Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from ..modules.attention import * | |
from ..modules.diffusionmodules.util import AlphaBlender, linear, timestep_embedding | |
class TimeMixSequential(nn.Sequential): | |
def forward(self, x, context=None, timesteps=None): | |
for layer in self: | |
x = layer(x, context, timesteps) | |
return x | |
class VideoTransformerBlock(nn.Module): | |
ATTENTION_MODES = { | |
"softmax": CrossAttention, | |
"softmax-xformers": MemoryEfficientCrossAttention, | |
} | |
def __init__( | |
self, | |
dim, | |
n_heads, | |
d_head, | |
dropout=0.0, | |
context_dim=None, | |
gated_ff=True, | |
checkpoint=True, | |
timesteps=None, | |
ff_in=False, | |
inner_dim=None, | |
attn_mode="softmax", | |
disable_self_attn=False, | |
disable_temporal_crossattention=False, | |
switch_temporal_ca_to_sa=False, | |
): | |
super().__init__() | |
attn_cls = self.ATTENTION_MODES[attn_mode] | |
self.ff_in = ff_in or inner_dim is not None | |
if inner_dim is None: | |
inner_dim = dim | |
assert int(n_heads * d_head) == inner_dim | |
self.is_res = inner_dim == dim | |
if self.ff_in: | |
self.norm_in = nn.LayerNorm(dim) | |
self.ff_in = FeedForward( | |
dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff | |
) | |
self.timesteps = timesteps | |
self.disable_self_attn = disable_self_attn | |
if self.disable_self_attn: | |
self.attn1 = attn_cls( | |
query_dim=inner_dim, | |
heads=n_heads, | |
dim_head=d_head, | |
context_dim=context_dim, | |
dropout=dropout, | |
) # is a cross-attention | |
else: | |
self.attn1 = attn_cls( | |
query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
) # is a self-attention | |
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff) | |
if disable_temporal_crossattention: | |
if switch_temporal_ca_to_sa: | |
raise ValueError | |
else: | |
self.attn2 = None | |
else: | |
self.norm2 = nn.LayerNorm(inner_dim) | |
if switch_temporal_ca_to_sa: | |
self.attn2 = attn_cls( | |
query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
) # is a self-attention | |
else: | |
self.attn2 = attn_cls( | |
query_dim=inner_dim, | |
context_dim=context_dim, | |
heads=n_heads, | |
dim_head=d_head, | |
dropout=dropout, | |
) # is self-attn if context is none | |
self.norm1 = nn.LayerNorm(inner_dim) | |
self.norm3 = nn.LayerNorm(inner_dim) | |
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa | |
self.checkpoint = checkpoint | |
if self.checkpoint: | |
print(f"{self.__class__.__name__} is using checkpointing") | |
def forward( | |
self, x: torch.Tensor, context: torch.Tensor = None, timesteps: int = None | |
) -> torch.Tensor: | |
if self.checkpoint: | |
return checkpoint(self._forward, x, context, timesteps) | |
else: | |
return self._forward(x, context, timesteps=timesteps) | |
def _forward(self, x, context=None, timesteps=None): | |
assert self.timesteps or timesteps | |
assert not (self.timesteps and timesteps) or self.timesteps == timesteps | |
timesteps = self.timesteps or timesteps | |
B, S, C = x.shape | |
x = rearrange(x, "(b t) s c -> (b s) t c", t=timesteps) | |
if self.ff_in: | |
x_skip = x | |
x = self.ff_in(self.norm_in(x)) | |
if self.is_res: | |
x += x_skip | |
if self.disable_self_attn: | |
x = self.attn1(self.norm1(x), context=context) + x | |
else: | |
x = self.attn1(self.norm1(x)) + x | |
if self.attn2 is not None: | |
if self.switch_temporal_ca_to_sa: | |
x = self.attn2(self.norm2(x)) + x | |
else: | |
x = self.attn2(self.norm2(x), context=context) + x | |
x_skip = x | |
x = self.ff(self.norm3(x)) | |
if self.is_res: | |
x += x_skip | |
x = rearrange( | |
x, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps | |
) | |
return x | |
def get_last_layer(self): | |
return self.ff.net[-1].weight | |
class SpatialVideoTransformer(SpatialTransformer): | |
def __init__( | |
self, | |
in_channels, | |
n_heads, | |
d_head, | |
depth=1, | |
dropout=0.0, | |
