Spaces:
Sleeping
Sleeping
""" | |
Modified by Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO]. | |
Source url: https://github.com/MarcoForte/FBA_Matting | |
License: MIT License | |
""" | |
import torch | |
import torch.nn as nn | |
import carvekit.ml.arch.fba_matting.resnet_GN_WS as resnet_GN_WS | |
import carvekit.ml.arch.fba_matting.layers_WS as L | |
import carvekit.ml.arch.fba_matting.resnet_bn as resnet_bn | |
from functools import partial | |
class FBA(nn.Module): | |
def __init__(self, encoder: str): | |
super(FBA, self).__init__() | |
self.encoder = build_encoder(arch=encoder) | |
self.decoder = fba_decoder(batch_norm=True if "BN" in encoder else False) | |
def forward(self, image, two_chan_trimap, image_n, trimap_transformed): | |
resnet_input = torch.cat((image_n, trimap_transformed, two_chan_trimap), 1) | |
conv_out, indices = self.encoder(resnet_input, return_feature_maps=True) | |
return self.decoder(conv_out, image, indices, two_chan_trimap) | |
class ResnetDilatedBN(nn.Module): | |
def __init__(self, orig_resnet, dilate_scale=8): | |
super(ResnetDilatedBN, self).__init__() | |
if dilate_scale == 8: | |
orig_resnet.layer3.apply(partial(self._nostride_dilate, dilate=2)) | |
orig_resnet.layer4.apply(partial(self._nostride_dilate, dilate=4)) | |
elif dilate_scale == 16: | |
orig_resnet.layer4.apply(partial(self._nostride_dilate, dilate=2)) | |
# take pretrained resnet, except AvgPool and FC | |
self.conv1 = orig_resnet.conv1 | |
self.bn1 = orig_resnet.bn1 | |
self.relu1 = orig_resnet.relu1 | |
self.conv2 = orig_resnet.conv2 | |
self.bn2 = orig_resnet.bn2 | |
self.relu2 = orig_resnet.relu2 | |
self.conv3 = orig_resnet.conv3 | |
self.bn3 = orig_resnet.bn3 | |
self.relu3 = orig_resnet.relu3 | |
self.maxpool = orig_resnet.maxpool | |
self.layer1 = orig_resnet.layer1 | |
self.layer2 = orig_resnet.layer2 | |
self.layer3 = orig_resnet.layer3 | |
self.layer4 = orig_resnet.layer4 | |
def _nostride_dilate(self, m, dilate): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
# the convolution with stride | |
if m.stride == (2, 2): | |
m.stride = (1, 1) | |
if m.kernel_size == (3, 3): | |
m.dilation = (dilate // 2, dilate // 2) | |
m.padding = (dilate // 2, dilate // 2) | |
# other convoluions | |
else: | |
if m.kernel_size == (3, 3): | |
m.dilation = (dilate, dilate) | |
m.padding = (dilate, dilate) | |
def forward(self, x, return_feature_maps=False): | |
conv_out = [x] | |
x = self.relu1(self.bn1(self.conv1(x))) | |
x = self.relu2(self.bn2(self.conv2(x))) | |
x = self.relu3(self.bn3(self.conv3(x))) | |
conv_out.append(x) | |
x, indices = self.maxpool(x) | |
x = self.layer1(x) | |
conv_out.append(x) | |
x = self.layer2(x) | |
conv_out.append(x) | |
x = self.layer3(x) | |
conv_out.append(x) | |
x = self.layer4(x) | |
conv_out.append(x) | |
if return_feature_maps: | |
return conv_out, indices | |
return [x] | |
class Resnet(nn.Module): | |
def __init__(self, orig_resnet): | |
super(Resnet, self).__init__() | |
# take pretrained resnet, except AvgPool and FC | |
self.conv1 = orig_resnet.conv1 | |
self.bn1 = orig_resnet.bn1 | |
self.relu1 = orig_resnet.relu1 | |
self.conv2 = orig_resnet.conv2 | |
self.bn2 = orig_resnet.bn2 | |
self.relu2 = orig_resnet.relu2 | |
self.conv3 = orig_resnet.conv3 | |
