Spaces:
Running
on
Zero
Running
on
Zero
model: | |
target: sgm.models.diffusion.DiffusionEngine | |
params: | |
scale_factor: 0.18215 | |
disable_first_stage_autocast: True | |
ckpt_path: checkpoints/svd_xt_image_decoder.safetensors | |
denoiser_config: | |
target: sgm.modules.diffusionmodules.denoiser.Denoiser | |
params: | |
scaling_config: | |
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise | |
network_config: | |
target: sgm.modules.diffusionmodules.video_model.VideoUNet | |
params: | |
adm_in_channels: 768 | |
num_classes: sequential | |
use_checkpoint: True | |
in_channels: 8 | |
out_channels: 4 | |
model_channels: 320 | |
attention_resolutions: [4, 2, 1] | |
num_res_blocks: 2 | |
channel_mult: [1, 2, 4, 4] | |
num_head_channels: 64 | |
use_linear_in_transformer: True | |
transformer_depth: 1 | |
context_dim: 1024 | |
spatial_transformer_attn_type: softmax-xformers | |
extra_ff_mix_layer: True | |
use_spatial_context: True | |
merge_strategy: learned_with_images | |
video_kernel_size: [3, 1, 1] | |
conditioner_config: | |
target: sgm.modules.GeneralConditioner | |
params: | |
emb_models: | |
- is_trainable: False | |
input_key: cond_frames_without_noise | |
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder | |
params: | |
n_cond_frames: 1 | |
n_copies: 1 | |
open_clip_embedding_config: | |
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder | |
params: | |
freeze: True | |
- input_key: fps_id | |
is_trainable: False | |
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND | |
params: | |
outdim: 256 | |
- input_key: motion_bucket_id | |
is_trainable: False | |
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND | |
params: | |
outdim: 256 | |
- input_key: cond_frames | |
is_trainable: False | |
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder | |
params: | |
disable_encoder_autocast: True | |
n_cond_frames: 1 | |
n_copies: 1 | |
is_ae: True | |
encoder_config: | |
target: sgm.models.autoencoder.AutoencoderKLModeOnly | |
params: | |
embed_dim: 4 | |
monitor: val/rec_loss | |
ddconfig: | |
attn_type: vanilla-xformers | |
double_z: True | |
z_channels: 4 | |
resolution: 256 | |
in_channels: 3 | |
out_ch: 3 | |
ch: 128 | |
ch_mult: [1, 2, 4, 4] | |
num_res_blocks: 2 | |
attn_resolutions: [] | |
dropout: 0.0 | |
lossconfig: | |
target: torch.nn.Identity | |
- input_key: cond_aug | |
is_trainable: False | |
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND | |
params: | |
outdim: 256 | |
first_stage_config: | |
target: sgm.models.autoencoder.AutoencoderKL | |
params: | |
embed_dim: 4 | |
monitor: val/rec_loss | |
ddconfig: | |
attn_type: vanilla-xformers | |
double_z: True | |
z_channels: 4 | |
resolution: 256 | |
in_channels: 3 | |
out_ch: 3 | |
ch: 128 | |
ch_mult: [1, 2, 4, 4] | |
num_res_blocks: 2 | |
attn_resolutions: [] | |
dropout: 0.0 | |
lossconfig: | |
target: torch.nn.Identity | |
sampler_config: | |
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler | |
params: | |
discretization_config: | |
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization | |
params: | |
sigma_max: 700.0 | |
guider_config: | |
target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider | |
params: | |
max_scale: 3.0 | |
min_scale: 1.5 |