import contextlib import functools import importlib import math import os import shlex import shutil import socket import subprocess import sys import uuid from collections.abc import Callable, Sequence from enum import Enum from pathlib import Path from typing import TypeVar import folder_paths import numpy as np import numpy.typing as npt import requests import torch from PIL import Image from .install import pip_map try: from .log import log except ImportError: try: from log import log log.warn("Imported log without relative path") except ImportError: import logging log = logging.getLogger("comfy mtb utils") log.warn("[comfy mtb] You probably called the file outside a module.") # region SANITY_CHECK Utilities def make_report(): pass # endregion # region NFOV class numpy_NFOV: def __init__(self, fov=None, height: int = 400, width: int = 800): self.field_of_view = fov or [0.45, 0.45] self.PI = np.pi self.PI_2 = np.pi * 0.5 self.PI2 = np.pi * 2.0 self.height = height self.width = width self.screen_points = self._get_screen_img() def _get_coord_rad(self, is_center_point, center_point=None): if is_center_point: center_point = np.array(center_point) return (center_point * 2 - 1) * np.array([self.PI, self.PI_2]) else: return ( (self.screen_points * 2 - 1) * np.array([self.PI, self.PI_2]) * (np.ones(self.screen_points.shape) * self.field_of_view) ) def _get_screen_img(self): xx, yy = np.meshgrid( np.linspace(0, 1, self.width), np.linspace(0, 1, self.height) ) return np.array([xx.ravel(), yy.ravel()]).T def _calc_spherical_to_gnomonic(self, converted_screen_coord): x = converted_screen_coord.T[0] y = converted_screen_coord.T[1] rou = np.sqrt(x**2 + y**2) c = np.arctan(rou) sin_c = np.sin(c) cos_c = np.cos(c) lat = np.arcsin( cos_c * np.sin(self.cp[1]) + (y * sin_c * np.cos(self.cp[1])) / rou ) lon = self.cp[0] + np.arctan2( x * sin_c, rou * np.cos(self.cp[1]) * cos_c - y * np.sin(self.cp[1]) * sin_c, ) lat = (lat / self.PI_2 + 1.0) * 0.5 lon = (lon / self.PI + 1.0) * 0.5 return np.array([lon, lat]).T def _bilinear_interpolation(self, screen_coord): uf = np.mod(screen_coord.T[0], 1) * self.frame_width # long - width vf = np.mod(screen_coord.T[1], 1) * self.frame_height # lat - height x0 = np.floor(uf).astype(int) # coord of pixel to bottom left y0 = np.floor(vf).astype(int) x2 = np.add( x0, np.ones(uf.shape).astype(int) ) # coords of pixel to top right y2 = np.add(y0, np.ones(vf.shape).astype(int)) base_y0 = np.multiply(y0, self.frame_width) base_y2 = np.multiply(y2, self.frame_width) A_idx = np.add(base_y0, x0) B_idx = np.add(base_y2, x0) C_idx = np.add(base_y0, x2) D_idx = np.add(base_y2, x2) flat_img = np.reshape(self.frame, [-1, self.frame_channel]) A = np.take(flat_img, A_idx, axis=0) B = np.take(flat_img, B_idx, axis=0) C = np.take(flat_img, C_idx, axis=0) D = np.take(flat_img, D_idx, axis=0) wa = np.multiply(x2 - uf, y2 - vf) wb = np.multiply(x2 - uf, vf - y0) wc = np.multiply(uf - x0, y2 - vf) wd = np.multiply(uf - x0, vf - y0) # interpolate AA = np.multiply(A, np.array([wa, wa, wa]).T) BB = np.multiply(B, np.array([wb, wb, wb]).T) CC = np.multiply(C, np.array([wc, wc, wc]).T) DD = np.multiply(D, np.array([wd, wd, wd]).T) nfov = np.reshape( np.round(AA + BB + CC + DD).astype(np.uint8), [self.height, self.width, 3], ) return nfov def to_nfov(self, frame, center_point): self.frame = frame self.frame_height = frame.shape[0] self.frame_width = frame.shape[1] self.frame_channel = frame.shape[2] self.cp = self._get_coord_rad( center_point=center_point, is_center_point=True ) converted_screen_coord = self._get_coord_rad(is_center_point=False) return