Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler, AutoencoderKL | |
import torch | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
import spaces | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
### SDXL Turbo #### | |
pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo", | |
vae=vae, | |
torch_dtype=torch.float16, | |
variant="fp16" | |
) | |
pipe_turbo.to("cuda") | |
### SDXL Lightning ### | |
base = "stabilityai/stable-diffusion-xl-base-1.0" | |
repo = "ByteDance/SDXL-Lightning" | |
ckpt = "sdxl_lightning_1step_unet_x0.safetensors" | |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16) | |
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt))) | |
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base, | |
unet=unet, | |
vae=vae, | |
text_encoder=pipe_turbo.text_encoder, | |
text_encoder_2=pipe_turbo.text_encoder_2, | |
tokenizer=pipe_turbo.tokenizer, | |
tokenizer_2=pipe_turbo.tokenizer_2, | |
torch_dtype=torch.float16, | |
variant="fp16" | |
)#.to("cuda") | |
del unet | |
pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample") | |
pipe_lightning.to("cuda") | |
### Hyper SDXL ### | |
repo_name = "ByteDance/Hyper-SD" | |
ckpt_name = "Hyper-SDXL-1step-Unet.safetensors" | |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16) | |
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name))) | |
pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base, | |
unet=unet, | |
vae=vae, | |
text_encoder=pipe_turbo.text_encoder, | |
text_encoder_2=pipe_turbo.text_encoder_2, | |
tokenizer=pipe_turbo.tokenizer, | |
tokenizer_2=pipe_turbo.tokenizer_2, | |
torch_dtype=torch.float16, | |
variant="fp16" | |
)#.to("cuda") | |
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config) | |
pipe_hyper.to("cuda") | |
del unet | |
def run_comparison(prompt): | |
image_turbo=pipe_turbo(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0] | |
image_lightning=pipe_lightning(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0] | |
image_hyper=pipe_hyper(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[800]).images[0] | |
return image_turbo, image_lightning, image_hyper | |
examples = | |
["A dignified beaver wearing glasses, a vest, and colorful neck tie.", | |
"The spirit of a tamagotchi wandering in the city of Barcelona", | |
"an ornate, high-backed mahogany chair with a red cushion", | |
"a sketch of a camel next to a stream", | |
"a delicate porcelain teacup sits on a saucer, its surface adorned with intricate blue patterns", | |
"a baby swan grafitti", | |
"A bald eagle made of chocolate powder, mango, and whipped cream" | |
] | |
with gr.Blocks() as demo: | |
gr.Markdown("## One step SDXL comparison 🦶") | |
gr.Markdown('Compare SDXL variants and distillations able to generate images in a single diffusion step') | |
prompt = gr.Textbox(label="Prompt") | |
run = gr.Button("Run") | |
with gr.Row(): | |
with gr.Column(): | |
image_turbo = gr.Image(label="SDXL Turbo") | |
gr.Markdown("## [SDXL Turbo](https://huggingface.co/stabilityai/sdxl-turbo)") | |
with gr.Column(): | |
image_lightning = gr.Image(label="SDXL Lightning") | |
gr.Markdown("## [SDXL Lightning](https://huggingface.co/ByteDance/SDXL-Lightning)") | |
with gr.Column(): | |
image_hyper = gr.Image(label="Hyper SDXL") | |
gr.Markdown("## [Hyper SDXL](https://huggingface.co/ByteDance/Hyper-SD)") | |
image_outputs = [image_turbo, image_lightning, image_hyper] | |
gr.on( | |
triggers=[prompt.submit, run.click], | |
fn=run_comparison, | |
inputs=prompt, | |
outputs=image_outputs | |
) | |
gr.Examples( | |
examples=examples, | |
fn=run_comparison, | |
inputs=prompt, | |
outputs=image_outputs | |
) | |
demo.launch() |