self.bn3 = orig_resnet.bn3 | |
self.relu3 = orig_resnet.relu3 | |
self.maxpool = orig_resnet.maxpool | |
self.layer1 = orig_resnet.layer1 | |
self.layer2 = orig_resnet.layer2 | |
self.layer3 = orig_resnet.layer3 | |
self.layer4 = orig_resnet.layer4 | |
def forward(self, x, return_feature_maps=False): | |
conv_out = [] | |
x = self.relu1(self.bn1(self.conv1(x))) | |
x = self.relu2(self.bn2(self.conv2(x))) | |
x = self.relu3(self.bn3(self.conv3(x))) | |
conv_out.append(x) | |
x, indices = self.maxpool(x) | |
x = self.layer1(x) | |
conv_out.append(x) | |
x = self.layer2(x) | |
conv_out.append(x) | |
x = self.layer3(x) | |
conv_out.append(x) | |
x = self.layer4(x) | |
conv_out.append(x) | |
if return_feature_maps: | |
return conv_out | |
return [x] | |
class ResnetDilated(nn.Module): | |
def __init__(self, orig_resnet, dilate_scale=8): | |
super(ResnetDilated, self).__init__() | |
if dilate_scale == 8: | |
orig_resnet.layer3.apply(partial(self._nostride_dilate, dilate=2)) | |
orig_resnet.layer4.apply(partial(self._nostride_dilate, dilate=4)) | |
elif dilate_scale == 16: | |
orig_resnet.layer4.apply(partial(self._nostride_dilate, dilate=2)) | |
# take pretrained resnet, except AvgPool and FC | |
self.conv1 = orig_resnet.conv1 | |
self.bn1 = orig_resnet.bn1 | |
self.relu = orig_resnet.relu | |
self.maxpool = orig_resnet.maxpool | |
self.layer1 = orig_resnet.layer1 | |
self.layer2 = orig_resnet.layer2 | |
self.layer3 = orig_resnet.layer3 | |
self.layer4 = orig_resnet.layer4 | |
def _nostride_dilate(self, m, dilate): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
# the convolution with stride | |
if m.stride == (2, 2): | |
m.stride = (1, 1) | |
if m.kernel_size == (3, 3): | |
m.dilation = (dilate // 2, dilate // 2) | |
m.padding = (dilate // 2, dilate // 2) | |
# other convoluions | |
else: | |
if m.kernel_size == (3, 3): | |
m.dilation = (dilate, dilate) | |
m.padding = (dilate, dilate) | |
def forward(self, x, return_feature_maps=False): | |
conv_out = [x] | |
x = self.relu(self.bn1(self.conv1(x))) | |
conv_out.append(x) | |
x, indices = self.maxpool(x) | |
x = self.layer1(x) | |
conv_out.append(x) | |
x = self.layer2(x) | |
conv_out.append(x) | |
x = self.layer3(x) | |
conv_out.append(x) | |
x = self.layer4(x) | |
conv_out.append(x) | |
if return_feature_maps: | |
return conv_out, indices | |
return [x] | |
def norm(dim, bn=False): | |
if bn is False: | |
return nn.GroupNorm(32, dim) | |
else: | |
return nn.BatchNorm2d(dim) | |
def fba_fusion(alpha, img, F, B): | |
F = alpha * img + (1 - alpha**2) * F - alpha * (1 - alpha) * B | |
B = (1 - alpha) * img + (2 * alpha - alpha**2) * B - alpha * (1 - alpha) * F | |
F = torch.clamp(F, 0, 1) | |
B = torch.clamp(B, 0, 1) | |
la = 0.1 | |
alpha = (alpha * la + torch.sum((img - B) * (F - B), 1, keepdim=True)) / ( | |
torch.sum((F - B) * (F - B), 1, keepdim=True) + la | |
) | |
alpha = torch.clamp(alpha, 0, 1) | |
return alpha, F, B | |
class fba_decoder(nn.Module): | |
def __init__(self, batch_norm=False): | |
super(fba_decoder, self).__init__() | |
pool_scales = (1, 2, 3, 6) | |
self.batch_norm = batch_norm | |
self.ppm = [] | |
for scale in pool_scales: | |
self.ppm.append( | |
nn.Sequential( | |
nn.AdaptiveAvgPool2d(scale), | |
L.Conv2d(2048, 256, kernel_size=1, bias=True), | |
