Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
-
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler
|
3 |
import torch
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from safetensors.torch import load_file
|
6 |
import spaces
|
7 |
|
|
|
|
|
8 |
### SDXL Turbo ####
|
9 |
-
pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo",
|
|
|
|
|
|
|
|
|
10 |
#pipe_turbo.to("cuda")
|
11 |
|
12 |
### SDXL Lightning ###
|
@@ -16,7 +22,16 @@ ckpt = "sdxl_lightning_1step_unet_x0.safetensors"
|
|
16 |
|
17 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16)
|
18 |
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)))
|
19 |
-
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
del unet
|
21 |
pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
22 |
#pipe_lightning.to("cuda")
|
@@ -27,7 +42,16 @@ ckpt_name = "Hyper-SDXL-1step-Unet.safetensors"
|
|
27 |
|
28 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16)
|
29 |
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name)))
|
30 |
-
pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config)
|
32 |
#pipe_hyper.to("cuda")
|
33 |
del unet
|
|
|
1 |
import gradio as gr
|
2 |
+
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler, AutoencoderKL
|
3 |
import torch
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from safetensors.torch import load_file
|
6 |
import spaces
|
7 |
|
8 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
9 |
+
|
10 |
### SDXL Turbo ####
|
11 |
+
pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo",
|
12 |
+
vae=vae,
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
variant="fp16"
|
15 |
+
)
|
16 |
#pipe_turbo.to("cuda")
|
17 |
|
18 |
### SDXL Lightning ###
|
|
|
22 |
|
23 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16)
|
24 |
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)))
|
25 |
+
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base,
|
26 |
+
unet=unet,
|
27 |
+
vae=vae,
|
28 |
+
text_encoder_1=pipe_turbo.text_encoder_1,
|
29 |
+
text_encoder_2=pipe_turbo.text_encoder_2,
|
30 |
+
tokenizer=pipe_turbo.tokenizer,
|
31 |
+
tokenizer_2=pipe_turbo.tokenizer_2,
|
32 |
+
torch_dtype=torch.float16,
|
33 |
+
variant="fp16"
|
34 |
+
)#.to("cuda")
|
35 |
del unet
|
36 |
pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
37 |
#pipe_lightning.to("cuda")
|
|
|
42 |
|
43 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16)
|
44 |
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name)))
|
45 |
+
pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base,
|
46 |
+
unet=unet,
|
47 |
+
vae=vae,
|
48 |
+
text_encoder_1=pipe_turbo.text_encoder_1,
|
49 |
+
text_encoder_2=pipe_turbo.text_encoder_2,
|
50 |
+
tokenizer=pipe_turbo.tokenizer,
|
51 |
+
tokenizer_2=pipe_turbo.tokenizer_2,
|
52 |
+
torch_dtype=torch.float16,
|
53 |
+
variant="fp16"
|
54 |
+
)#.to("cuda")
|
55 |
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config)
|
56 |
#pipe_hyper.to("cuda")
|
57 |
del unet
|