self._bilinear_interpolation( self._calc_spherical_to_gnomonic(converted_screen_coord) ) # endregion # region SERVER Utilities class IPChecker: def __init__(self): self.ips = list(self.get_local_ips()) log.debug(f"Found {len(self.ips)} local ips") self.checked_ips: set[str] = set() def get_working_ip(self, test_url_template: str): for ip in self.ips: if ip not in self.checked_ips: self.checked_ips.add(ip) test_url = test_url_template.format(ip) if self._test_url(test_url): return ip return None @staticmethod def get_local_ips(prefix: str = "192.168."): hostname = socket.gethostname() log.debug(f"Getting local ips for {hostname}") for info in socket.getaddrinfo(hostname, None): # Filter out IPv6 addresses if you only want IPv4 log.debug(info) # if info[1] == socket.SOCK_STREAM and if info[0] == socket.AF_INET and info[4][0].startswith(prefix): yield info[4][0] def _test_url(self, url: str): try: response = requests.get(url, timeout=10) return response.status_code == 200 except Exception: return False @functools.lru_cache(maxsize=1) def get_server_info(): from comfy.cli_args import args ip_checker = IPChecker() base_url: str = args.listen if base_url == "0.0.0.0": log.debug("Server set to 0.0.0.0, we will try to resolve the host IP") base_url = ip_checker.get_working_ip( f"http://{{}}:{args.port}/history" ) log.debug(f"Setting ip to {base_url}") return (base_url, args.port) # endregion # region MISC Utilities # TODO: use mtb.core directly instead of copying parts here T = TypeVar("T", bound="StringConvertibleEnum") class StringConvertibleEnum(Enum): """Base class for enums with utility methods for string conversion and member listing.""" @classmethod def from_str(cls: type[T], label: str | T) -> T: """ Convert a string to the corresponding enum value (case sensitive). Args: label (Union[str, T]): The string or enum value to convert. Returns ------- T: The corresponding enum value. Raises ------ ValueError: If the label does not correspond to any enum member. """ if isinstance(label, cls): return label if isinstance(label, str): # from key if label in cls.__members__: return cls[label] for member in cls: if member.value == label: return member raise ValueError( f"Unknown label: '{label}'. Valid members: {list(cls.__members__.keys())}, " f"valid values: {cls.list_members()}" ) @classmethod def to_str(cls: type[T], enum_value: T) -> str: """ Convert an enum value to its string representation. Args: enum_value (T): The enum value to convert. Returns ------- str: The string representation of the enum value. Raises ------ ValueError: If the enum value is invalid. """ if isinstance(enum_value, cls): return enum_value.value raise ValueError(f"Invalid Enum: {enum_value}") @classmethod def list_members(cls: type[T]) -> list[str]: """ Return a list of string representations of all enum members. Returns ------- List[str]: List of all enum member values. """ return [enum.value for enum in cls] def __str__(self) -> str: """ Returns the string representation of the enum value. Returns ------- str: The string representation of the enum value. """ return self.value class Precision(StringConvertibleEnum): FULL = "full" FP32 = "fp32" FP16 = "fp16" BF16 = "bf16" FP8 = "fp8" def to_dtype(self): match self: case Precision.FP32 | Precision.FULL: return torch.float32 case Precision.FP16: return torch.float16 case Precision.BF16: return torch.bfloat16 case Precision.FP8: return torch.float8_e4m3fn class Operation(StringConvertibleEnum): COPY = "copy" CONVERT = "convert" DELETE = "delete" def backup_file( fp: Path, target: Path | None = None, backup_dir: str = ".bak", suffix: str | None = None, prefix: str | None = None, ): if not fp.exists(): raise FileNotFoundError(f"No file found at {fp}") backup_directory = target or fp.parent / backup_dir backup_directory.mkdir(parents=True, exist_ok=True) stem = fp.stem if suffix or prefix: new_stem = f"{prefix or ''}{stem}{suffix or ''}" else: new_stem = f"{stem}_{uuid.uuid4()}" backup_file_path = backup_directory / f"{new_stem}{fp.suffix}" # Perform the backup shutil.copy(fp, backup_file_path) log.debug(f"File backed up to {backup_file_path}") def hex_to_rgb(hex_color): try: hex_color = hex_color.lstrip("#") return tuple(int(hex_color[i : i + 2], 16) for i in (0, 2, 4)) except ValueError: log.error(f"Invalid hex color: {hex_color}") return (0, 0, 0) def add_path(path, prepend=False): if isinstance(path, list): for p in path: add_path(p, prepend) return if isinstance(path, Path): path = path.resolve().as_posix() if path not in sys.path: if prepend: sys.path.insert(0, path) else: sys.path.append(path) def run_command(cmd, ignored_lines_start=None): if ignored_lines_start is None: ignored_lines_start = [] if isinstance(cmd, str): shell_cmd = cmd elif isinstance(cmd, list): shell_cmd = " ".join( arg.as_posix() if isinstance(arg, Path) else shlex.quote(str(arg)) for arg in cmd ) else: raise ValueError( "Invalid 'cmd' argument. It must be a string or a list of arguments." ) try: _run_command(shell_cmd, ignored_lines_start) except subprocess.CalledProcessError as e: print( f"Command failed with return code: {e.returncode}", file=sys.stderr ) print(e.stderr.strip(), file=sys.stderr) except KeyboardInterrupt: print("Command execution interrupted.") def _run_command(shell_cmd, ignored_lines_start): log.debug(f"Running {shell_cmd}") result = subprocess.run( shell_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, shell=True, check=True, ) stdout_lines = result.stdout.strip().split("\n") stderr_lines = result.stderr.strip().split("\n") # Print stdout, skipping ignored lines for line in stdout_lines: if not any(line.startswith(ign) for ign in ignored_lines_start): print(line) # Print stderr for line in stderr_lines: print(line, file=sys.stderr) print("Command executed successfully!") def import_install(package_name): package_spec = reqs_map.get(package_name, package_name) try: importlib.import_module(package_name) except Exception: # (ImportError, ModuleNotFoundError): run_command( [ Path(sys.executable).as_posix(), "-m", "pip", "install", package_spec, ] ) importlib.import_module(package_name) # endregion # region GLOBAL VARIABLES # - detect mode comfy_mode = None if os.environ.get("COLAB_GPU"): comfy_mode = "colab" elif "python_embeded" in sys.executable: comfy_mode = "embeded" elif ".venv" in sys.executable: comfy_mode = "venv" # - Get the absolute path of the parent directory of the current script here = Path(__file__).parent.absolute() # - Construct the absolute path to the ComfyUI directory comfy_dir = Path(folder_paths.base_path) models_dir = Path(folder_paths.models_dir) output_dir = Path(folder_paths.output_directory) input_dir = Path(folder_paths.input_directory) styles_dir = comfy_dir / "styles" session_id = str(uuid.uuid4()) # - Construct the path to the font file font_path = here / "data" / "font.ttf" # - Add extern folder to path extern_root = here / "extern" add_path(extern_root) for pth in extern_root.iterdir(): if pth.is_dir(): add_path(pth) # - Add the ComfyUI directory and custom nodes path to the sys.path list add_path(comfy_dir) add_path(comfy_dir / "custom_nodes") # TODO: use the requirements library reqs_map = {value: key for key, value in pip_map.items()} # NOTE: store already logged