Spaces:
Runtime error
Runtime error
from transformers import AutoModel, AutoTokenizer | |
import gradio as gr | |
import mdtex2html | |
import torch | |
"""Override Chatbot.postprocess""" | |
def postprocess(self, y): | |
if y is None: | |
return [] | |
for i, (message, response) in enumerate(y): | |
y[i] = ( | |
None if message is None else mdtex2html.convert((message)), | |
None if response is None else mdtex2html.convert(response), | |
) | |
return y | |
gr.Chatbot.postprocess = postprocess | |
def parse_text(text): | |
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" | |
lines = text.split("\n") | |
lines = [line for line in lines if line != ""] | |
count = 0 | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split('`') | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="language-{items[-1]}">' | |
else: | |
lines[i] = f'<br></code></pre>' | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("`", "\`") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
line = line.replace("*", "*") | |
line = line.replace("_", "_") | |
line = line.replace("-", "-") | |
line = line.replace(".", ".") | |
line = line.replace("!", "!") | |
line = line.replace("(", "(") | |
line = line.replace(")", ")") | |
line = line.replace("$", "$") | |
lines[i] = "<br>"+line | |
text = "".join(lines) | |
return text | |
def predict(input, image_path, chatbot, max_length, top_p, temperature, history): | |
if image_path is None: | |
return [(input, "图片不能为空。请重新上传图片并重试。")], [] | |
chatbot.append((parse_text(input), "")) | |
with torch.no_grad(): | |
for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length, top_p=top_p, | |
temperature=temperature): | |
chatbot[-1] = (parse_text(input), parse_text(response)) | |
yield chatbot, history | |
def predict_new_image(image_path, chatbot, max_length, top_p, temperature): | |
input, history = "描述这张图片。", [] | |
chatbot.append((parse_text(input), "")) | |
with torch.no_grad(): | |
for response, history in model.stream_chat(tokenizer, image_path, input, history, max_length=max_length, | |
top_p=top_p, | |
temperature=temperature): | |
chatbot[-1] = (parse_text(input), parse_text(response)) | |
yield chatbot, history | |
def reset_user_input(): | |
return gr.update(value='') | |
def reset_state(): | |
return None, [], [] | |
DESCRIPTION = '''<h1 align="center"><a href="https://github.com/THUDM/VisualGLM-6B">VisualGLM</a></h1>''' | |
MAINTENANCE_NOTICE = 'Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.\nHint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.' | |
NOTES = 'This app is adapted from <a href="https://github.com/THUDM/VisualGLM-6B">https://github.com/THUDM/VisualGLM-6B</a>. It would be recommended to check out the repo if you want to see the detail of our model and training process.' | |
def main(args): | |
global model, tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True) | |
if args.quant in [4, 8]: | |
model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).quantize(args.quant).half().cuda() | |
else: | |
model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda() | |
model = model.eval() | |
with gr.Blocks(css='style.css') as demo: | |
gr.HTML(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
image_path = gr.Image(type="filepath", label="Image Prompt", value=None).style(height=504) | |
with gr.Column(scale=4): | |
chatbot = gr.Chatbot().style(height=480) | |
with gr.Row(): | |
with gr.Column(scale=2, min_width=100): | |
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) | |
top_p = gr.Slider(0, 1, value=0.4, step=0.01, label="Top P", interactive=True) | |
temperature = gr.Slider(0, 1, value=0.8, step=0.01, label="Temperature", interactive=True) | |
with gr.Column(scale=4): | |
with gr.Box(): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=4).style( | |
container=False) | |
with gr.Column(scale=1, min_width=64): | |
submitBtn = gr.Button("Submit", variant="primary") | |
emptyBtn = gr.Button("Clear History") | |
gr.Markdown(MAINTENANCE_NOTICE + '\n' + NOTES) | |
history = gr.State([]) | |
submitBtn.click(predict, [user_input, image_path, chatbot, max_length, top_p, temperature, history], [chatbot, history], | |
show_progress=True) | |
image_path.upload(predict_new_image, [image_path, chatbot, max_length, top_p, temperature], [chatbot, history], | |
show_progress=True) | |
image_path.clear(reset_state, outputs=[image_path, chatbot, history], show_progress=True) | |
submitBtn.click(reset_user_input, [], [user_input]) | |
emptyBtn.click(reset_state, outputs=[image_path, chatbot, history], show_progress=True) | |
print(gr.__version__) | |
demo.queue().launch(share=args.share, inbrowser=True, server_name='0.0.0.0', server_port=8080) | |
if __name__ == '__main__': | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--quant", choices=[8, 4], type=int, default=None) | |
parser.add_argument("--share", action="store_true") | |
args = parser.parse_args() | |
main(args) | |