import os import random import sys from typing import Sequence, Mapping, Any, Union import torch def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: """Returns the value at the given index of a sequence or mapping. If the object is a sequence (like list or string), returns the value at the given index. If the object is a mapping (like a dictionary), returns the value at the index-th key. Some return a dictionary, in these cases, we look for the "results" key Args: obj (Union[Sequence, Mapping]): The object to retrieve the value from. index (int): The index of the value to retrieve. Returns: Any: The value at the given index. Raises: IndexError: If the index is out of bounds for the object and the object is not a mapping. """ try: return obj[index] except KeyError: return obj["result"][index] def find_path(name: str, path: str = None) -> str: """ Recursively looks at parent folders starting from the given path until it finds the given name. Returns the path as a Path object if found, or None otherwise. """ # If no path is given, use the current working directory if path is None: path = os.getcwd() # Check if the current directory contains the name if name in os.listdir(path): path_name = os.path.join(path, name) print(f"{name} found: {path_name}") return path_name # Get the parent directory parent_directory = os.path.dirname(path) # If the parent directory is the same as the current directory, we've reached the root and stop the search if parent_directory == path: return None # Recursively call the function with the parent directory return find_path(name, parent_directory) def add_comfyui_directory_to_sys_path() -> None: """ Add 'ComfyUI' to the sys.path """ comfyui_path = find_path("ComfyUI") if comfyui_path is not None and os.path.isdir(comfyui_path): sys.path.append(comfyui_path) print(f"'{comfyui_path}' added to sys.path") def add_extra_model_paths() -> None: """ Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. """ try: from main import load_extra_path_config except ImportError: print( "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." ) from utils.extra_config import load_extra_path_config extra_model_paths = find_path("extra_model_paths.yaml") if extra_model_paths is not None: load_extra_path_config(extra_model_paths) else: print("Could not find the extra_model_paths config file.") add_comfyui_directory_to_sys_path() add_extra_model_paths() def import_custom_nodes() -> None: """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS This function sets up a new asyncio event loop, initializes the PromptServer, creates a PromptQueue, and initializes the custom nodes. """ import asyncio import execution from nodes import init_extra_nodes import server # Creating a new event loop and setting it as the default loop loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) # Creating an instance of PromptServer with the loop server_instance = server.PromptServer(loop) execution.PromptQueue(server_instance) # Initializing custom nodes init_extra_nodes() from nodes import ( StyleModelLoader, VAEEncode, NODE_CLASS_MAPPINGS, LoadImage, CLIPVisionLoader, SaveImage, VAELoader, CLIPVisionEncode, DualCLIPLoader, EmptyLatentImage, VAEDecode, UNETLoader, CLIPTextEncode, ) def main(): import_custom_nodes() with torch.inference_mode(): intconstant = NODE_CLASS_MAPPINGS["INTConstant"]() intconstant_83 = intconstant.get_value(value=1024) intconstant_84 = intconstant.get_value(value=1024) dualcliploader = DualCLIPLoader() dualcliploader_357 = dualcliploader.load_clip( clip_name1="t5/t5xxl_fp16.safetensors", clip_name2="clip_l.safetensors", type="flux", ) cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]() cr_clip_input_switch_319 = cr_clip_input_switch.switch( Input=1, clip1=get_value_at_index(dualcliploader_357, 0), clip2=get_value_at_index(dualcliploader_357, 0), ) cliptextencode = CLIPTextEncode() cliptextencode_174 = cliptextencode.encode( text="a girl looking at a house on fire", clip=get_value_at_index(cr_clip_input_switch_319, 0), ) cliptextencode_175 = cliptextencode.encode( text="", clip=get_value_at_index(cr_clip_input_switch_319, 0) ) loadimage = LoadImage() loadimage_429 = loadimage.load_image( image="7038548d-d204-4810-bb74-d1dea277200a.png" ) imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]() imageresize_72 = imageresize.execute( width=get_value_at_index(intconstant_83, 0), height=get_value_at_index(intconstant_84, 0), interpolation="bicubic", method="keep proportion", condition="always", multiple_of=16, image=get_value_at_index(loadimage_429, 0), ) getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]() getimagesizeandcount_360 = getimagesizeandcount.getsize( image=get_value_at_index(imageresize_72, 0) ) vaeloader = VAELoader() vaeloader_359 = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors") vaeencode = VAEEncode() vaeencode_197 = vaeencode.encode( pixels=get_value_at_index(getimagesizeandcount_360, 