Spaces:
Runtime error
Runtime error
Duplicate from InpaintAI/Inpaint-Anything
Browse filesCo-authored-by: RunsenFeng <RysonFeng@users.noreply.huggingface.co>
This view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +39 -0
- .gitignore +12 -0
- LICENSE +201 -0
- README.md +14 -0
- __init__.py +0 -0
- app.py +231 -0
- fill_anything.py +128 -0
- lama_inpaint.py +205 -0
- pretrained_models/.gitkeep +1 -0
- pretrained_models/big-lama/config.yaml +3 -0
- pretrained_models/big-lama/models/best.ckpt +3 -0
- pretrained_models/sam_vit_h_4b8939.pth +3 -0
- remove_anything.py +122 -0
- replace_anything.py +126 -0
- requirements.txt +23 -0
- sam_segment.py +127 -0
- stable_diffusion_inpaint.py +117 -0
- third_party/.gitkeep +1 -0
- third_party/lama/.gitignore +3 -0
- third_party/lama/LICENSE +3 -0
- third_party/lama/README.md +3 -0
- third_party/lama/bin/analyze_errors.py +3 -0
- third_party/lama/bin/blur_predicts.py +3 -0
- third_party/lama/bin/calc_dataset_stats.py +3 -0
- third_party/lama/bin/debug/analyze_overlapping_masks.sh +3 -0
- third_party/lama/bin/evaluate_predicts.py +3 -0
- third_party/lama/bin/evaluator_example.py +3 -0
- third_party/lama/bin/extract_masks.py +3 -0
- third_party/lama/bin/filter_sharded_dataset.py +3 -0
- third_party/lama/bin/gen_debug_mask_dataset.py +3 -0
- third_party/lama/bin/gen_mask_dataset.py +3 -0
- third_party/lama/bin/gen_mask_dataset_hydra.py +3 -0
- third_party/lama/bin/gen_outpainting_dataset.py +3 -0
- third_party/lama/bin/make_checkpoint.py +3 -0
- third_party/lama/bin/mask_example.py +3 -0
- third_party/lama/bin/paper_runfiles/blur_tests.sh +3 -0
- third_party/lama/bin/paper_runfiles/env.sh +3 -0
- third_party/lama/bin/paper_runfiles/find_best_checkpoint.py +3 -0
- third_party/lama/bin/paper_runfiles/generate_test_celeba-hq.sh +3 -0
- third_party/lama/bin/paper_runfiles/generate_test_ffhq.sh +3 -0
- third_party/lama/bin/paper_runfiles/generate_test_paris.sh +3 -0
- third_party/lama/bin/paper_runfiles/generate_test_paris_256.sh +3 -0
- third_party/lama/bin/paper_runfiles/generate_val_test.sh +3 -0
- third_party/lama/bin/paper_runfiles/predict_inner_features.sh +3 -0
- third_party/lama/bin/paper_runfiles/update_test_data_stats.sh +3 -0
- third_party/lama/bin/predict.py +3 -0
- third_party/lama/bin/predict_inner_features.py +3 -0
- third_party/lama/bin/report_from_tb.py +3 -0
- third_party/lama/bin/sample_from_dataset.py +3 -0
- third_party/lama/bin/side_by_side.py +3 -0
.gitattributes
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
**.png filter=lfs diff=lfs merge=lfs -text
|
36 |
+
**.gif filter=lfs diff=lfs merge=lfs -text
|
37 |
+
**.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
third_party/** filter=lfs diff=lfs merge=lfs -text
|
39 |
+
pretrained_models/** filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python byte code, etc.
|
2 |
+
__pycache__/
|
3 |
+
|
4 |
+
# C/C++ object files/libraries
|
5 |
+
*.o
|
6 |
+
*.so
|
7 |
+
|
8 |
+
# macOS
|
9 |
+
**/.DS_Store
|
10 |
+
|
11 |
+
# tmp
|
12 |
+
~*
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Inpaint Anything
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.27.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
duplicated_from: InpaintAI/Inpaint-Anything
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__init__.py
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
# sys.path.append(os.path.abspath(os.path.dirname(os.getcwd())))
|
4 |
+
# os.chdir("../")
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
from pathlib import Path
|
8 |
+
from matplotlib import pyplot as plt
|
9 |
+
import torch
|
10 |
+
import tempfile
|
11 |
+
from lama_inpaint import inpaint_img_with_lama, build_lama_model, inpaint_img_with_builded_lama
|
12 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
13 |
+
show_mask, show_points
|
14 |
+
from PIL import Image
|
15 |
+
sys.path.insert(0, str(Path(__file__).resolve().parent / "third_party" / "segment-anything"))
|
16 |
+
from segment_anything import SamPredictor, sam_model_registry
|
17 |
+
import argparse
|
18 |
+
|
19 |
+
def setup_args(parser):
|
20 |
+
parser.add_argument(
|
21 |
+
"--lama_config", type=str,
|
22 |
+
default="./third_party/lama/configs/prediction/default.yaml",
|
23 |
+
help="The path to the config file of lama model. "
|
24 |
+
"Default: the config of big-lama",
|
25 |
+
)
|
26 |
+
parser.add_argument(
|
27 |
+
"--lama_ckpt", type=str,
|
28 |
+
default="pretrained_models/big-lama",
|
29 |
+
help="The path to the lama checkpoint.",
|
30 |
+
)
|
31 |
+
parser.add_argument(
|
32 |
+
"--sam_ckpt", type=str,
|
33 |
+
default="./pretrained_models/sam_vit_h_4b8939.pth",
|
34 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
35 |
+
)
|
36 |
+
def mkstemp(suffix, dir=None):
|
37 |
+
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
|
38 |
+
os.close(fd)
|
39 |
+
return Path(path)
|
40 |
+
|
41 |
+
|
42 |
+
def get_sam_feat(img):
|
43 |
+
model['sam'].set_image(img)
|
44 |
+
features = model['sam'].features
|
45 |
+
orig_h = model['sam'].orig_h
|
46 |
+
orig_w = model['sam'].orig_w
|
47 |
+
input_h = model['sam'].input_h
|
48 |
+
input_w = model['sam'].input_w
|
49 |
+
model['sam'].reset_image()
|
50 |
+
return features, orig_h, orig_w, input_h, input_w
|
51 |
+
|
52 |
+
|
53 |
+
def get_masked_img(img, w, h, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size):
|
54 |
+
point_coords = [w, h]
|
55 |
+
point_labels = [1]
|
56 |
+
|
57 |
+
model['sam'].is_image_set = True
|
58 |
+
model['sam'].features = features
|
59 |
+
model['sam'].orig_h = orig_h
|
60 |
+
model['sam'].orig_w = orig_w
|
61 |
+
model['sam'].input_h = input_h
|
62 |
+
model['sam'].input_w = input_w
|
63 |
+
|
64 |
+
# model['sam'].set_image(img) # todo : update here for accelerating
|
65 |
+
masks, _, _ = model['sam'].predict(
|
66 |
+
point_coords=np.array([point_coords]),
|
67 |
+
point_labels=np.array(point_labels),
|
68 |
+
multimask_output=True,
|
69 |
+
)
|
70 |
+
|
71 |
+
masks = masks.astype(np.uint8) * 255
|
72 |
+
|
73 |
+
# dilate mask to avoid unmasked edge effect
|
74 |
+
if dilate_kernel_size is not None:
|
75 |
+
masks = [dilate_mask(mask, dilate_kernel_size) for mask in masks]
|
76 |
+
else:
|
77 |
+
masks = [mask for mask in masks]
|
78 |
+
|
79 |
+
figs = []
