Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,200 Bytes
ba02955 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from torch import nn
# Effnet 16x16 to 64x64 previewer
class Previewer(nn.Module):
def __init__(self, c_in=16, c_hidden=512, c_out=3):
super().__init__()
self.blocks = nn.Sequential(
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 36 channels to 512 channels
nn.GELU(),
nn.BatchNorm2d(c_hidden),
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
nn.GELU(),
nn.BatchNorm2d(c_hidden),
nn.ConvTranspose2d(c_hidden, c_hidden//2, kernel_size=2, stride=2), # 16 -> 32
nn.GELU(),
nn.BatchNorm2d(c_hidden//2),
nn.Conv2d(c_hidden//2, c_hidden//2, kernel_size=3, padding=1),
nn.GELU(),
nn.BatchNorm2d(c_hidden//2),
nn.ConvTranspose2d(c_hidden//2, c_hidden//4, kernel_size=2, stride=2), # 32 -> 64
nn.GELU(),
nn.BatchNorm2d(c_hidden//4),
nn.Conv2d(c_hidden//4, c_hidden//4, kernel_size=3, padding=1),
nn.GELU(),
nn.BatchNorm2d(c_hidden//4),
nn.Conv2d(c_hidden//4, c_out, kernel_size=1),
)
def forward(self, x):
return self.blocks(x) |