Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ ckpt = "sdxl_lightning_1step_unet_x0.safetensors"
|
|
17 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
18 |
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
19 |
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
20 |
-
|
21 |
pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
22 |
pipe_lightning.to("cuda")
|
23 |
|
@@ -30,7 +30,7 @@ unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name), device="cu
|
|
30 |
pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
31 |
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config)
|
32 |
pipe_hyper.to("cuda")
|
33 |
-
|
34 |
|
35 |
@spaces.GPU
|
36 |
def run_comparison(prompt):
|
|
|
17 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
18 |
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
19 |
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
20 |
+
del unet
|
21 |
pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
22 |
pipe_lightning.to("cuda")
|
23 |
|
|
|
30 |
pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
31 |
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config)
|
32 |
pipe_hyper.to("cuda")
|
33 |
+
del unet
|
34 |
|
35 |
@spaces.GPU
|
36 |
def run_comparison(prompt):
|