|
80 |
+
for idx, mask in enumerate(masks):
|
81 |
+
# save the pointed and masked image
|
82 |
+
tmp_p = mkstemp(".png")
|
83 |
+
dpi = plt.rcParams['figure.dpi']
|
84 |
+
height, width = img.shape[:2]
|
85 |
+
fig = plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
86 |
+
plt.imshow(img)
|
87 |
+
plt.axis('off')
|
88 |
+
show_points(plt.gca(), [point_coords], point_labels,
|
89 |
+
size=(width*0.04)**2)
|
90 |
+
show_mask(plt.gca(), mask, random_color=False)
|
91 |
+
plt.tight_layout()
|
92 |
+
plt.savefig(tmp_p, bbox_inches='tight', pad_inches=0)
|
93 |
+
figs.append(fig)
|
94 |
+
plt.close()
|
95 |
+
return *figs, *masks
|
96 |
+
|
97 |
+
|
98 |
+
def get_inpainted_img(img, mask0, mask1, mask2):
|
99 |
+
lama_config = args.lama_config
|
100 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
101 |
+
out = []
|
102 |
+
for mask in [mask0, mask1, mask2]:
|
103 |
+
if len(mask.shape)==3:
|
104 |
+
mask = mask[:,:,0]
|
105 |
+
img_inpainted = inpaint_img_with_builded_lama(
|
106 |
+
model['lama'], img, mask, lama_config, device=device)
|
107 |
+
out.append(img_inpainted)
|
108 |
+
return out
|
109 |
+
|
110 |
+
|
111 |
+
# get args
|
112 |
+
parser = argparse.ArgumentParser()
|
113 |
+
setup_args(parser)
|
114 |
+
args = parser.parse_args(sys.argv[1:])
|
115 |
+
# build models
|
116 |
+
model = {}
|
117 |
+
# build the sam model
|
118 |
+
model_type="vit_h"
|
119 |
+
ckpt_p=args.sam_ckpt
|
120 |
+
model_sam = sam_model_registry[model_type](checkpoint=ckpt_p)
|
121 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
122 |
+
model_sam.to(device=device)
|
123 |
+
model['sam'] = SamPredictor(model_sam)
|
124 |
+
|
125 |
+
# build the lama model
|
126 |
+
lama_config = args.lama_config
|
127 |
+
lama_ckpt = args.lama_ckpt
|
128 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
129 |
+
model['lama'] = build_lama_model(lama_config, lama_ckpt, device=device)
|
130 |
+
|
131 |
+
button_size = (100,50)
|
132 |
+
with gr.Blocks() as demo:
|
133 |
+
features = gr.State(None)
|
134 |
+
orig_h = gr.State(None)
|
135 |
+
orig_w = gr.State(None)
|
136 |
+
input_h = gr.State(None)
|
137 |
+
input_w = gr.State(None)
|
138 |
+
|
139 |
+
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
140 |
+
with gr.Column(variant="panel"):
|
141 |
+
with gr.Row():
|
142 |
+
gr.Markdown("## Input Image")
|
143 |
+
with gr.Row():
|
144 |
+
img = gr.Image(label="Input Image").style(height="200px")
|
145 |
+
with gr.Column(variant="panel"):
|
146 |
+
with gr.Row():
|
147 |
+
gr.Markdown("## Pointed Image")
|
148 |
+
with gr.Row():
|
149 |
+
img_pointed = gr.Plot(label='Pointed Image')
|
150 |
+
with gr.Column(variant="panel"):
|
151 |
+
with gr.Row():
|
152 |
+
gr.Markdown("## Control Panel")
|
153 |
+
with gr.Row():
|
154 |
+
w = gr.Number(label="Point Coordinate W")
|
155 |
+
h = gr.Number(label="Point Coordinate H")
|
156 |
+
dilate_kernel_size = gr.Slider(label="Dilate Kernel Size", minimum=0, maximum=100, step=1, value=15)
|
157 |
+
sam_mask = gr.Button("Predict Mask", variant="primary").style(full_width=True, size="sm")
|
158 |
+
lama = gr.Button("Inpaint Image", variant="primary").style(full_width=True, size="sm")
|
159 |
+
clear_button_image = gr.Button(value="Reset", label="Reset", variant="secondary").style(full_width=True, size="sm")
|
160 |
+
|
161 |
+
# todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers
|
162 |
+
with gr.Row(variant="panel"):
|
163 |
+
with gr.Column():
|
164 |
+
with gr.Row():
|
165 |
+
gr.Markdown("## Segmentation Mask")
|
166 |
+
with gr.Row():
|
167 |
+
mask_0 = gr.outputs.Image(type="numpy", label="Segmentation Mask 0").style(height="200px")
|
168 |
+
mask_1 = gr.outputs.Image(type="numpy", label="Segmentation Mask 1").style(height="200px")
|
169 |
+
mask_2 = gr.outputs.Image(type="numpy", label="Segmentation Mask 2").style(height="200px")
|
170 |
+
|
171 |
+
with gr.Row(variant="panel"):
|
172 |
+
with gr.Column():
|
173 |
+
with gr.Row():
|
174 |
+
gr.Markdown("## Image with Mask")
|
175 |
+
with gr.Row():
|
176 |
+
img_with_mask_0 = gr.Plot(label="Image with Segmentation Mask 0")
|
177 |
+
img_with_mask_1 = gr.Plot(label="Image with Segmentation Mask 1")
|
178 |
+
img_with_mask_2 = gr.Plot(label="Image with Segmentation Mask 2")
|
179 |
+
|
180 |
+
with gr.Row(variant="panel"):
|
181 |
+
with gr.Column():
|
182 |
+
with gr.Row():
|
183 |
+
gr.Markdown("## Image Removed with Mask")
|
184 |
+
with gr.Row():
|
185 |
+
img_rm_with_mask_0 = gr.outputs.Image(
|
186 |
+
type="numpy", label="Image Removed with Segmentation Mask 0").style(height="200px")
|
187 |
+
img_rm_with_mask_1 = gr.outputs.Image(
|
188 |
+
type="numpy", label="Image Removed with Segmentation Mask 1").style(height="200px")
|
189 |
+
img_rm_with_mask_2 = gr.outputs.Image(
|
190 |
+
type="numpy", label="Image Removed with Segmentation Mask 2").style(height="200px")
|
191 |
+
|
192 |
+
|
193 |
+
def get_select_coords(img, evt: gr.SelectData):
|
194 |
+
dpi = plt.rcParams['figure.dpi']
|
195 |
+
height, width = img.shape[:2]
|
196 |
+
fig = plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
197 |
+
plt.imshow(img)
|
198 |
+
plt.axis('off')
|
199 |
+
plt.tight_layout()
|
200 |
+
show_points(plt.gca(), [[evt.index[0], evt.index[1]]], [1],
|
201 |
+
size=(width*0.04)**2)
|
202 |
+
return evt.index[0], evt.index[1], fig
|
203 |
+
|
204 |
+
img.select(get_select_coords, [img], [w, h, img_pointed])
|
205 |
+
img.upload(get_sam_feat, [img], [features, orig_h, orig_w, input_h, input_w])
|
206 |
+
|
207 |
+
sam_mask.click(
|
208 |
+
get_masked_img,
|
209 |
+
[img, w, h, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size],
|
210 |
+
[img_with_mask_0, img_with_mask_1, img_with_mask_2, mask_0, mask_1, mask_2]
|
211 |
+
)
|
212 |
+
|
213 |
+
lama.click(
|
214 |
+
get_inpainted_img,
|
215 |
+
[img, mask_0, mask_1, mask_2],
|
216 |
+
[img_rm_with_mask_0, img_rm_with_mask_1, img_rm_with_mask_2]
|
217 |
+
)
|
218 |
+
|
219 |
+
|
220 |
+
def reset(*args):
|
221 |
+
return [None for _ in args]
|
222 |
+
|
223 |
+
clear_button_image.click(
|
224 |
+
reset,
|
225 |
+
[img, features, img_pointed, w, h, mask_0, mask_1, mask_2, img_with_mask_0, img_with_mask_1, img_with_mask_2, img_rm_with_mask_0, img_rm_with_mask_1, img_rm_with_mask_2],
|
226 |
+