use_linear=False, | |
context_dim=None, | |
use_spatial_context=False, | |
timesteps=None, | |
merge_strategy: str = "fixed", | |
merge_factor: float = 0.5, | |
time_context_dim=None, | |
ff_in=False, | |
checkpoint=False, | |
time_depth=1, | |
attn_mode="softmax", | |
disable_self_attn=False, | |
disable_temporal_crossattention=False, | |
max_time_embed_period: int = 10000, | |
): | |
super().__init__( | |
in_channels, | |
n_heads, | |
d_head, | |
depth=depth, | |
dropout=dropout, | |
attn_type=attn_mode, | |
use_checkpoint=checkpoint, | |
context_dim=context_dim, | |
use_linear=use_linear, | |
disable_self_attn=disable_self_attn, | |
) | |
self.time_depth = time_depth | |
self.depth = depth | |
self.max_time_embed_period = max_time_embed_period | |
time_mix_d_head = d_head | |
n_time_mix_heads = n_heads | |
time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads) | |
inner_dim = n_heads * d_head | |
if use_spatial_context: | |
time_context_dim = context_dim | |
self.time_stack = nn.ModuleList( | |
[ | |
VideoTransformerBlock( | |
inner_dim, | |
n_time_mix_heads, | |
time_mix_d_head, | |
dropout=dropout, | |
context_dim=time_context_dim, | |
timesteps=timesteps, | |
checkpoint=checkpoint, | |
ff_in=ff_in, | |
inner_dim=time_mix_inner_dim, | |
attn_mode=attn_mode, | |
disable_self_attn=disable_self_attn, | |
disable_temporal_crossattention=disable_temporal_crossattention, | |
) | |
for _ in range(self.depth) | |
] | |
) | |
assert len(self.time_stack) == len(self.transformer_blocks) | |
self.use_spatial_context = use_spatial_context | |
self.in_channels = in_channels | |
time_embed_dim = self.in_channels * 4 | |
self.time_pos_embed = nn.Sequential( | |
linear(self.in_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, self.in_channels), | |
) | |
self.time_mixer = AlphaBlender( | |
alpha=merge_factor, merge_strategy=merge_strategy | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
context: Optional[torch.Tensor] = None, | |
time_context: Optional[torch.Tensor] = None, | |
timesteps: Optional[int] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
_, _, h, w = x.shape | |
x_in = x | |
spatial_context = None | |
if exists(context): | |
spatial_context = context | |
if self.use_spatial_context: | |
assert ( | |
context.ndim == 3 | |
), f"n dims of spatial context should be 3 but are {context.ndim}" | |
time_context = context | |
time_context_first_timestep = time_context[::timesteps] | |
time_context = repeat( | |
time_context_first_timestep, "b ... -> (b n) ...", n=h * w | |
) | |
elif time_context is not None and not self.use_spatial_context: | |
time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w) | |
if time_context.ndim == 2: | |
time_context = rearrange(time_context, "b c -> b 1 c") | |
x = self.norm(x) | |
if not self.use_linear: | |
x = self.proj_in(x) | |
x = rearrange(x, "b c h w -> b (h w) c") | |
if self.use_linear: | |
x = self.proj_in(x) | |
num_frames = torch.arange(timesteps, device=x.device) | |
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) | |
num_frames = rearrange(num_frames, "b t -> (b t)") | |
t_emb = timestep_embedding( | |
num_frames, | |
self.in_channels, | |
repeat_only=False, | |
max_period=self.max_time_embed_period, | |
) | |
emb = self.time_pos_embed(t_emb) | |
emb = emb[:, None, :] | |
for it_, (block, mix_block) in enumerate( | |
zip(self.transformer_blocks, self.time_stack) | |
): | |
x = block( | |
x, | |
context=spatial_context, | |
) | |
x_mix = x | |
x_mix = x_mix + emb | |
x_mix = mix_block(x_mix, context=time_context, timesteps=timesteps) | |
x = self.time_mixer( | |
x_spatial=x, | |
x_temporal=x_mix, | |
image_only_indicator=image_only_indicator, | |
) | |
if self.use_linear: | |
x = self.proj_out(x) | |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) | |
if not self.use_linear: | |
x = self.proj_out(x) | |
out = x + x_in | |
return out | |