0), vae=get_value_at_index(vaeloader_359, 0), ) unetloader = UNETLoader() unetloader_358 = unetloader.load_unet( unet_name="flux1-depth-dev.safetensors", weight_dtype="default" ) ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() ksamplerselect_363 = ksamplerselect.get_sampler(sampler_name="euler") randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() randomnoise_365 = randomnoise.get_noise(noise_seed=random.randint(1, 2**64)) fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() fluxguidance_430 = fluxguidance.append( guidance=15, conditioning=get_value_at_index(cliptextencode_174, 0) ) downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS[ "DownloadAndLoadDepthAnythingV2Model" ]() downloadandloaddepthanythingv2model_437 = ( downloadandloaddepthanythingv2model.loadmodel( model="depth_anything_v2_vitl_fp32.safetensors" ) ) depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]() depthanything_v2_436 = depthanything_v2.process( da_model=get_value_at_index(downloadandloaddepthanythingv2model_437, 0), images=get_value_at_index(getimagesizeandcount_360, 0), ) instructpixtopixconditioning = NODE_CLASS_MAPPINGS[ "InstructPixToPixConditioning" ]() instructpixtopixconditioning_431 = instructpixtopixconditioning.encode( positive=get_value_at_index(fluxguidance_430, 0), negative=get_value_at_index(cliptextencode_175, 0), vae=get_value_at_index(vaeloader_359, 0), pixels=get_value_at_index(depthanything_v2_436, 0), ) clipvisionloader = CLIPVisionLoader() clipvisionloader_438 = clipvisionloader.load_clip( clip_name="sigclip_vision_patch14_384.safetensors" ) loadimage_440 = loadimage.load_image( image="2013_CKS_01180_0005_000(the_court_of_pir_budaq_shiraz_iran_circa_1455-60074106).jpg" ) clipvisionencode = CLIPVisionEncode() clipvisionencode_439 = clipvisionencode.encode( crop="center", clip_vision=get_value_at_index(clipvisionloader_438, 0), image=get_value_at_index(loadimage_440, 0), ) stylemodelloader = StyleModelLoader() stylemodelloader_441 = stylemodelloader.load_style_model( style_model_name="flux1-redux-dev.safetensors" ) cr_text = NODE_CLASS_MAPPINGS["CR Text"]() cr_text_456 = cr_text.text_multiline(text="Flux_BFL_Depth_Redux") emptylatentimage = EmptyLatentImage() cr_conditioning_input_switch = NODE_CLASS_MAPPINGS[ "CR Conditioning Input Switch" ]() cr_model_input_switch = NODE_CLASS_MAPPINGS["CR Model Input Switch"]() stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]() basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]() basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() vaedecode = VAEDecode() saveimage = SaveImage() imagecrop = NODE_CLASS_MAPPINGS["ImageCrop+"]() for q in range(10): emptylatentimage_10 = emptylatentimage.generate( width=get_value_at_index(imageresize_72, 1), height=get_value_at_index(imageresize_72, 2), batch_size=1, ) cr_conditioning_input_switch_271 = cr_conditioning_input_switch.switch( Input=1, conditioning1=get_value_at_index(instructpixtopixconditioning_431, 0), conditioning2=get_value_at_index(instructpixtopixconditioning_431, 0), ) cr_conditioning_input_switch_272 = cr_conditioning_input_switch.switch( Input=1, conditioning1=get_value_at_index(instructpixtopixconditioning_431, 1), conditioning2=get_value_at_index(instructpixtopixconditioning_431, 1), ) cr_model_input_switch_320 = cr_model_input_switch.switch( Input=1, model1=get_value_at_index(unetloader_358, 0), model2=get_value_at_index(unetloader_358, 0), ) stylemodelapplyadvanced_442 = stylemodelapplyadvanced.apply_stylemodel( strength=0.5, conditioning=get_value_at_index(instructpixtopixconditioning_431, 0), style_model=get_value_at_index(stylemodelloader_441, 0), clip_vision_output=get_value_at_index(clipvisionencode_439, 0), ) basicguider_366 = basicguider.get_guider( model=get_value_at_index(cr_model_input_switch_320, 0), conditioning=get_value_at_index(stylemodelapplyadvanced_442, 0), ) basicscheduler_364 = basicscheduler.get_sigmas( scheduler="simple", steps=28, denoise=1, model=get_value_at_index(cr_model_input_switch_320, 0), ) samplercustomadvanced_362 = samplercustomadvanced.sample( noise=get_value_at_index(randomnoise_365, 0), guider=get_value_at_index(basicguider_366, 0), sampler=get_value_at_index(ksamplerselect_363, 0), sigmas=get_value_at_index(basicscheduler_364, 0), latent_image=get_value_at_index(emptylatentimage_10, 0), ) vaedecode_321 = vaedecode.decode( samples=get_value_at_index(samplercustomadvanced_362, 0), vae=get_value_at_index(vaeloader_359, 0), ) saveimage_327 = saveimage.save_images( filename_prefix=get_value_at_index(cr_text_456, 0), images=get_value_at_index(vaedecode_321, 0), ) fluxguidance_382 = fluxguidance.append( guidance=4, conditioning=get_value_at_index(cr_conditioning_input_switch_272, 0), ) imagecrop_447 = imagecrop.execute( width=2000, height=2000, position="top-center", x_offset=0, y_offset=0, image=get_value_at_index(loadimage_440, 0), ) if __name__ == "__main__": main()