warnings to only alert once. warned_messages: set[str] = set() PIL_FILTER_MAP = { "nearest": Image.Resampling.NEAREST, "box": Image.Resampling.BOX, "bilinear": Image.Resampling.BILINEAR, "hamming": Image.Resampling.HAMMING, "bicubic": Image.Resampling.BICUBIC, "lanczos": Image.Resampling.LANCZOS, } # endregion # region TENSOR Utilities def to_numpy(image: torch.Tensor) -> npt.NDArray[np.uint8]: """Converts a tensor to a ndarray with proper scaling and type conversion.""" log.debug(f"Converting tensor to numpy array with shape {image.shape}") np_array = np.clip(255.0 * image.cpu().numpy(), 0, 255).astype(np.uint8) log.debug(f"Numpy array shape after conversion: {np_array.shape}") return np_array def handle_batch( tensor: torch.Tensor, func: Callable[[torch.Tensor], Image.Image | npt.NDArray[np.uint8]], ) -> list[Image.Image] | list[npt.NDArray[np.uint8]]: """Handles batch processing for a given tensor and conversion function.""" return [func(tensor[i]) for i in range(tensor.shape[0])] def tensor2pil(tensor: torch.Tensor) -> list[Image.Image]: """Converts a batch of tensors to a list of PIL Images.""" def single_tensor2pil(t: torch.Tensor) -> Image.Image: np_array = to_numpy(t) if np_array.ndim == 2: # (H, W) for masks return Image.fromarray(np_array, mode="L") elif np_array.ndim == 3: # (H, W, C) for RGB/RGBA if np_array.shape[2] == 3: return Image.fromarray(np_array, mode="RGB") elif np_array.shape[2] == 4: return Image.fromarray(np_array, mode="RGBA") raise ValueError(f"Invalid tensor shape: {t.shape}") return handle_batch(tensor, single_tensor2pil) def pil2tensor(images: Image.Image | list[Image.Image]) -> torch.Tensor: """Converts a PIL Image or a list of PIL Images to a tensor.""" def single_pil2tensor(image: Image.Image) -> torch.Tensor: np_image = np.array(image).astype(np.float32) / 255.0 if np_image.ndim == 2: # Grayscale return torch.from_numpy(np_image).unsqueeze(0) # (1, H, W) else: # RGB or RGBA return torch.from_numpy(np_image).unsqueeze(0) # (1, H, W, C) if isinstance(images, Image.Image): return single_pil2tensor(images) else: return torch.cat([single_pil2tensor(img) for img in images], dim=0) def np2tensor( np_array: npt.NDArray[np.float32] | Sequence[npt.NDArray[np.float32]], ) -> torch.Tensor: """Converts a NumPy array or a list of NumPy arrays to a tensor.""" def single_np2tensor(array: npt.NDArray[np.float32]) -> torch.Tensor: if array.ndim == 2: # (H, W) for masks return torch.from_numpy( array.astype(np.float32) / 255.0 ).unsqueeze(0) # (1, H, W) elif array.ndim == 3: # (H, W, C) for RGB/RGBA return torch.from_numpy( array.astype(np.float32) / 255.0 ).unsqueeze(0) # (1, H, W, C) raise ValueError(f"Invalid array shape: {array.shape}") if isinstance(np_array, np.ndarray): return single_np2tensor(np_array) else: return torch.cat([single_np2tensor(arr) for arr in np_array], dim=0) def tensor2np(tensor: torch.Tensor) -> list[npt.NDArray[np.uint8]]: """Converts a batch of tensors to a list of NumPy arrays.""" def single_tensor2np(t: torch.Tensor) -> npt.NDArray[np.uint8]: t = t.squeeze() # Remove any singleton dimensions if t.ndim == 2: # (H, W) for masks return to_numpy(t) elif t.ndim == 3: # (C, H, W) for RGB/RGBA if t.shape[0] in [1, 3, 4]: # Channel-first format t = t.permute(1, 2, 0) return to_numpy(t) else: raise ValueError(f"Invalid tensor shape: {t.shape}") return handle_batch(tensor, single_tensor2np) def pad(img, left, right, top, bottom): pad_width = np.array(((0, 0), (top, bottom), (left, right))) print( f"pad_width: {pad_width}, shape: {pad_width.shape}" ) # Debugging line return np.pad(img, pad_width, mode="wrap") def