[img, features, img_pointed, w, h, mask_0, mask_1, mask_2, img_with_mask_0, img_with_mask_1, img_with_mask_2, img_rm_with_mask_0, img_rm_with_mask_1, img_rm_with_mask_2]
|
227 |
+
)
|
228 |
+
|
229 |
+
if __name__ == "__main__":
|
230 |
+
demo.launch()
|
231 |
+
|
fill_anything.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import sys
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from pathlib import Path
|
7 |
+
from matplotlib import pyplot as plt
|
8 |
+
from typing import Any, Dict, List
|
9 |
+
|
10 |
+
from sam_segment import predict_masks_with_sam
|
11 |
+
from stable_diffusion_inpaint import fill_img_with_sd
|
12 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
13 |
+
show_mask, show_points
|
14 |
+
|
15 |
+
|
16 |
+
def setup_args(parser):
|
17 |
+
parser.add_argument(
|
18 |
+
"--input_img", type=str, required=True,
|
19 |
+
help="Path to a single input img",
|
20 |
+
)
|
21 |
+
parser.add_argument(
|
22 |
+
"--point_coords", type=float, nargs='+', required=True,
|
23 |
+
help="The coordinate of the point prompt, [coord_W coord_H].",
|
24 |
+
)
|
25 |
+
parser.add_argument(
|
26 |
+
"--point_labels", type=int, nargs='+', required=True,
|
27 |
+
help="The labels of the point prompt, 1 or 0.",
|
28 |
+
)
|
29 |
+
parser.add_argument(
|
30 |
+
"--text_prompt", type=str, required=True,
|
31 |
+
help="Text prompt",
|
32 |
+
)
|
33 |
+
parser.add_argument(
|
34 |
+
"--dilate_kernel_size", type=int, default=None,
|
35 |
+
help="Dilate kernel size. Default: None",
|
36 |
+
)
|
37 |
+
parser.add_argument(
|
38 |
+
"--output_dir", type=str, required=True,
|
39 |
+
help="Output path to the directory with results.",
|
40 |
+
)
|
41 |
+
parser.add_argument(
|
42 |
+
"--sam_model_type", type=str,
|
43 |
+
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b'],
|
44 |
+
help="The type of sam model to load. Default: 'vit_h"
|
45 |
+
)
|
46 |
+
parser.add_argument(
|
47 |
+
"--sam_ckpt", type=str, required=True,
|
48 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
49 |
+
)
|
50 |
+
parser.add_argument(
|
51 |
+
"--seed", type=int,
|
52 |
+
help="Specify seed for reproducibility.",
|
53 |
+
)
|
54 |
+
parser.add_argument(
|
55 |
+
"--deterministic", action="store_true",
|
56 |
+
help="Use deterministic algorithms for reproducibility.",
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
if __name__ == "__main__":
|
62 |
+
"""Example usage:
|
63 |
+
python fill_anything.py \
|
64 |
+
--input_img FA_demo/FA1_dog.png \
|
65 |
+
--point_coords 750 500 \
|
66 |
+
--point_labels 1 \
|
67 |
+
--text_prompt "a teddy bear on a bench" \
|
68 |
+
--dilate_kernel_size 15 \
|
69 |
+
--output_dir ./results \
|
70 |
+
--sam_model_type "vit_h" \
|
71 |
+
--sam_ckpt sam_vit_h_4b8939.pth
|
72 |
+
"""
|
73 |
+
parser = argparse.ArgumentParser()
|
74 |
+
setup_args(parser)
|
75 |
+
args = parser.parse_args(sys.argv[1:])
|
76 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
77 |
+
|
78 |
+
img = load_img_to_array(args.input_img)
|
79 |
+
|
80 |
+
masks, _, _ = predict_masks_with_sam(
|
81 |
+
img,
|
82 |
+
[args.point_coords],
|
83 |
+
args.point_labels,
|
84 |
+
model_type=args.sam_model_type,
|
85 |
+
ckpt_p=args.sam_ckpt,
|
86 |
+
device=device,
|
87 |
+
)
|
88 |
+
masks = masks.astype(np.uint8) * 255
|
89 |
+
|
90 |
+
# dilate mask to avoid unmasked edge effect
|
91 |
+
if args.dilate_kernel_size is not None:
|
92 |
+
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
|
93 |
+
|
94 |
+
# visualize the segmentation results
|
95 |
+
img_stem = Path(args.input_img).stem
|
96 |
+
out_dir = Path(args.output_dir) / img_stem
|
97 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
98 |
+
for idx, mask in enumerate(masks):
|
99 |
+
# path to the results
|
100 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
101 |
+
img_points_p = out_dir / f"with_points.png"
|
102 |
+
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
|
103 |
+
|
104 |
+
# save the mask
|
105 |
+
save_array_to_img(mask, mask_p)
|
106 |
+
|
107 |
+
# save the pointed and masked image
|
108 |
+
dpi = plt.rcParams['figure.dpi']
|
109 |
+
height, width = img.shape[:2]
|
110 |
+
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
111 |
+
plt.imshow(img)
|
112 |
+
plt.axis('off')
|
113 |
+
show_points(plt.gca(), [args.point_coords], args.point_labels,
|
114 |
+
size=(width*0.04)**2)
|
115 |
+
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
|
116 |
+
show_mask(plt.gca(), mask, random_color=False)
|
117 |
+
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
|
118 |
+
plt.close()
|
119 |
+
|
120 |
+
# fill the masked image
|
121 |
+
for idx, mask in enumerate(masks):
|
122 |
+
if args.seed is not None:
|
123 |
+
torch.manual_seed(args.seed)
|
124 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
125 |
+
img_filled_p = out_dir / f"filled_with_{Path(mask_p).name}"
|
126 |
+
img_filled = fill_img_with_sd(
|
127 |
+
img, mask, args.text_prompt, device=device)
|
128 |
+
save_array_to_img(img_filled, img_filled_p)
|
lama_inpaint.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import yaml
|
6 |
+
import glob
|
7 |
+
import argparse
|
8 |
+
from PIL import Image
|
9 |
+
from omegaconf import OmegaConf
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
os.environ['OMP_NUM_THREADS'] = '1'
|
13 |
+
os.environ['OPENBLAS_NUM_THREADS'] = '1'
|
14 |
+
os.environ['MKL_NUM_THREADS'] = '1'
|
15 |
+
os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
|
16 |
+
os.environ['NUMEXPR_NUM_THREADS'] = '1'
|
17 |
+
|
18 |
+
sys.path.insert(0, str(Path(__file__).resolve().parent / "third_party" / "lama"))
|
19 |
+
|
20 |
+
from saicinpainting.evaluation.utils import move_to_device
|
21 |
+
from saicinpainting.training.trainers import load_checkpoint
|
22 |
+
from saicinpainting.evaluation.data import pad_tensor_to_modulo
|
23 |
+
|
24 |
+
from utils import load_img_to_array, save_array_to_img
|
25 |
+
|
26 |
+
|
27 |
+
@torch.no_grad()
|
28 |
+
def inpaint_img_with_lama(
|
29 |
+
img: np.ndarray,
|
30 |
+
mask: np.ndarray,
|
31 |
+
config_p: str,
|
32 |
+
ckpt_p: str,
|
33 |
+
mod=8,
|
34 |
+
device="cuda"
|
35 |
+
):
|
36 |
+
assert len(mask.shape) == 2
|
37 |
+
if np.max(mask) == 1:
|
38 |
+
mask = mask * 255
|
39 |
+
img = torch.from_numpy(img).float().div(255.)
