Spaces:
Running
on
Zero
Running
on
Zero
from abc import ABC, abstractmethod | |
from typing import Tuple | |
import torch | |
class DenoiserScaling(ABC): | |
def __call__( | |
self, sigma: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
pass | |
class EDMScaling: | |
def __init__(self, sigma_data: float = 0.5): | |
self.sigma_data = sigma_data | |
def __call__( | |
self, sigma: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2) | |
c_out = sigma * self.sigma_data / (sigma**2 + self.sigma_data**2) ** 0.5 | |
c_in = 1 / (sigma**2 + self.sigma_data**2) ** 0.5 | |
c_noise = 0.25 * sigma.log() | |
return c_skip, c_out, c_in, c_noise | |
class EpsScaling: | |
def __call__( | |
self, sigma: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
c_skip = torch.ones_like(sigma, device=sigma.device) | |
c_out = -sigma | |
c_in = 1 / (sigma**2 + 1.0) ** 0.5 | |
c_noise = sigma.clone() | |
return c_skip, c_out, c_in, c_noise | |
class VScaling: | |
def __call__( | |
self, sigma: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
c_skip = 1.0 / (sigma**2 + 1.0) | |
c_out = -sigma / (sigma**2 + 1.0) ** 0.5 | |
c_in = 1.0 / (sigma**2 + 1.0) ** 0.5 | |
c_noise = sigma.clone() | |
return c_skip, c_out, c_in, c_noise | |
class VScalingWithEDMcNoise(DenoiserScaling): | |
def __call__( | |
self, sigma: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
c_skip = 1.0 / (sigma**2 + 1.0) | |
c_out = -sigma / (sigma**2 + 1.0) ** 0.5 | |
c_in = 1.0 / (sigma**2 + 1.0) ** 0.5 | |
c_noise = 0.25 * sigma.log() | |
return c_skip, c_out, c_in, c_noise | |