Manul, da commited on
Commit
57a8195
1 Parent(s): 7012f5d

Create net.py

Browse files
Files changed (1) hide show
  1. net.py +42 -0
net.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tensorflow.keras.preprocessing.sequence import pad_sequences
2
+ from tensorflow.keras.layers import Dense, Embedding, Flatten, Dropout
3
+ from tensorflow.keras.optimizers import Adam
4
+ from tensorflow.keras.models import Sequential
5
+ from tqdm import tqdm
6
+ import numpy as np
7
+ import csv
8
+
9
+ dataset = "dataset.csv"
10
+ inp_len = 32
11
+
12
+ X = []
13
+ y = []
14
+
15
+ with open(dataset, 'r') as f:
16
+ csv_reader = csv.reader(f)
17
+ for row in tqdm(csv_reader):
18
+ if row == []: continue
19
+ label = int(row[0])
20
+ text = row[1]
21
+ text = [ord(char) for char in text]
22
+ X.append(text)
23
+ y.append(label)
24
+
25
+ X = np.array(pad_sequences(X, maxlen=inp_len, padding='post'))
26
+ y = np.array(y)
27
+
28
+ model = Sequential()
29
+ model.add(Embedding(input_dim=1500, output_dim=128, input_length=inp_len))
30
+ model.add(Flatten())
31
+ model.add(Dropout(0.2))
32
+ model.add(Dense(512, activation="tanh"))
33
+ model.add(Dropout(0.5))
34
+ model.add(Dense(200, activation="selu"))
35
+ model.add(Dense(128, activation="softplus"))
36
+ model.add(Dense(1, activation="softplus"))
37
+
38
+ model.compile(optimizer=Adam(learning_rate=0.00001), loss="mse", metrics=["accuracy",])
39
+
40
+ model.fit(X, y, epochs=2, batch_size=4, workers=4, use_multiprocessing=True)
41
+
42
+ model.save("net.h5")