|
40 |
+
mask = torch.from_numpy(mask).float()
|
41 |
+
predict_config = OmegaConf.load(config_p)
|
42 |
+
predict_config.model.path = ckpt_p
|
43 |
+
# device = torch.device(predict_config.device)
|
44 |
+
device = torch.device(device)
|
45 |
+
|
46 |
+
train_config_path = os.path.join(
|
47 |
+
predict_config.model.path, 'config.yaml')
|
48 |
+
|
49 |
+
with open(train_config_path, 'r') as f:
|
50 |
+
train_config = OmegaConf.create(yaml.safe_load(f))
|
51 |
+
|
52 |
+
train_config.training_model.predict_only = True
|
53 |
+
train_config.visualizer.kind = 'noop'
|
54 |
+
|
55 |
+
checkpoint_path = os.path.join(
|
56 |
+
predict_config.model.path, 'models',
|
57 |
+
predict_config.model.checkpoint
|
58 |
+
)
|
59 |
+
model = load_checkpoint(
|
60 |
+
train_config, checkpoint_path, strict=False, map_location=device)
|
61 |
+
model.freeze()
|
62 |
+
if not predict_config.get('refine', False):
|
63 |
+
model.to(device)
|
64 |
+
|
65 |
+
batch = {}
|
66 |
+
batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
|
67 |
+
batch['mask'] = mask[None, None]
|
68 |
+
unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
|
69 |
+
batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
|
70 |
+
batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
|
71 |
+
batch = move_to_device(batch, device)
|
72 |
+
batch['mask'] = (batch['mask'] > 0) * 1
|
73 |
+
|
74 |
+
batch = model(batch)
|
75 |
+
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0)
|
76 |
+
cur_res = cur_res.detach().cpu().numpy()
|
77 |
+
|
78 |
+
if unpad_to_size is not None:
|
79 |
+
orig_height, orig_width = unpad_to_size
|
80 |
+
cur_res = cur_res[:orig_height, :orig_width]
|
81 |
+
|
82 |
+
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
|
83 |
+
return cur_res
|
84 |
+
|
85 |
+
|
86 |
+
def build_lama_model(
|
87 |
+
config_p: str,
|
88 |
+
ckpt_p: str,
|
89 |
+
device="cuda"
|
90 |
+
):
|
91 |
+
predict_config = OmegaConf.load(config_p)
|
92 |
+
predict_config.model.path = ckpt_p
|
93 |
+
# device = torch.device(predict_config.device)
|
94 |
+
device = torch.device(device)
|
95 |
+
|
96 |
+
train_config_path = os.path.join(
|
97 |
+
predict_config.model.path, 'config.yaml')
|
98 |
+
|
99 |
+
with open(train_config_path, 'r') as f:
|
100 |
+
train_config = OmegaConf.create(yaml.safe_load(f))
|
101 |
+
|
102 |
+
train_config.training_model.predict_only = True
|
103 |
+
train_config.visualizer.kind = 'noop'
|
104 |
+
|
105 |
+
checkpoint_path = os.path.join(
|
106 |
+
predict_config.model.path, 'models',
|
107 |
+
predict_config.model.checkpoint
|
108 |
+
)
|
109 |
+
model = load_checkpoint(
|
110 |
+
train_config, checkpoint_path, strict=False, map_location=device)
|
111 |
+
model.freeze()
|
112 |
+
if not predict_config.get('refine', False):
|
113 |
+
model.to(device)
|
114 |
+
|
115 |
+
return model
|
116 |
+
|
117 |
+
|
118 |
+
@torch.no_grad()
|
119 |
+
def inpaint_img_with_builded_lama(
|
120 |
+
model,
|
121 |
+
img: np.ndarray,
|
122 |
+
mask: np.ndarray,
|
123 |
+
config_p: str,
|
124 |
+
mod=8,
|
125 |
+
device="cuda"
|
126 |
+
):
|
127 |
+
assert len(mask.shape) == 2
|
128 |
+
if np.max(mask) == 1:
|
129 |
+
mask = mask * 255
|
130 |
+
img = torch.from_numpy(img).float().div(255.)
|
131 |
+
mask = torch.from_numpy(mask).float()
|
132 |
+
predict_config = OmegaConf.load(config_p)
|
133 |
+
|
134 |
+
batch = {}
|
135 |
+
batch['image'] = img.permute(2, 0, 1).unsqueeze(0)
|
136 |
+
batch['mask'] = mask[None, None]
|
137 |
+
unpad_to_size = [batch['image'].shape[2], batch['image'].shape[3]]
|
138 |
+
batch['image'] = pad_tensor_to_modulo(batch['image'], mod)
|
139 |
+
batch['mask'] = pad_tensor_to_modulo(batch['mask'], mod)
|
140 |
+
batch = move_to_device(batch, device)
|
141 |
+
batch['mask'] = (batch['mask'] > 0) * 1
|
142 |
+
|
143 |
+
batch = model(batch)
|
144 |
+
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0)
|
145 |
+
cur_res = cur_res.detach().cpu().numpy()
|
146 |
+
|
147 |
+
if unpad_to_size is not None:
|
148 |
+
orig_height, orig_width = unpad_to_size
|
149 |
+
cur_res = cur_res[:orig_height, :orig_width]
|
150 |
+
|
151 |
+
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
|
152 |
+
return cur_res
|
153 |
+
|
154 |
+
|
155 |
+
def setup_args(parser):
|
156 |
+
parser.add_argument(
|
157 |
+
"--input_img", type=str, required=True,
|
158 |
+
help="Path to a single input img",
|
159 |
+
)
|
160 |
+
parser.add_argument(
|
161 |
+
"--input_mask_glob", type=str, required=True,
|
162 |
+
help="Glob to input masks",
|
163 |
+
)
|
164 |
+
parser.add_argument(
|
165 |
+
"--output_dir", type=str, required=True,
|
166 |
+
help="Output path to the directory with results.",
|
167 |
+
)
|
168 |
+
parser.add_argument(
|
169 |
+
"--lama_config", type=str,
|
170 |
+
default="./third_party/lama/configs/prediction/default.yaml",
|
171 |
+
help="The path to the config file of lama model. "
|
172 |
+
"Default: the config of big-lama",
|
173 |
+
)
|
174 |
+
parser.add_argument(
|
175 |
+
"--lama_ckpt", type=str, required=True,
|
176 |
+
help="The path to the lama checkpoint.",
|
177 |
+
)
|
178 |
+
|
179 |
+
|
180 |
+
if __name__ == "__main__":
|
181 |
+
"""Example usage:
|
182 |
+
python lama_inpaint.py \
|
183 |
+
--input_img FA_demo/FA1_dog.png \
|
184 |
+
--input_mask_glob "results/FA1_dog/mask*.png" \
|
185 |
+
--output_dir results \
|
186 |
+
--lama_config lama/configs/prediction/default.yaml \
|
187 |
+
--lama_ckpt big-lama
|
188 |
+
"""
|
189 |
+
parser = argparse.ArgumentParser()
|
190 |
+
setup_args(parser)
|
191 |
+
args = parser.parse_args(sys.argv[1:])
|
192 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
193 |
+
|
194 |
+
img_stem = Path(args.input_img).stem
|
195 |
+
mask_ps = sorted(glob.glob(args.input_mask_glob))
|
196 |
+
out_dir = Path(args.output_dir) / img_stem
|
197 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
198 |
+
|
199 |
+
img = load_img_to_array(args.input_img)
|
200 |
+
for mask_p in mask_ps:
|
201 |
+
mask = load_img_to_array(mask_p)
|
202 |
+
img_inpainted_p = out_dir / f"inpainted_with_{Path(mask_p).name}"
|
203 |
+
img_inpainted = inpaint_img_with_lama(
|
204 |
+
img, mask, args.lama_config, args.lama_ckpt, device=device)
|
205 |
+
save_array_to_img(img_inpainted, img_inpainted_p)
|
pretrained_models/.gitkeep
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Put pretrained models into this directory
