File size: 4,960 Bytes
d284020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""
Source url: https://github.com/OPHoperHPO/image-background-remove-tool
Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO].
License: Apache License 2.0
"""
import pathlib
from typing import List, Union
import PIL.Image
import numpy as np
import torch
from PIL import Image

from carvekit.ml.arch.u2net.u2net import U2NETArchitecture
from carvekit.ml.files.models_loc import u2net_full_pretrained
from carvekit.utils.image_utils import load_image, convert_image
from carvekit.utils.pool_utils import thread_pool_processing, batch_generator

__all__ = ["U2NET"]


class U2NET(U2NETArchitecture):
    """U^2-Net model interface"""

    def __init__(
        self,
        layers_cfg="full",
        device="cpu",
        input_image_size: Union[List[int], int] = 320,
        batch_size: int = 10,
        load_pretrained: bool = True,
        fp16: bool = False,
    ):
        """
        Initialize the U2NET model

        Args:
            layers_cfg: neural network layers configuration
            device: processing device
            input_image_size: input image size
            batch_size: the number of images that the neural network processes in one run
            load_pretrained: loading pretrained model
            fp16: use fp16 precision // not supported at this moment.

        """
        super(U2NET, self).__init__(cfg_type=layers_cfg, out_ch=1)
        self.device = device
        self.batch_size = batch_size
        if isinstance(input_image_size, list):
            self.input_image_size = input_image_size[:2]
        else:
            self.input_image_size = (input_image_size, input_image_size)
        self.to(device)
        if load_pretrained:
            self.load_state_dict(
                torch.load(u2net_full_pretrained(), map_location=self.device)
            )
        self.eval()

    def data_preprocessing(self, data: PIL.Image.Image) -> torch.FloatTensor:
        """
        Transform input image to suitable data format for neural network

        Args:
            data: input image

        Returns:
            input for neural network

        """
        resized = data.resize(self.input_image_size, resample=3)
        # noinspection PyTypeChecker
        resized_arr = np.array(resized, dtype=float)
        temp_image = np.zeros((resized_arr.shape[0], resized_arr.shape[1], 3))
        if np.max(resized_arr) != 0:
            resized_arr /= np.max(resized_arr)
        temp_image[:, :, 0] = (resized_arr[:, :, 0] - 0.485) / 0.229
        temp_image[:, :, 1] = (resized_arr[:, :, 1] - 0.456) / 0.224
        temp_image[:, :, 2] = (resized_arr[:, :, 2] - 0.406) / 0.225
        temp_image = temp_image.transpose((2, 0, 1))
        temp_image = np.expand_dims(temp_image, 0)
        return torch.from_numpy(temp_image).type(torch.FloatTensor)

    @staticmethod
    def data_postprocessing(
        data: torch.tensor, original_image: PIL.Image.Image
    ) -> PIL.Image.Image:
        """
        Transforms output data from neural network to suitable data
        format for using with other components of this framework.

        Args:
            data: output data from neural network
            original_image: input image which was used for predicted data

        Returns:
            Segmentation mask as PIL Image instance

        """
        data = data.unsqueeze(0)
        mask = data[:, 0, :, :]
        ma = torch.max(mask)  # Normalizes prediction
        mi = torch.min(mask)
        predict = ((mask - mi) / (ma - mi)).squeeze()
        predict_np = predict.cpu().data.numpy() * 255
        mask = Image.fromarray(predict_np).convert("L")
        mask = mask.resize(original_image.size, resample=3)
        return mask

    def __call__(
        self, images: List[Union[str, pathlib.Path, PIL.Image.Image]]
    ) -> List[PIL.Image.Image]:
        """
        Passes input images though neural network and returns segmentation masks as PIL.Image.Image instances

        Args:
            images: input images

        Returns:
            segmentation masks as for input images, as PIL.Image.Image instances

        """
        collect_masks = []
        for image_batch in batch_generator(images, self.batch_size):
            images = thread_pool_processing(
                lambda x: convert_image(load_image(x)), image_batch
            )
            batches = torch.vstack(
                thread_pool_processing(self.data_preprocessing, images)
            )
            with torch.no_grad():
                batches = batches.to(self.device)
                masks, d2, d3, d4, d5, d6, d7 = super(U2NET, self).__call__(batches)
                masks_cpu = masks.cpu()
                del d2, d3, d4, d5, d6, d7, batches, masks
            masks = thread_pool_processing(
                lambda x: self.data_postprocessing(masks_cpu[x], images[x]),
                range(len(images)),
            )
            collect_masks += masks
        return collect_masks