tiles_infer(tiles, ort_session, progress_callback=None): """Infer each tile with the given model. progress_callback will be called with arguments : current tile idx and total tiles amount (used to show progress on cursor in Blender). """ out_channels = 3 # normal map RGB channels tiles_nb = tiles.shape[0] pred_tiles = np.empty( (tiles_nb, out_channels, tiles.shape[2], tiles.shape[3]) ) for i in range(tiles_nb): if progress_callback != None: progress_callback(i + 1, tiles_nb) pred_tiles[i] = ort_session.run( None, {"input": tiles[i : i + 1].astype(np.float32)} )[0] return pred_tiles def generate_mask(tile_size, stride_size): """Generates a pyramidal-like mask. Used for mixing overlapping predicted tiles.""" tile_h, tile_w = tile_size stride_h, stride_w = stride_size ramp_h = tile_h - stride_h ramp_w = tile_w - stride_w mask = np.ones((tile_h, tile_w)) # ramps in width direction mask[ramp_h:-ramp_h, :ramp_w] = np.linspace(0, 1, num=ramp_w) mask[ramp_h:-ramp_h, -ramp_w:] = np.linspace(1, 0, num=ramp_w) # ramps in height direction mask[:ramp_h, ramp_w:-ramp_w] = np.transpose( np.linspace(0, 1, num=ramp_h)[None], (1, 0) ) mask[-ramp_h:, ramp_w:-ramp_w] = np.transpose( np.linspace(1, 0, num=ramp_h)[None], (1, 0) ) # Assume tiles are squared assert ramp_h == ramp_w # top left corner corner = np.rot90(corner_mask(ramp_h), 2) mask[:ramp_h, :ramp_w] = corner # top right corner corner = np.flip(corner, 1) mask[:ramp_h, -ramp_w:] = corner # bottom right corner corner = np.flip(corner, 0) mask[-ramp_h:, -ramp_w:] = corner # bottom right corner corner = np.flip(corner, 1) mask[-ramp_h:, :ramp_w] = corner return mask def corner_mask(side_length): """Generates the corner part of the pyramidal-like mask. Currently, only for square shapes. """ corner = np.zeros([side_length, side_length]) for h in range(0, side_length): for w in range(0, side_length): if h >= w: sh = h / (side_length - 1) corner[h, w] = 1 - sh if h <= w: sw = w / (side_length - 1) corner[h, w] = 1 - sw return corner - 0.25 * scaling_mask(side_length) def scaling_mask(side_length): scaling = np.zeros([side_length, side_length]) for h in range(0, side_length): for w in range(0, side_length): sh = h / (side_length - 1) sw = w / (side_length - 1) if h >= w and h <= side_length - w: scaling[h, w] = sw if h <= w and h <= side_length - w: scaling[h, w] = sh if h >= w and h >= side_length - w: scaling[h, w] = 1 - sh if h <= w and h >= side_length - w: scaling[h, w] = 1 - sw return 2 * scaling def tiles_merge(tiles, stride_size, img_size, paddings): """Merges the list of tiles into one image. img_size is the original size, before padding. """ _, tile_h, tile_w = tiles[0].shape pad_left, pad_right, pad_top, pad_bottom = paddings height = img_size[1] + pad_top + pad_bottom width = img_size[2] + pad_left + pad_right stride_h, stride_w = stride_size # stride must be even assert (stride_h % 2 == 0) and (stride_w % 2 == 0) # stride must be greater or equal than half tile assert (stride_h >= tile_h / 2) and (stride_w >= tile_w / 2) # stride must be smaller or equal tile size assert (stride_h <= tile_h) and (stride_w <= tile_w) merged = np.zeros((img_size[0], height, width)) mask = generate_mask((tile_h, tile_w), stride_size) h_range = ((height - tile_h) // stride_h) + 1 w_range = ((width - tile_w) // stride_w) + 1 idx = 0 for h in range(0, h_range): for w in range(0, w_range): h_from, h_to = h * stride_h, h * stride_h + tile_h w_from, w_to = w * stride_w, w * stride_w + tile_w merged[:, h_from:h_to, w_from:w_to] += tiles[idx] * mask idx += 1 return merged[:, pad_top:-pad_bottom, pad_left:-pad_right] def