|
pretrained_models/big-lama/config.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fdeed49926e13b101c4dd9e193acec9e58677dfdb4ba49dd6a3a8927964e2a7
|
3 |
+
size 3947
|
pretrained_models/big-lama/models/best.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fccb7adffd53ec0974ee5503c3731c2c2f1e7e07856fd9228cdcc0b46fd5d423
|
3 |
+
size 410046389
|
pretrained_models/sam_vit_h_4b8939.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7bf3b02f3ebf1267aba913ff637d9a2d5c33d3173bb679e46d9f338c26f262e
|
3 |
+
size 2564550879
|
remove_anything.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import sys
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
from pathlib import Path
|
6 |
+
from matplotlib import pyplot as plt
|
7 |
+
|
8 |
+
from sam_segment import predict_masks_with_sam
|
9 |
+
from lama_inpaint import inpaint_img_with_lama
|
10 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
11 |
+
show_mask, show_points
|
12 |
+
|
13 |
+
|
14 |
+
def setup_args(parser):
|
15 |
+
parser.add_argument(
|
16 |
+
"--input_img", type=str, required=True,
|
17 |
+
help="Path to a single input img",
|
18 |
+
)
|
19 |
+
parser.add_argument(
|
20 |
+
"--point_coords", type=float, nargs='+', required=True,
|
21 |
+
help="The coordinate of the point prompt, [coord_W coord_H].",
|
22 |
+
)
|
23 |
+
parser.add_argument(
|
24 |
+
"--point_labels", type=int, nargs='+', required=True,
|
25 |
+
help="The labels of the point prompt, 1 or 0.",
|
26 |
+
)
|
27 |
+
parser.add_argument(
|
28 |
+
"--dilate_kernel_size", type=int, default=None,
|
29 |
+
help="Dilate kernel size. Default: None",
|
30 |
+
)
|
31 |
+
parser.add_argument(
|
32 |
+
"--output_dir", type=str, required=True,
|
33 |
+
help="Output path to the directory with results.",
|
34 |
+
)
|
35 |
+
parser.add_argument(
|
36 |
+
"--sam_model_type", type=str,
|
37 |
+
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b'],
|
38 |
+
help="The type of sam model to load. Default: 'vit_h"
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--sam_ckpt", type=str, required=True,
|
42 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
43 |
+
)
|
44 |
+
parser.add_argument(
|
45 |
+
"--lama_config", type=str,
|
46 |
+
default="./lama/configs/prediction/default.yaml",
|
47 |
+
help="The path to the config file of lama model. "
|
48 |
+
"Default: the config of big-lama",
|
49 |
+
)
|
50 |
+
parser.add_argument(
|
51 |
+
"--lama_ckpt", type=str, required=True,
|
52 |
+
help="The path to the lama checkpoint.",
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
"""Example usage:
|
58 |
+
python remove_anything.py \
|
59 |
+
--input_img FA_demo/FA1_dog.png \
|
60 |
+
--point_coords 750 500 \
|
61 |
+
--point_labels 1 \
|
62 |
+
--dilate_kernel_size 15 \
|
63 |
+
--output_dir ./results \
|
64 |
+
--sam_model_type "vit_h" \
|
65 |
+
--sam_ckpt sam_vit_h_4b8939.pth \
|
66 |
+
--lama_config lama/configs/prediction/default.yaml \
|
67 |
+
--lama_ckpt big-lama
|
68 |
+
"""
|
69 |
+
parser = argparse.ArgumentParser()
|
70 |
+
setup_args(parser)
|
71 |
+
args = parser.parse_args(sys.argv[1:])
|
72 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
73 |
+
|
74 |
+
img = load_img_to_array(args.input_img)
|
75 |
+
|
76 |
+
masks, _, _ = predict_masks_with_sam(
|
77 |
+
img,
|
78 |
+
[args.point_coords],
|
79 |
+
args.point_labels,
|
80 |
+
model_type=args.sam_model_type,
|
81 |
+
ckpt_p=args.sam_ckpt,
|
82 |
+
device=device,
|
83 |
+
)
|
84 |
+
masks = masks.astype(np.uint8) * 255
|
85 |
+
|
86 |
+
# dilate mask to avoid unmasked edge effect
|
87 |
+
if args.dilate_kernel_size is not None:
|
88 |
+
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
|
89 |
+
|
90 |
+
# visualize the segmentation results
|
91 |
+
img_stem = Path(args.input_img).stem
|
92 |
+
out_dir = Path(args.output_dir) / img_stem
|
93 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
94 |
+
for idx, mask in enumerate(masks):
|
95 |
+
# path to the results
|
96 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
97 |
+
img_points_p = out_dir / f"with_points.png"
|
98 |
+
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
|
99 |
+
|
100 |
+
# save the mask
|
101 |
+
save_array_to_img(mask, mask_p)
|
102 |
+
|
103 |
+
# save the pointed and masked image
|
104 |
+
dpi = plt.rcParams['figure.dpi']
|
105 |
+
height, width = img.shape[:2]
|
106 |
+
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
107 |
+
plt.imshow(img)
|
108 |
+
plt.axis('off')
|
109 |
+
show_points(plt.gca(), [args.point_coords], args.point_labels,
|
110 |
+
size=(width*0.04)**2)
|
111 |
+
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
|
112 |
+
show_mask(plt.gca(), mask, random_color=False)
|
113 |
+
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
|
114 |
+
plt.close()
|
115 |
+
|
116 |
+
# inpaint the masked image
|
117 |
+
for idx, mask in enumerate(masks):
|
118 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
119 |
+
img_inpainted_p = out_dir / f"inpainted_with_{Path(mask_p).name}"
|
120 |
+
img_inpainted = inpaint_img_with_lama(
|
121 |
+
img, mask, args.lama_config, args.lama_ckpt, device=device)
|
122 |
+
save_array_to_img(img_inpainted, img_inpainted_p)
|
replace_anything.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import sys
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from pathlib import Path
|
7 |
+
from matplotlib import pyplot as plt
|
8 |
+
from typing import Any, Dict, List
|
9 |
+
from sam_segment import predict_masks_with_sam
|
10 |
+
from stable_diffusion_inpaint import replace_img_with_sd
|
11 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
12 |
+
show_mask, show_points
|
13 |
+
|
14 |
+
|
15 |
+
def setup_args(parser):
|
16 |
+
parser.add_argument(
|
17 |
+
"--input_img", type=str, required=True,
|
18 |
+
help="Path to a single input img",
|
19 |
+
)
|
20 |
+
parser.add_argument(
|
21 |
+
"--point_coords", type=float, nargs='+', required=True,
|
22 |
+
help="The coordinate of the point prompt, [coord_W coord_H].",
|
23 |
+
)
|
24 |
+
parser.add_argument(
|
25 |
+
"--point_labels", type=int, nargs='+', required=True,
|
26 |
+
help="The labels of the point prompt, 1 or 0.",
|
27 |
+
)
|
28 |
+
parser.add_argument(
|
29 |
+
"--text_prompt", type=str, required=True,
|
30 |
+
help="Text prompt",
|
31 |
+
)
|
32 |
