multimodalart HF staff commited on
Commit
f7d4d47
1 Parent(s): e2530d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -4
app.py CHANGED
@@ -19,12 +19,13 @@ pipe = StableVideoDiffusionPipeline.from_pretrained(
19
  )
20
  pipe.to("cuda")
21
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
 
22
 
23
  max_64_bit_int = 2**63 - 1
24
 
25
  def sample(
26
  image: Image,
27
- seed: Optional[int] = None,
28
  randomize_seed: bool = True,
29
  motion_bucket_id: int = 127,
30
  fps_id: int = 6,
@@ -33,7 +34,6 @@ def sample(
33
  decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
34
  device: str = "cuda",
35
  output_folder: str = "outputs",
36
- #progress=gr.Progress(track_tqdm=True)
37
  ):
38
  if image.mode == "RGBA":
39
  image = image.convert("RGB")
@@ -85,7 +85,7 @@ def resize_image(image, output_size=(1024, 576)):
85
 
86
  with gr.Blocks() as demo:
87
  gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets))
88
- #### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). Running on [🧨 diffusers backend](#). [Join the waitlist for Stability's upcoming web experience](https://stability.ai/contact).
89
  ''')
90
  with gr.Row():
91
  with gr.Column():
@@ -100,7 +100,25 @@ with gr.Blocks() as demo:
100
 
101
  image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
102
  generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
103
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
  if __name__ == "__main__":
105
  demo.queue(max_size=20)
106
  demo.launch(share=True)
 
19
  )
20
  pipe.to("cuda")
21
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
22
+ pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
23
 
24
  max_64_bit_int = 2**63 - 1
25
 
26
  def sample(
27
  image: Image,
28
+ seed: Optional[int] = 42,
29
  randomize_seed: bool = True,
30
  motion_bucket_id: int = 127,
31
  fps_id: int = 6,
 
34
  decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
35
  device: str = "cuda",
36
  output_folder: str = "outputs",
 
37
  ):
38
  if image.mode == "RGBA":
39
  image = image.convert("RGB")
 
85
 
86
  with gr.Blocks() as demo:
87
  gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets))
88
+ #### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). Generation takes ~60s in an A100. [Join the waitlist for Stability's upcoming web experience](https://stability.ai/contact).
89
  ''')
90
  with gr.Row():
91
  with gr.Column():
 
100
 
101
  image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
102
  generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
103
+ gr.Examples(
104
+ examples=[
105
+ "images/blink_meme.png",
106
+ "images/confused2_meme.png",
107
+ "images/confused_meme.png",
108
+ "images/disaster_meme.png",
109
+ "images/distracted_meme.png",
110
+ "images/hide_meme.png",
111
+ "images/nazare_meme.png",
112
+ "images/success_meme.png",
113
+ "images/willy_meme.png",
114
+ "images/wink_meme.png"
115
+ ],
116
+ inputs=image,
117
+ outputs=[video, seed],
118
+ fn=sample,
119
+ cache_examples=True,
120
+ )
121
+
122
  if __name__ == "__main__":
123
  demo.queue(max_size=20)
124
  demo.launch(share=True)