Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import gradio as gr | |
import spaces | |
import numpy as np | |
import PIL.Image | |
import torch | |
from typing import List | |
from diffusers.utils import numpy_to_pil | |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline | |
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS | |
from previewer.modules import Previewer | |
import user_history | |
os.environ['TOKENIZERS_PARALLELISM'] = 'false' | |
DESCRIPTION = "# Stable Cascade" | |
DESCRIPTION += "\n<p style=\"text-align: center\">Unofficial demo for <a href='https://huggingface.co/stabilityai/stable-cascade' target='_blank'>Stable Casacade</a>, a new high resolution text-to-image model by Stability AI, built on the Würstchen architecture - <a href='https://huggingface.co/stabilityai/stable-cascade/blob/main/LICENSE' target='_blank'>non-commercial research license</a></p>" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = "lazy" #torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") != "0" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536")) | |
USE_TORCH_COMPILE = False | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" | |
PREVIEW_IMAGES = False | |
dtype = torch.bfloat16 | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
if torch.cuda.is_available(): | |
prior_pipeline = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype)#.to(device) | |
decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=dtype)#.to(device) | |
if ENABLE_CPU_OFFLOAD: | |
prior_pipeline.enable_model_cpu_offload() | |
decoder_pipeline.enable_model_cpu_offload() | |
else: | |
prior_pipeline.to(device) | |
decoder_pipeline.to(device) | |
if USE_TORCH_COMPILE: | |
prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True) | |
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="max-autotune", fullgraph=True) | |
if PREVIEW_IMAGES: | |
previewer = Previewer() | |
previewer_state_dict = torch.load("previewer/previewer_v1_100k.pt", map_location=torch.device('cpu'))["state_dict"] | |
previewer.load_state_dict(previewer_state_dict) | |
def callback_prior(pipeline, step_index, t, callback_kwargs): | |
latents = callback_kwargs["latents"] | |
output = previewer(latents) | |
output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).float().cpu().numpy()) | |
callback_kwargs["preview_output"] = output | |
return callback_kwargs | |
callback_steps = 1 | |
else: | |
previewer = None | |
callback_prior = None | |
callback_steps = None | |
else: | |
prior_pipeline = None | |
decoder_pipeline = None | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
print("randomizing seed") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def generate( | |
prompt: str, | |
negative_prompt: str = "", | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
prior_num_inference_steps: int = 30, | |
# prior_timesteps: List[float] = None, | |
prior_guidance_scale: float = 4.0, | |
decoder_num_inference_steps: int = 12, | |
# decoder_timesteps: List[float] = None, | |
decoder_guidance_scale: float = 0.0, | |
num_images_per_prompt: int = 2, | |
profile: gr.OAuthProfile | None = None, | |
progress=gr.Progress(track_tqdm=True) | |
) -> PIL.Image.Image: | |
#previewer.eval().requires_grad_(False).to(device).to(dtype) | |
prior_pipeline.to(device) | |
decoder_pipeline.to(device) | |
generator = torch.Generator().manual_seed(seed) | |
print("prior_num_inference_steps: ", prior_num_inference_steps) | |
prior_output = prior_pipeline( | |
prompt=prompt, | |
height=height, | |
width=width, | |
num_inference_steps=prior_num_inference_steps, | |
timesteps=DEFAULT_STAGE_C_TIMESTEPS, | |
negative_prompt=negative_prompt, | |
guidance_scale=prior_guidance_scale, | |
num_images_per_prompt=num_images_per_prompt, | |
generator=generator, | |
#callback_on_step_end=callback_prior, | |
#callback_on_step_end_tensor_inputs=['latents'] | |
) | |
if PREVIEW_IMAGES: | |
for _ in range(len(DEFAULT_STAGE_C_TIMESTEPS)): | |
r = next(prior_output) | |
if isinstance(r, list): | |
yield r[0] | |
prior_output = r | |
decoder_output = decoder_pipeline( | |
image_embeddings=prior_output.image_embeddings, | |
prompt=prompt, | |
num_inference_steps=decoder_num_inference_steps, | |
# timesteps=decoder_timesteps, | |
guidance_scale=decoder_guidance_scale, | |
negative_prompt=negative_prompt, | |
generator=generator, | |
output_type="pil", | |
).images | |
print(decoder_output) | |
#Save images | |
for image in decoder_output: | |
user_history.save_image( | |
profile=profile, | |
image=image, | |
label=prompt, | |
metadata={ | |
"negative_prompt": negative_prompt, | |
"seed": seed, | |
"width": width, | |
"height": height, | |
"prior_guidance_scale": prior_guidance_scale, | |
"decoder_num_inference_steps": decoder_num_inference_steps, | |
"decoder_guidance_scale": decoder_guidance_scale, | |
"num_images_per_prompt": num_images_per_prompt, | |
}, | |
) | |
yield decoder_output[0] | |
examples = [ | |
"An astronaut riding a green horse", | |
"A mecha robot in a favela by Tarsila do Amaral", | |
"The spirit of a Tamagotchi wandering in the city of Los Angeles", | |
"A delicious feijoada ramen dish" | |
] | |
css = ''' | |
.gradio-container{max-width: 760px !important} | |
''' | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a Negative Prompt", | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=1024, | |
maximum=MAX_IMAGE_SIZE, | |
step=512, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=1024, | |
maximum=MAX_IMAGE_SIZE, | |
step=512, | |
value=1024, | |
) | |
num_images_per_prompt = gr.Slider( | |
label="Number of Images", | |
minimum=1, | |
maximum=2, | |
step=1, | |
value=1, | |
) | |
with gr.Row(): | |
prior_guidance_scale = gr.Slider( | |
label="Prior Guidance Scale", | |
minimum=0, | |
maximum=20, | |
step=0.1, | |
value=4.0, | |
) | |
prior_num_inference_steps = gr.Slider( | |
label="Prior Inference Steps", | |
minimum=10, | |
maximum=30, | |
step=1, | |
value=20, | |
) | |
decoder_guidance_scale = gr.Slider( | |
label="Decoder Guidance Scale", | |
minimum=0, | |
maximum=0, | |
step=0.1, | |
value=0.0, | |
) | |
decoder_num_inference_steps = gr.Slider( | |
label="Decoder Inference Steps", | |
minimum=4, | |
maximum=12, | |
step=1, | |
value=10, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=result, | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
inputs = [ | |
prompt, | |
negative_prompt, | |
seed, | |
width, | |
height, | |
prior_num_inference_steps, | |
# prior_timesteps, | |
prior_guidance_scale, | |
decoder_num_inference_steps, | |
# decoder_timesteps, | |
decoder_guidance_scale, | |
num_images_per_prompt, | |
] | |
gr.on( | |
triggers=[prompt.submit, negative_prompt.submit, run_button.click], | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name="run", | |
) | |
with gr.Blocks(css="style.css") as demo_with_history: | |
with gr.Tab("App"): | |
demo.render() | |
with gr.Tab("Past generations"): | |
user_history.render() | |
if __name__ == "__main__": | |
demo_with_history.queue(max_size=20).launch() |