llama-70b / app.py
muryshev's picture
Update app.py
b698cda
raw
history blame
9.54 kB
from flask import Flask, request, Response
import logging
from llama_cpp import Llama
import threading
from huggingface_hub import snapshot_download, Repository
import huggingface_hub
import gc
import os.path
import csv
from datetime import datetime
SYSTEM_PROMPT = "Ты — русскоязычный автоматический ассистент. Ты максимально точно и отвечаешь на запросы пользователя, используя русский язык."
SYSTEM_TOKEN = 1788
USER_TOKEN = 1404
BOT_TOKEN = 9225
LINEBREAK_TOKEN = 13
ROLE_TOKENS = {
"user": USER_TOKEN,
"bot": BOT_TOKEN,
"system": SYSTEM_TOKEN
}
CONTEXT_SIZE = 4000
ENABLE_GPU = True
GPU_LAYERS = 70
# Create a lock object
lock = threading.Lock()
app = Flask(__name__)
# Configure Flask logging
app.logger.setLevel(logging.DEBUG) # Set the desired logging level
# Initialize the model when the application starts
#model_path = "../models/model-q4_K.gguf" # Replace with the actual model path
#model_name = "model/ggml-model-q4_K.gguf"
#repo_name = "IlyaGusev/saiga2_13b_gguf"
#model_name = "model-q4_K.gguf"
repo_name = "IlyaGusev/saiga2_70b_gguf"
model_name = "ggml-model-q4_1.gguf"
#repo_name = "IlyaGusev/saiga2_7b_gguf"
#model_name = "model-q4_K.gguf"
local_dir = '.'
if os.path.isdir('/data'):
app.logger.info('Persistent storage enabled')
model = None
model_path = snapshot_download(repo_id=repo_name, allow_patterns=model_name) + '/' + model_name
app.logger.info('Model path: ' + model_path)
DATASET_REPO_URL = "https://huggingface.co/datasets/muryshev/saiga-chat"
DATA_FILENAME = "data.csv"
DATA_FILE = os.path.join("dataset", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_TOKEN")
app.logger.info("hfh: "+huggingface_hub.__version__)
repo = Repository(
local_dir="dataset", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
def log(req: str = '', resp: str = ''):
if req or resp:
with open(DATA_FILE, "a") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=["request", "response", "time"])
writer.writerow(
{"request": req, "response": resp, "time": str(datetime.now())}
)
commit_url = repo.push_to_hub()
app.logger.info(commit_url)
def init_model(context_size, enable_gpu=False, gpu_layer_number=35):
global model
if model is not None:
del model
gc.collect()
if enable_gpu:
model = Llama(
model_path=model_path,
n_ctx=context_size,
n_parts=1,
#n_batch=100,
logits_all=True,
#n_threads=12,
verbose=True,
n_gpu_layers=gpu_layer_number,
n_gqa=8 #must be set for 70b models
)
return model
else:
model = Llama(
model_path=model_path,
n_ctx=context_size,
n_parts=1,
#n_batch=100,
logits_all=True,
#n_threads=12,
verbose=True,
n_gqa=8 #must be set for 70b models
)
return model
init_model(CONTEXT_SIZE, ENABLE_GPU, GPU_LAYERS)
def get_message_tokens(model, role, content):
message_tokens = model.tokenize(content.encode("utf-8"))
message_tokens.insert(1, ROLE_TOKENS[role])
message_tokens.insert(2, LINEBREAK_TOKEN)
message_tokens.append(model.token_eos())
return message_tokens
def get_system_tokens(model):
system_message = {
"role": "system",
"content": SYSTEM_PROMPT
}
return get_message_tokens(model, **system_message)
def get_system_tokens_for_preprompt(model, preprompt):
system_message = {
"role": "system",
"content": preprompt
}
return get_message_tokens(model, **system_message)
#app.logger.info('Evaluating system tokens start')
#system_tokens = get_system_tokens(model)
#model.eval(system_tokens)
#app.logger.info('Evaluating system tokens end')
stop_generation = False
def generate_tokens(model, generator):
global stop_generation
app.logger.info('generate_tokens started')
with lock:
try:
for token in generator:
if token == model.token_eos() or stop_generation:
stop_generation = False
app.logger.info('End generating')
yield b'' # End of chunk
break
token_str = model.detokenize([token])#.decode("utf-8", errors="ignore")
yield token_str
except Exception as e:
app.logger.info('generator exception')
app.logger.info(e)
yield b'' # End of chunk
@app.route('/change_context_size', methods=['GET'])
def handler_change_context_size():