+
parser.add_argument(
|
33 |
+
"--dilate_kernel_size", type=int, default=None,
|
34 |
+
help="Dilate kernel size. Default: None",
|
35 |
+
)
|
36 |
+
parser.add_argument(
|
37 |
+
"--output_dir", type=str, required=True,
|
38 |
+
help="Output path to the directory with results.",
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--sam_model_type", type=str,
|
42 |
+
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b'],
|
43 |
+
help="The type of sam model to load. Default: 'vit_h"
|
44 |
+
)
|
45 |
+
parser.add_argument(
|
46 |
+
"--sam_ckpt", type=str, required=True,
|
47 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
48 |
+
)
|
49 |
+
parser.add_argument(
|
50 |
+
"--seed", type=int,
|
51 |
+
help="Specify seed for reproducibility.",
|
52 |
+
)
|
53 |
+
parser.add_argument(
|
54 |
+
"--deterministic", action="store_true",
|
55 |
+
help="Use deterministic algorithms for reproducibility.",
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
if __name__ == "__main__":
|
61 |
+
"""Example usage:
|
62 |
+
python replace_anything.py \
|
63 |
+
--input_img FA_demo/FA1_dog.png \
|
64 |
+
--point_coords 750 500 \
|
65 |
+
--point_labels 1 \
|
66 |
+
--text_prompt "sit on the swing" \
|
67 |
+
--output_dir ./results \
|
68 |
+
--sam_model_type "vit_h" \
|
69 |
+
--sam_ckpt sam_vit_h_4b8939.pth
|
70 |
+
"""
|
71 |
+
parser = argparse.ArgumentParser()
|
72 |
+
setup_args(parser)
|
73 |
+
args = parser.parse_args(sys.argv[1:])
|
74 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
75 |
+
|
76 |
+
img = load_img_to_array(args.input_img)
|
77 |
+
|
78 |
+
masks, _, _ = predict_masks_with_sam(
|
79 |
+
img,
|
80 |
+
[args.point_coords],
|
81 |
+
args.point_labels,
|
82 |
+
model_type=args.sam_model_type,
|
83 |
+
ckpt_p=args.sam_ckpt,
|
84 |
+
device=device,
|
85 |
+
)
|
86 |
+
masks = masks.astype(np.uint8) * 255
|
87 |
+
|
88 |
+
# dilate mask to avoid unmasked edge effect
|
89 |
+
if args.dilate_kernel_size is not None:
|
90 |
+
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
|
91 |
+
|
92 |
+
# visualize the segmentation results
|
93 |
+
img_stem = Path(args.input_img).stem
|
94 |
+
out_dir = Path(args.output_dir) / img_stem
|
95 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
96 |
+
for idx, mask in enumerate(masks):
|
97 |
+
# path to the results
|
98 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
99 |
+
img_points_p = out_dir / f"with_points.png"
|
100 |
+
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
|
101 |
+
|
102 |
+
# save the mask
|
103 |
+
save_array_to_img(mask, mask_p)
|
104 |
+
|
105 |
+
# save the pointed and masked image
|
106 |
+
dpi = plt.rcParams['figure.dpi']
|
107 |
+
height, width = img.shape[:2]
|
108 |
+
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
109 |
+
plt.imshow(img)
|
110 |
+
plt.axis('off')
|
111 |
+
show_points(plt.gca(), [args.point_coords], args.point_labels,
|
112 |
+
size=(width*0.04)**2)
|
113 |
+
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
|
114 |
+
show_mask(plt.gca(), mask, random_color=False)
|
115 |
+
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
|
116 |
+
plt.close()
|
117 |
+
|
118 |
+
# fill the masked image
|
119 |
+
for idx, mask in enumerate(masks):
|
120 |
+
if args.seed is not None:
|
121 |
+
torch.manual_seed(args.seed)
|
122 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
123 |
+
img_replaced_p = out_dir / f"replaced_with_{Path(mask_p).name}"
|
124 |
+
img_replaced = replace_img_with_sd(
|
125 |
+
img, mask, args.text_prompt, device=device)
|
126 |
+
save_array_to_img(img_replaced, img_replaced_p)
|
requirements.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
opencv-python
|
4 |
+
matplotlib
|
5 |
+
tensorflow
|
6 |
+
pyyaml
|
7 |
+
tqdm
|
8 |
+
numpy
|
9 |
+
easydict
|
10 |
+
scikit-image
|
11 |
+
scikit-learn
|
12 |
+
opencv-python
|
13 |
+
joblib
|
14 |
+
matplotlib
|
15 |
+
pandas
|
16 |
+
albumentations==0.5.2
|
17 |
+
hydra-core
|
18 |
+
pytorch-lightning
|
19 |
+
tabulate
|
20 |
+
kornia==0.5.0
|
21 |
+
webdataset
|
22 |
+
packaging
|
23 |
+
wldhx.yadisk-direct
|
sam_segment.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import argparse
|
3 |
+
import numpy as np
|
4 |
+
from pathlib import Path
|
5 |
+
from matplotlib import pyplot as plt
|
6 |
+
from typing import Any, Dict, List
|
7 |
+
import torch
|
8 |
+
|
9 |
+
sys.path.insert(0, str(Path(__file__).resolve().parent / "third_party" / "segment-anything"))
|
10 |
+
|
11 |
+
from segment_anything import SamPredictor, sam_model_registry
|
12 |
+
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
|
13 |
+
show_mask, show_points
|
14 |
+
|
15 |
+
|
16 |
+
def predict_masks_with_sam(
|
17 |
+
img: np.ndarray,
|
18 |
+
point_coords: List[List[float]],
|
19 |
+
point_labels: List[int],
|
20 |
+
model_type: str,
|
21 |
+
ckpt_p: str,
|
22 |
+
device="cuda"
|
23 |
+
):
|
24 |
+
point_coords = np.array(point_coords)
|
25 |
+
point_labels = np.array(point_labels)
|
26 |
+
sam = sam_model_registry[model_type](checkpoint=ckpt_p)
|
27 |
+
sam.to(device=device)
|
28 |
+
predictor = SamPredictor(sam)
|
29 |
+
|
30 |
+
predictor.set_image(img)
|
31 |
+
masks, scores, logits = predictor.predict(
|
32 |
+
point_coords=point_coords,
|
33 |
+
point_labels=point_labels,
|
34 |
+
multimask_output=True,
|
35 |
+
)
|
36 |
+
return masks, scores, logits
|
37 |
+
|
38 |
+
|
39 |
+
def setup_args(parser):
|
40 |
+
parser.add_argument(
|
41 |
+
"--input_img", type=str, required=True,
|
42 |
+
help="Path to a single input img",
|
43 |
+
)
|
44 |
+
parser.add_argument(
|
45 |
+
"--point_coords", type=float, nargs='+', required=True,
|
46 |
+
help="The coordinate of the point prompt, [coord_W coord_H].",
|
47 |
+
)
|
48 |
+
parser.add_argument(
|
49 |
+
"--point_labels", type=int, nargs='+', required=True,
|
50 |
+
help="The labels of the point prompt, 1 or 0.",
|
51 |
+
)
|
52 |
+
parser.add_argument(
|
53 |
+
"--dilate_kernel_size", type=int, default=None,
|
54 |
+
help="Dilate kernel size. Default: None",
|
55 |
+
)
|
56 |
+
parser.add_argument(
|
57 |
+
"--output_dir", type=str, required=True,
|
58 |
+
help="Output path to the directory with results.",
|
59 |
+
)
|
60 |
+
parser.add_argument(
|
61 |
+
"--sam_model_type", type=str,
|
62 |
+
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b'],
|
63 |
+
