0, values[f"t5xxl_{block}"]) return (m, ) class SD3AttentionSeekerLG: @classmethod def INPUT_TYPES(s): return {"required": { "clip": ("CLIP",), "apply_to_query": ("BOOLEAN", { "default": True }), "apply_to_key": ("BOOLEAN", { "default": True }), "apply_to_value": ("BOOLEAN", { "default": True }), "apply_to_out": ("BOOLEAN", { "default": True }), **{f"clip_l_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(12)}, **{f"clip_g_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(32)}, }} RETURN_TYPES = ("CLIP",) FUNCTION = "execute" CATEGORY = "essentials/conditioning" def execute(self, clip, apply_to_query, apply_to_key, apply_to_value, apply_to_out, **values): if not apply_to_key and not apply_to_query and not apply_to_value and not apply_to_out: return (clip, ) m = clip.clone() sd = m.patcher.model_state_dict() for k in sd: if "self_attn" in k: layer = re.search(r"\.layers\.(\d+)\.", k) layer = int(layer.group(1)) if layer else None if layer is not None: if "clip_l" in k and values[f"clip_l_{layer}"] != 1.0: if (apply_to_query and "q_proj" in k) or (apply_to_key and "k_proj" in k) or (apply_to_value and "v_proj" in k) or (apply_to_out and "out_proj" in k): m.add_patches({k: (None,)}, 0.0, values[f"clip_l_{layer}"]) elif "clip_g" in k and values[f"clip_g_{layer}"] != 1.0: if (apply_to_query and "q_proj" in k) or (apply_to_key and "k_proj" in k) or (apply_to_value and "v_proj" in k) or (apply_to_out and "out_proj" in k): m.add_patches({k: (None,)}, 0.0, values[f"clip_g_{layer}"]) return (m, ) class SD3AttentionSeekerT5: @classmethod def INPUT_TYPES(s): return {"required": { "clip": ("CLIP",), "apply_to_query": ("BOOLEAN", { "default": True }), "apply_to_key": ("BOOLEAN", { "default": True }), "apply_to_value": ("BOOLEAN", { "default": True }), "apply_to_out": ("BOOLEAN", { "default": True }), **{f"t5xxl_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(24)}, }} RETURN_TYPES = ("CLIP",) FUNCTION = "execute" CATEGORY = "essentials/conditioning" def execute(self, clip, apply_to_query, apply_to_key, apply_to_value, apply_to_out, **values): if not apply_to_key and not apply_to_query and not apply_to_value and not apply_to_out: return (clip, ) m = clip.clone() sd = m.patcher.model_state_dict() for k in sd: if "SelfAttention" in k: block = re.search(r"\.block\.(\d+)\.", k) block = int(block.group(1)) if block else None if block is not None and values[f"t5xxl_{block}"] != 1.0: if (apply_to_query and ".q." in k) or (apply_to_key and ".k." in k) or (apply_to_value and ".v." in k) or (apply_to_out and ".o." in k): m.add_patches({k: (None,)}, 0.0, values[f"t5xxl_{block}"]) return (m, ) class FluxBlocksBuster: @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "blocks": ("STRING", {"default": "## 0 = 1.0\n## 1 = 1.0\n## 2 = 1.0\n## 3 = 1.0\n## 4 = 1.0\n## 5 = 1.0\n## 6 = 1.0\n## 7 = 1.0\n## 8 = 1.0\n## 9 = 1.0\n## 10 = 1.0\n## 11 = 1.0\n## 12 = 1.0\n## 13 = 1.0\n## 14 = 1.0\n## 15 = 1.0\n## 16 = 1.0\n## 17 = 1.0\n## 18 = 1.0\n# 0 = 1.0\n# 1 = 1.0\n# 2 = 1.0\n# 3 = 1.0\n# 4 = 1.0\n# 5 = 1.0\n# 6 = 1.0\n# 7 = 1.0\n# 8 = 1.0\n# 9 = 1.0\n# 10 = 1.0\n# 11 = 1.0\n# 12 = 1.0\n# 13 = 1.0\n# 14 = 1.0\n# 15 = 1.0\n# 16 = 1.0\n# 17 = 1.0\n# 18 = 1.0\n# 19 = 1.0\n# 20 = 1.0\n# 21 = 1.0\n# 22 = 1.0\n# 23 = 1.0\n# 24 = 1.0\n# 25 = 1.0\n# 26 = 1.0\n# 27 = 1.0\n# 28 = 1.0\n# 29 = 1.0\n# 30 = 1.0\n# 31 = 1.0\n# 32 = 1.0\n# 33 = 1.0\n# 34 = 1.0\n# 35 = 1.0\n# 36 = 1.0\n# 37 = 1.0", "multiline": True, "dynamicPrompts": True}), #**{f"double_block_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(19)}, #**{f"single_block_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(38)}, }} RETURN_TYPES = ("MODEL", "STRING") RETURN_NAMES = ("MODEL", "patched_blocks") FUNCTION = "patch" CATEGORY = "essentials/conditioning" def patch(self, model, blocks): if blocks == "": return (model, ) m = model.clone() sd = model.model_state_dict() patched_blocks = [] """ Also compatible with the following format: double_blocks\.0\.(img|txt)_(mod|attn|mlp)\.(lin|qkv|proj|0|2)\.(weight|bias)=1.1 single_blocks\.0\.(linear[12]|modulation\.lin)\.(weight|bias)=1.1 The regex is used to match the block names """ blocks = blocks.split("\n") blocks = [b.strip() for b in blocks if b.strip()] for k in sd: for block in blocks: block = block.split("=") value = float(block[1].strip()) if len(block) > 1 else 1.0 block = block[0].strip() if block.startswith("##"): block = r"double_blocks\." + block[2:].strip() + r"\.(img|txt)_(mod|attn|mlp)\.(lin|qkv|proj|0|2)\.(weight|bias)" elif block.startswith("#"): block = r"single_blocks\." + block[1:].strip() + r"\.(linear[12]|modulation\.lin)\.(weight|bias)" if value != 1.0 and re.search(block, k): m.add_patches({k: (None,)}, 0.0, value) patched_blocks.append(f"{k}: {value}") patched_blocks = "\n".join(patched_blocks) return (m, patched_blocks,) COND_CLASS_MAPPINGS = { "CLIPTextEncodeSDXL+": CLIPTextEncodeSDXLSimplified, "ConditioningCombineMultiple+": ConditioningCombineMultiple, "SD3NegativeConditioning+": SD3NegativeConditioning, "FluxAttentionSeeker+": FluxAttentionSeeker, "SD3AttentionSeekerLG+": SD3AttentionSeekerLG, "SD3AttentionSeekerT5+": SD3AttentionSeekerT5, "FluxBlocksBuster+": FluxBlocksBuster, } COND_NAME_MAPPINGS = { "CLIPTextEncodeSDXL+": "🔧 SDXL CLIPTextEncode", "ConditioningCombineMultiple+": "🔧 Cond Combine Multiple", "SD3NegativeConditioning+": "🔧 SD3 Negative Conditioning", "FluxAttentionSeeker+": "🔧 Flux Attention Seeker", "SD3AttentionSeekerLG+": "🔧 SD3 Attention Seeker L/G", "SD3AttentionSeekerT5+": "🔧 SD3 Attention Seeker T5", "FluxBlocksBuster+": "🔧 Flux Model Blocks Buster", }