global stop_generation, model
stop_generation = True
new_size = int(request.args.get('size', CONTEXT_SIZE))
init_model(new_size, ENABLE_GPU, GPU_LAYERS)
return Response('Size changed', content_type='text/plain')
@app.route('/stop_generation', methods=['GET'])
def handler_stop_generation():
global stop_generation
stop_generation = True
return Response('Stopped', content_type='text/plain')
@app.route('/', methods=['GET', 'PUT', 'DELETE', 'PATCH'])
def generate_unknown_response():
app.logger.info('unknown method: '+request.method)
try:
request_payload = request.get_json()
app.logger.info('payload: '+request.get_json())
except Exception as e:
app.logger.info('payload empty')
return Response('What do you want?', content_type='text/plain')
@app.route('/search_request', methods=['POST'])
def generate_search_request():
global stop_generation
stop_generation = True
model.reset()
data = request.get_json()
app.logger.info(data)
user_query = data.get("query", "")
preprompt = data.get("preprompt", "")
parameters = data.get("parameters", {})
# Extract parameters from the request
temperature = parameters.get("temperature", 0.01)
truncate = parameters.get("truncate", 1000)
max_new_tokens = parameters.get("max_new_tokens", 1024)
top_p = parameters.get("top_p", 0.85)
repetition_penalty = parameters.get("repetition_penalty", 1.2)
top_k = parameters.get("top_k", 30)
return_full_text = parameters.get("return_full_text", False)
tokens = get_system_tokens_for_preprompt(model, preprompt)
tokens.append(LINEBREAK_TOKEN)
tokens = get_message_tokens(model=model, role="user", content=user_query[:200]) + [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
stop_generation = False
generator = model.generate(
tokens,
top_k=top_k,
top_p=top_p,
temp=temperature,
repeat_penalty=repetition_penalty
)
# Use Response to stream tokens
return Response(generate_tokens(model, generator), content_type='text/plain', status=200, direct_passthrough=True)
response_tokens = bytearray()
def generate_and_log_tokens(user_request, model, generator):
global response_tokens
for token in generate_tokens(model, generator):
if token == b'': # or (max_new_tokens is not None and i >= max_new_tokens):
log(user_request, response_tokens.decode("utf-8", errors="ignore"))
response_tokens = bytearray()
break
response_tokens.extend(token)
yield token
@app.route('/', methods=['POST'])
def generate_response():
global stop_generation
stop_generation = True
model.reset()
data = request.get_json()
app.logger.info(data)
messages = data.get("messages", [])
preprompt = data.get("preprompt", "")
parameters = data.get("parameters", {})
# Extract parameters from the request
temperature = parameters.get("temperature", 0.01)
truncate = parameters.get("truncate", 1000)
max_new_tokens = parameters.get("max_new_tokens", 1024)
top_p = parameters.get("top_p", 0.85)
repetition_penalty = parameters.get("repetition_penalty", 1.2)
top_k = parameters.get("top_k", 30)
return_full_text = parameters.get("return_full_text", False)
tokens = get_system_tokens(model)
tokens.append(LINEBREAK_TOKEN)
tokens = []
for message in messages:
if message.get("from") == "assistant":
message_tokens = get_message_tokens(model=model, role="bot", content=message.get("content", ""))
else:
message_tokens = get_message_tokens(model=model, role="user", content=message.get("content", ""))
tokens.extend(message_tokens)
tokens.extend([model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN])
app.logger.info('Prompt:')
user_request = model.detokenize(tokens[:CONTEXT_SIZE]).decode("utf-8", errors="ignore")
app.logger.info(user_request)
stop_generation = False
app.logger.info('Generate started')
generator = model.generate(
tokens[:CONTEXT_SIZE],
top_k=top_k,
top_p=top_p,
temp=temperature,
repeat_penalty=repetition_penalty
)
app.logger.info('Generator created')
# Use Response to stream tokens
return Response(generate_and_log_tokens(user_request, model, generator), content_type='text/plain', status=200, direct_passthrough=True)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=False, threaded=False)