# #refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb # #huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main import gradio as gr from openai import OpenAI import os ACCESS_TOKEN = os.getenv("HF_TOKEN") client = OpenAI( base_url="https://integrate.api.nvidia.com/v1", api_key=ACCESS_TOKEN, ) def respond( message, history: list[tuple[str, str]], max_tokens, temperature, top_p, ): messages = [] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat.completions.create( model="nvidia/llama-3.1-nemotron-70b-instruct", max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, messages=messages, ): token = message.choices[0].delta.content if token is not None: response += token yield response chatbot = gr.Chatbot(height=600) service = gr.ChatInterface( respond, additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Максимальная длина ответа"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Температура"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="top_p", ), ], fill_height=True, chatbot=chatbot, theme=gr.themes.Soft(), ) if __name__ == "__main__": service.launch()