tiles_split(img, tile_size, stride_size): """Returns list of tiles from the given image and the padding used to fit the tiles in it. Input image must have dimension C,H,W. """ log.debug(f"Splitting img: tile {tile_size}, stride {stride_size} ") tile_h, tile_w = tile_size stride_h, stride_w = stride_size img_h, img_w = img.shape[0], img.shape[1] # stride must be even assert (stride_h % 2 == 0) and (stride_w % 2 == 0) # stride must be greater or equal than half tile assert (stride_h >= tile_h / 2) and (stride_w >= tile_w / 2) # stride must be smaller or equal tile size assert (stride_h <= tile_h) and (stride_w <= tile_w) # find total height & width padding sizes pad_h, pad_w = 0, 0 remainer_h = (img_h - tile_h) % stride_h remainer_w = (img_w - tile_w) % stride_w if remainer_h != 0: pad_h = stride_h - remainer_h if remainer_w != 0: pad_w = stride_w - remainer_w # if tile bigger than image, pad image to tile size if tile_h > img_h: pad_h = tile_h - img_h if tile_w > img_w: pad_w = tile_w - img_w # pad image, add extra stride to padding to avoid pyramid # weighting leaking onto the valid part of the picture pad_left = pad_w // 2 + stride_w pad_right = pad_left if pad_w % 2 == 0 else pad_left + 1 pad_top = pad_h // 2 + stride_h pad_bottom = pad_top if pad_h % 2 == 0 else pad_top + 1 img = pad(img, pad_left, pad_right, pad_top, pad_bottom) img_h, img_w = img.shape[1], img.shape[2] # extract tiles h_range = ((img_h - tile_h) // stride_h) + 1 w_range = ((img_w - tile_w) // stride_w) + 1 tiles = np.empty([h_range * w_range, img.shape[0], tile_h, tile_w]) idx = 0 for h in range(0, h_range): for w in range(0, w_range): h_from, h_to = h * stride_h, h * stride_h + tile_h w_from, w_to = w * stride_w, w * stride_w + tile_w tiles[idx] = img[:, h_from:h_to, w_from:w_to] idx += 1 return tiles, (pad_left, pad_right, pad_top, pad_bottom) # endregion # region MODEL Utilities def download_antelopev2(): antelopev2_url = ( "https://drive.google.com/uc?id=18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8" ) try: import gdown log.debug("Loading antelopev2 model") dest = get_model_path("insightface") archive = dest / "antelopev2.zip" final_path = dest / "models" / "antelopev2" if not final_path.exists(): log.info(f"antelopev2 not found, downloading to {dest}") gdown.download( antelopev2_url, archive.as_posix(), resume=True, ) log.info(f"Unzipping antelopev2 to {final_path}") if archive.exists(): # we unzip it import zipfile with zipfile.ZipFile(archive.as_posix(), "r") as zip_ref: zip_ref.extractall(final_path.parent.as_posix()) except Exception as e: log.error( f"Could not load or download antelopev2 model, download it manually from {antelopev2_url}" ) raise e def get_model_path(fam, model=None): log.debug(f"Requesting {fam} with model {model}") res = None if model: res = folder_paths.get_full_path(fam, model) else: # this one can raise errors... with contextlib.suppress(KeyError): res = folder_paths.get_folder_paths(fam) if res: if isinstance(res, list): if len(res) > 1: warn_msg = f"Found multiple match, we will pick the last {res[-1]}\n{res}" if warn_msg not in warned_messages: log.info(warn_msg) warned_messages.add(warn_msg) res = res[-1] res = Path(res) log.debug(f"Resolved model path from folder_paths: {res}") else: res = models_dir / fam if model: res /= model return res # endregion # region UV Utilities def create_uv_map_tensor(width=512, height=512): u = torch.linspace(0.0, 1.0, steps=width) v = torch.linspace(0.0, 1.0, steps=height) U, V = torch.meshgrid(u, v) uv_map = torch.zeros(height, width, 3, dtype=torch.float32) uv_map[:, :, 0] = U.t() uv_map[:, :, 1] = V.t() return