help="The type of sam model to load. Default: 'vit_h"
|
64 |
+
)
|
65 |
+
parser.add_argument(
|
66 |
+
"--sam_ckpt", type=str, required=True,
|
67 |
+
help="The path to the SAM checkpoint to use for mask generation.",
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
"""Example usage:
|
73 |
+
python sam_segment.py \
|
74 |
+
--input_img FA_demo/FA1_dog.png \
|
75 |
+
--point_coords 750 500 \
|
76 |
+
--point_labels 1 \
|
77 |
+
--dilate_kernel_size 15 \
|
78 |
+
--output_dir ./results \
|
79 |
+
--sam_model_type "vit_h" \
|
80 |
+
--sam_ckpt sam_vit_h_4b8939.pth
|
81 |
+
"""
|
82 |
+
parser = argparse.ArgumentParser()
|
83 |
+
setup_args(parser)
|
84 |
+
args = parser.parse_args(sys.argv[1:])
|
85 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
86 |
+
|
87 |
+
img = load_img_to_array(args.input_img)
|
88 |
+
|
89 |
+
masks, _, _ = predict_masks_with_sam(
|
90 |
+
img,
|
91 |
+
[args.point_coords],
|
92 |
+
args.point_labels,
|
93 |
+
model_type=args.sam_model_type,
|
94 |
+
ckpt_p=args.sam_ckpt,
|
95 |
+
device=device,
|
96 |
+
)
|
97 |
+
masks = masks.astype(np.uint8) * 255
|
98 |
+
|
99 |
+
# dilate mask to avoid unmasked edge effect
|
100 |
+
if args.dilate_kernel_size is not None:
|
101 |
+
masks = [dilate_mask(mask, args.dilate_kernel_size) for mask in masks]
|
102 |
+
|
103 |
+
# visualize the segmentation results
|
104 |
+
img_stem = Path(args.input_img).stem
|
105 |
+
out_dir = Path(args.output_dir) / img_stem
|
106 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
107 |
+
for idx, mask in enumerate(masks):
|
108 |
+
# path to the results
|
109 |
+
mask_p = out_dir / f"mask_{idx}.png"
|
110 |
+
img_points_p = out_dir / f"with_points.png"
|
111 |
+
img_mask_p = out_dir / f"with_{Path(mask_p).name}"
|
112 |
+
|
113 |
+
# save the mask
|
114 |
+
save_array_to_img(mask, mask_p)
|
115 |
+
|
116 |
+
# save the pointed and masked image
|
117 |
+
dpi = plt.rcParams['figure.dpi']
|
118 |
+
height, width = img.shape[:2]
|
119 |
+
plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
|
120 |
+
plt.imshow(img)
|
121 |
+
plt.axis('off')
|
122 |
+
show_points(plt.gca(), [args.point_coords], args.point_labels,
|
123 |
+
size=(width*0.04)**2)
|
124 |
+
plt.savefig(img_points_p, bbox_inches='tight', pad_inches=0)
|
125 |
+
show_mask(plt.gca(), mask, random_color=False)
|
126 |
+
plt.savefig(img_mask_p, bbox_inches='tight', pad_inches=0)
|
127 |
+
plt.close()
|
stable_diffusion_inpaint.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import glob
|
4 |
+
import argparse
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import PIL.Image as Image
|
8 |
+
from pathlib import Path
|
9 |
+
from diffusers import StableDiffusionInpaintPipeline
|
10 |
+
from utils.mask_processing import crop_for_filling_pre, crop_for_filling_post
|
11 |
+
from utils.crop_for_replacing import recover_size, resize_and_pad
|
12 |
+
from utils import load_img_to_array, save_array_to_img
|
13 |
+
|
14 |
+
|
15 |
+
def fill_img_with_sd(
|
16 |
+
img: np.ndarray,
|
17 |
+
mask: np.ndarray,
|
18 |
+
text_prompt: str,
|
19 |
+
device="cuda"
|
20 |
+
):
|
21 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
22 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
23 |
+
torch_dtype=torch.float32,
|
24 |
+
).to(device)
|
25 |
+
img_crop, mask_crop = crop_for_filling_pre(img, mask)
|
26 |
+
img_crop_filled = pipe(
|
27 |
+
prompt=text_prompt,
|
28 |
+
image=Image.fromarray(img_crop),
|
29 |
+
mask_image=Image.fromarray(mask_crop)
|
30 |
+
).images[0]
|
31 |
+
img_filled = crop_for_filling_post(img, mask, np.array(img_crop_filled))
|
32 |
+
return img_filled
|
33 |
+
|
34 |
+
|
35 |
+
def replace_img_with_sd(
|
36 |
+
img: np.ndarray,
|
37 |
+
mask: np.ndarray,
|
38 |
+
text_prompt: str,
|
39 |
+
step: int = 50,
|
40 |
+
device="cuda"
|
41 |
+
):
|
42 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
43 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
44 |
+
torch_dtype=torch.float32,
|
45 |
+
).to(device)
|
46 |
+
img_padded, mask_padded, padding_factors = resize_and_pad(img, mask)
|
47 |
+
img_padded = pipe(
|
48 |
+
prompt=text_prompt,
|
49 |
+
image=Image.fromarray(img_padded),
|
50 |
+
mask_image=Image.fromarray(255 - mask_padded),
|
51 |
+
num_inference_steps=step,
|
52 |
+
).images[0]
|
53 |
+
height, width, _ = img.shape
|
54 |
+
img_resized, mask_resized = recover_size(
|
55 |
+
np.array(img_padded), mask_padded, (height, width), padding_factors)
|
56 |
+
mask_resized = np.expand_dims(mask_resized, -1) / 255
|
57 |
+
img_resized = img_resized * (1-mask_resized) + img * mask_resized
|
58 |
+
return img_resized
|
59 |
+
|
60 |
+
|
61 |
+
def setup_args(parser):
|
62 |
+
parser.add_argument(
|
63 |
+
"--input_img", type=str, required=True,
|
64 |
+
help="Path to a single input img",
|
65 |
+
)
|
66 |
+
parser.add_argument(
|
67 |
+
"--text_prompt", type=str, required=True,
|
68 |
+
help="Text prompt",
|
69 |
+
)
|
70 |
+
parser.add_argument(
|
71 |
+
"--input_mask_glob", type=str, required=True,
|
72 |
+
help="Glob to input masks",
|
73 |
+
)
|
74 |
+
parser.add_argument(
|
75 |
+
"--output_dir", type=str, required=True,
|
76 |
+
help="Output path to the directory with results.",
|
77 |
+
)
|
78 |
+
parser.add_argument(
|
79 |
+
"--seed", type=int,
|
80 |
+
help="Specify seed for reproducibility.",
|
81 |
+
)
|
82 |
+
parser.add_argument(
|
83 |
+
"--deterministic", action="store_true",
|
84 |
+
help="Use deterministic algorithms for reproducibility.",
|
85 |
+
)
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
"""Example usage:
|
89 |
+
python lama_inpaint.py \
|
90 |
+
--input_img FA_demo/FA1_dog.png \
|
91 |
+
--input_mask_glob "results/FA1_dog/mask*.png" \
|
92 |
+
--text_prompt "a teddy bear on a bench" \
|
93 |
+
--output_dir results
|
94 |
+
"""
|
95 |
+
parser = argparse.ArgumentParser()
|
96 |
+
setup_args(parser)
|
97 |
+
args = parser.parse_args(sys.argv[1:])
|
98 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
99 |
+
|
100 |
+
if args.deterministic:
|
101 |
+
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
|
102 |
+
torch.use_deterministic_algorithms(True)
|
103 |
+
|
104 |
+
img_stem = Path(args.input_img).stem
|
105 |
+
mask_ps = sorted(glob.glob(args.input_mask_glob))
|
106 |
+
out_dir = Path(args.output_dir) / img_stem
|
107 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
108 |