norm(256, self.batch_norm), | |
nn.LeakyReLU(), | |
) | |
) | |
self.ppm = nn.ModuleList(self.ppm) | |
self.conv_up1 = nn.Sequential( | |
L.Conv2d( | |
2048 + len(pool_scales) * 256, 256, kernel_size=3, padding=1, bias=True | |
), | |
norm(256, self.batch_norm), | |
nn.LeakyReLU(), | |
L.Conv2d(256, 256, kernel_size=3, padding=1), | |
norm(256, self.batch_norm), | |
nn.LeakyReLU(), | |
) | |
self.conv_up2 = nn.Sequential( | |
L.Conv2d(256 + 256, 256, kernel_size=3, padding=1, bias=True), | |
norm(256, self.batch_norm), | |
nn.LeakyReLU(), | |
) | |
if self.batch_norm: | |
d_up3 = 128 | |
else: | |
d_up3 = 64 | |
self.conv_up3 = nn.Sequential( | |
L.Conv2d(256 + d_up3, 64, kernel_size=3, padding=1, bias=True), | |
norm(64, self.batch_norm), | |
nn.LeakyReLU(), | |
) | |
self.unpool = nn.MaxUnpool2d(2, stride=2) | |
self.conv_up4 = nn.Sequential( | |
nn.Conv2d(64 + 3 + 3 + 2, 32, kernel_size=3, padding=1, bias=True), | |
nn.LeakyReLU(), | |
nn.Conv2d(32, 16, kernel_size=3, padding=1, bias=True), | |
nn.LeakyReLU(), | |
nn.Conv2d(16, 7, kernel_size=1, padding=0, bias=True), | |
) | |
def forward(self, conv_out, img, indices, two_chan_trimap): | |
conv5 = conv_out[-1] | |
input_size = conv5.size() | |
ppm_out = [conv5] | |
for pool_scale in self.ppm: | |
ppm_out.append( | |
nn.functional.interpolate( | |
pool_scale(conv5), | |
(input_size[2], input_size[3]), | |
mode="bilinear", | |
align_corners=False, | |
) | |
) | |
ppm_out = torch.cat(ppm_out, 1) | |
x = self.conv_up1(ppm_out) | |
x = torch.nn.functional.interpolate( | |
x, scale_factor=2, mode="bilinear", align_corners=False | |
) | |
x = torch.cat((x, conv_out[-4]), 1) | |
x = self.conv_up2(x) | |
x = torch.nn.functional.interpolate( | |
x, scale_factor=2, mode="bilinear", align_corners=False | |
) | |
x = torch.cat((x, conv_out[-5]), 1) | |
x = self.conv_up3(x) | |
x = torch.nn.functional.interpolate( | |
x, scale_factor=2, mode="bilinear", align_corners=False | |
) | |
x = torch.cat((x, conv_out[-6][:, :3], img, two_chan_trimap), 1) | |
output = self.conv_up4(x) | |
alpha = torch.clamp(output[:, 0][:, None], 0, 1) | |
F = torch.sigmoid(output[:, 1:4]) | |
B = torch.sigmoid(output[:, 4:7]) | |
# FBA Fusion | |
alpha, F, B = fba_fusion(alpha, img, F, B) | |
output = torch.cat((alpha, F, B), 1) | |
return output | |
def build_encoder(arch="resnet50_GN"): | |
if arch == "resnet50_GN_WS": | |
orig_resnet = resnet_GN_WS.__dict__["l_resnet50"]() | |
net_encoder = ResnetDilated(orig_resnet, dilate_scale=8) | |
elif arch == "resnet50_BN": | |
orig_resnet = resnet_bn.__dict__["l_resnet50"]() | |
net_encoder = ResnetDilatedBN(orig_resnet, dilate_scale=8) | |
else: | |
raise ValueError("Architecture undefined!") | |
num_channels = 3 + 6 + 2 | |
if num_channels > 3: | |
net_encoder_sd = net_encoder.state_dict() | |
conv1_weights = net_encoder_sd["conv1.weight"] | |
c_out, c_in, h, w = conv1_weights.size() | |
conv1_mod = torch.zeros(c_out, num_channels, h, w) | |
conv1_mod[:, :3, :, :] = conv1_weights | |
conv1 = net_encoder.conv1 | |
conv1.in_channels = num_channels | |
conv1.weight = torch.nn.Parameter(conv1_mod) | |
net_encoder.conv1 = conv1 | |
net_encoder_sd["conv1.weight"] = conv1_mod | |
net_encoder.load_state_dict(net_encoder_sd) | |
return net_encoder | |