uv_map.unsqueeze(0) # endregion # region ANIMATION Utilities EASINGS = [ "Linear", "Sine In", "Sine Out", "Sine In/Out", "Quart In", "Quart Out", "Quart In/Out", "Cubic In", "Cubic Out", "Cubic In/Out", "Circ In", "Circ Out", "Circ In/Out", "Back In", "Back Out", "Back In/Out", "Elastic In", "Elastic Out", "Elastic In/Out", "Bounce In", "Bounce Out", "Bounce In/Out", ] def apply_easing(value, easing_type): if easing_type == "Linear": return value # Back easing functions def easeInBack(t): s = 1.70158 return t * t * ((s + 1) * t - s) def easeOutBack(t): s = 1.70158 return ((t - 1) * t * ((s + 1) * t + s)) + 1 def easeInOutBack(t): s = 1.70158 * 1.525 if t < 0.5: return (t * t * (t * (s + 1) - s)) * 2 return ((t - 2) * t * ((s + 1) * t + s) + 2) * 2 # Elastic easing functions def easeInElastic(t): if t == 0: return 0 if t == 1: return 1 p = 0.3 s = p / 4 return -( math.pow(2, 10 * (t - 1)) * math.sin((t - 1 - s) * (2 * math.pi) / p) ) def easeOutElastic(t): if t == 0: return 0 if t == 1: return 1 p = 0.3 s = p / 4 return math.pow(2, -10 * t) * math.sin((t - s) * (2 * math.pi) / p) + 1 def easeInOutElastic(t): if t == 0: return 0 if t == 1: return 1 p = 0.3 * 1.5 s = p / 4 t = t * 2 if t < 1: return -0.5 * ( math.pow(2, 10 * (t - 1)) * math.sin((t - 1 - s) * (2 * math.pi) / p) ) return ( 0.5 * math.pow(2, -10 * (t - 1)) * math.sin((t - 1 - s) * (2 * math.pi) / p) + 1 ) # Bounce easing functions def easeInBounce(t): return 1 - easeOutBounce(1 - t) def easeOutBounce(t): if t < (1 / 2.75): return 7.5625 * t * t elif t < (2 / 2.75): t -= 1.5 / 2.75 return 7.5625 * t * t + 0.75 elif t < (2.5 / 2.75): t -= 2.25 / 2.75 return 7.5625 * t * t + 0.9375 else: t -= 2.625 / 2.75 return 7.5625 * t * t + 0.984375 def easeInOutBounce(t): if t < 0.5: return easeInBounce(t * 2) * 0.5 return easeOutBounce(t * 2 - 1) * 0.5 + 0.5 # Quart easing functions def easeInQuart(t): return t * t * t * t def easeOutQuart(t): t -= 1 return -(t**2 * t * t - 1) def easeInOutQuart(t): t *= 2 if t < 1: return 0.5 * t * t * t * t t -= 2 return -0.5 * (t**2 * t * t - 2) # Cubic easing functions def easeInCubic(t): return t * t * t def easeOutCubic(t): t -= 1 return t**2 * t + 1 def easeInOutCubic(t): t *= 2 if t < 1: return 0.5 * t * t * t t -= 2 return 0.5 * (t**2 * t + 2) # Circ easing functions def easeInCirc(t): return -(math.sqrt(1 - t * t) - 1) def easeOutCirc(t): t -= 1 return math.sqrt(1 - t**2) def easeInOutCirc(t): t *= 2 if t < 1: return -0.5 * (math.sqrt(1 - t**2) - 1) t -= 2 return 0.5 * (math.sqrt(1 - t**2) + 1) # Sine easing functions def easeInSine(t): return -math.cos(t * (math.pi / 2)) + 1 def easeOutSine(t): return math.sin(t * (math.pi / 2)) def easeInOutSine(t): return -0.5 * (math.cos(math.pi * t) - 1) easing_functions = { "Sine In": easeInSine, "Sine Out": easeOutSine, "Sine In/Out": easeInOutSine, "Quart In": easeInQuart, "Quart Out": easeOutQuart, "Quart In/Out": easeInOutQuart, "Cubic In": easeInCubic, "Cubic Out": easeOutCubic, "Cubic In/Out": easeInOutCubic, "Circ In": easeInCirc, "Circ Out": easeOutCirc, "Circ In/Out": easeInOutCirc, "Back In": easeInBack, "Back Out": easeOutBack, "Back In/Out": easeInOutBack, "Elastic In": easeInElastic, "Elastic Out": easeOutElastic, "Elastic In/Out": easeInOutElastic, "Bounce In": easeInBounce, "Bounce Out": easeOutBounce, "Bounce In/Out": easeInOutBounce, } function_ease = easing_functions.get(easing_type) if function_ease: return function_ease(value) log.error(f"Unknown easing type: {easing_type}") log.error(f"Available easing types: {list(easing_functions.keys())}") raise ValueError(f"Unknown easing type: {easing_type}") # endregion