+
|
109 |
+
img = load_img_to_array(args.input_img)
|
110 |
+
for mask_p in mask_ps:
|
111 |
+
if args.seed is not None:
|
112 |
+
torch.manual_seed(args.seed)
|
113 |
+
mask = load_img_to_array(mask_p)
|
114 |
+
img_filled_p = out_dir / f"filled_with_{Path(mask_p).name}"
|
115 |
+
img_filled = fill_img_with_sd(
|
116 |
+
img, mask, args.text_prompt, device=device)
|
117 |
+
save_array_to_img(img_filled, img_filled_p)
|
third_party/.gitkeep
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Put third party packages into this directory
|
third_party/lama/.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbe005fc6c62133aee2511011dad6e169d913bba51490d29d36659566c7d84e9
|
3 |
+
size 1865
|
third_party/lama/LICENSE
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ceeeac5a802e86c413c22b16cce8e9a22027b0250c97e6f8ac97c14cf0542c0
|
3 |
+
size 11348
|
third_party/lama/README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54b097c25246f2193703790ca10f3da7a134ca9cd6fee6f7f14d1e03c016df3a
|
3 |
+
size 16575
|
third_party/lama/bin/analyze_errors.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9019332b8309090906f49ac63fe6a6e5f1a5a03e2eedf3e56c8be6cfd6fb2dcc
|
3 |
+
size 17698
|
third_party/lama/bin/blur_predicts.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed0863c166ba510175e89a373f7b950550e8008ed4b328e6b7d2c53e7237889a
|
3 |
+
size 2191
|
third_party/lama/bin/calc_dataset_stats.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53e279cba5626e01ffaa7984b775603f64cdf149a72fa16a0f58000a3bcbc4ec
|
3 |
+
size 3627
|
third_party/lama/bin/debug/analyze_overlapping_masks.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c368f947b87d27ecda000ba96d2dd81437aa24215064f1cae1df92c86f0f1c52
|
3 |
+
size 1132
|
third_party/lama/bin/evaluate_predicts.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67458a187713e1455dd1ff013bd678d608979ae49f637a22f24ee92d40de0e8b
|
3 |
+
size 3530
|
third_party/lama/bin/evaluator_example.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c88b5a0d15bfa6e81b60c963aa8f32ff752b853ae3cf38966d24cccdfc8b931
|
3 |
+
size 2359
|
third_party/lama/bin/extract_masks.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e90a3197316ee22fd33b01ce1df8b8e21be39288e1669ec1c9f4d7e6e0fcd19
|
3 |
+
size 1627
|
third_party/lama/bin/filter_sharded_dataset.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48c820e8ec725ffbc1b625d6924dab43c5134f955e0a32bc3ee756f437e6c2f1
|
3 |
+
size 2346
|
third_party/lama/bin/gen_debug_mask_dataset.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea1b7f9144b3716ebe676bb89efd9ae052e4831670ba65c3b1f05ef770da5e76
|
3 |
+
size 1909
|
third_party/lama/bin/gen_mask_dataset.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f0ab3421b1b5f69b00e2e8faec6ac6ef7f980dc8ce8aed340bd99e3e5bd5a1b
|
3 |
+
size 5609
|
third_party/lama/bin/gen_mask_dataset_hydra.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d732574c27a74fa64c66a1afea6497e4fd87103d7da3d58e3dc83f7bb59ad46e
|
3 |
+
size 5340
|
third_party/lama/bin/gen_outpainting_dataset.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7457d08e1f495c3bee3de2413fdb735f252d3fe342b5e54e5372af73b1598211
|
3 |
+
size 3226
|
third_party/lama/bin/make_checkpoint.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d86903c380809c4c266a0ea39cae4d2fb4aa4fcae9ca51491053ac28a72c2edf
|
3 |
+
size 3097
|
third_party/lama/bin/mask_example.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3d14ee869193ebb1b5ac68ea92c9506e7f9bba280ca9c4581fb170cd6ccd789
|
3 |
+
size 466
|
third_party/lama/bin/paper_runfiles/blur_tests.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c8ec2117f3e600321150ed0f24d385c71edb14f2c221a2c32afe6d61a833cfc
|
3 |
+
size 1491
|
third_party/lama/bin/paper_runfiles/env.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:669a5d8d21c3c4400225ef11a4d424d79de578cd5fa923ef55fb930e743a7094
|
3 |
+
size 170
|
third_party/lama/bin/paper_runfiles/find_best_checkpoint.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42d198b58e58ec822e1aac66d66251b87c519f8b9ec178a1c0f810f0891841ae
|
3 |
+
size 2075
|
third_party/lama/bin/paper_runfiles/generate_test_celeba-hq.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecde53349bd3df42ce1e2659578ab493f78a521760168c1458c746b06c304fe9
|
3 |
+
size 603
|
third_party/lama/bin/paper_runfiles/generate_test_ffhq.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27abaa6c56ac539bea34bac171d31558826399e1ea2e69742ac0bb9f93364413
|
3 |
+
size 580
|
third_party/lama/bin/paper_runfiles/generate_test_paris.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b48c06f2d0197d5b52fd6dbaa3c3b24ec41d19e8ae485e920eab1f85b9e2d0c
|
3 |
+
size 593
|
third_party/lama/bin/paper_runfiles/generate_test_paris_256.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:174c38fc6663c4bb6eb7b259a81ec6e4b1d16df0ae40cd4329b2fb4656306a74
|
3 |
+
size 598
|
third_party/lama/bin/paper_runfiles/generate_val_test.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13ea073dbdec3dcab2af58f39099f1e23f7a93e7f445ba00d3091070ab1cd329
|
3 |
+
size 1045
|
third_party/lama/bin/paper_runfiles/predict_inner_features.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eebdbcad0999666cc465eea6cf5154bd90a933a044da95888de6e6f1fdf5b15a
|
3 |
+
size 841
|
third_party/lama/bin/paper_runfiles/update_test_data_stats.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:686112f14750df31bb8dec7d603088b40a2b6b2083df6688817640c7d26d788c
|
3 |
+
size 927
|
third_party/lama/bin/predict.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d7cff7b5f498e895830f97fc076f33ad61bf62c5a117f2028932b267e9d13f7
|
3 |
+
size 4092
|
third_party/lama/bin/predict_inner_features.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2754aedde8a69795dca8cb2ee2919ba6237397b1d0501061f684e347d35128ac
|
3 |
+
size 4938
|
third_party/lama/bin/report_from_tb.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c110718a1f0c37ed143eeac317a4bd3522350060e178ea655fd5d0bd32804dfc
|
3 |
+
size 2588
|
third_party/lama/bin/sample_from_dataset.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb5507435eb50c10e50f96707e77f5109b8c8f73f14c520a24b321b24b6fc642
|
3 |
+
size 3044
|
third_party/lama/bin/side_by_side.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9eaec563dbc98868725083fd560f729e3e50dc263b71a6ff1bbfd9f627df0b5d
|
3 |
+
size 2826
|