import gradio as gr from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler, AutoencoderKL import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file import spaces vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) ### SDXL Turbo #### pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo", vae=vae, torch_dtype=torch.float16, variant="fp16" ) #pipe_turbo.to("cuda") ### SDXL Lightning ### base = "stabilityai/stable-diffusion-xl-base-1.0" repo = "ByteDance/SDXL-Lightning" ckpt = "sdxl_lightning_1step_unet_x0.safetensors" unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16) unet.load_state_dict(load_file(hf_hub_download(repo, ckpt))) pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, vae=vae, text_encoder=pipe_turbo.text_encoder, text_encoder_2=pipe_turbo.text_encoder_2, tokenizer=pipe_turbo.tokenizer, tokenizer_2=pipe_turbo.tokenizer_2, torch_dtype=torch.float16, variant="fp16" )#.to("cuda") del unet pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample") #pipe_lightning.to("cuda") ### Hyper SDXL ### repo_name = "ByteDance/Hyper-SD" ckpt_name = "Hyper-SDXL-1step-Unet.safetensors" unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16) unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name))) pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, vae=vae, text_encoder=pipe_turbo.text_encoder, text_encoder_2=pipe_turbo.text_encoder_2, tokenizer=pipe_turbo.tokenizer, tokenizer_2=pipe_turbo.tokenizer_2, torch_dtype=torch.float16, variant="fp16" )#.to("cuda") pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config) #pipe_hyper.to("cuda") del unet @spaces.GPU def run_comparison(prompt): image_turbo.to("cuda") image_turbo=pipe_turbo(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0] image_turbo.to("cpu") image_lightning.to("cuda") image_lightning=pipe_lightning(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0] image_lightning.to("cpu") image_hyper.to("cuda") image_hyper=pipe_hyper(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[800]).images[0] image_turbo.to("cpu") return image_turbo, image_lightning, image_hyper css = ''' .gradio-container{max-width: 768px !important} ''' with gr.Blocks(css=css) as demo: prompt = gr.Textbox(label="Prompt") run = gr.Button("Run") with gr.Row(): image_turbo = gr.Image(label="SDXL Turbo") image_lightning = gr.Image(label="SDXL Lightning") image_hyper = gr.Image("Hyper SDXL") run.click(fn=run_comparison, inputs=prompt, outputs=[image_turbo, image_lightning, image_hyper])