n0no123's picture
Upload app.py
1249a17
raw
history blame
1.35 kB
import cv2
from matplotlib import pyplot as plt
import gradio as gr
def my_app(img):
# Opening image
# img = cv2.imread("image.jpg")
# OpenCV opens images as BRG
# but we want it as RGB We'll
# also need a grayscale version
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Use minSize because for not
# bothering with extra-small
# dots that would look like STOP signs
stop_data = cv2.CascadeClassifier('stop_data.xml')
found = stop_data.detectMultiScale(img_gray,
minSize=(20, 20))
# Don't do anything if there's
# no sign
amount_found = len(found)
if amount_found != 0:
return ("S T O P!")
# There may be more than one
# sign in the image
# for (x, y, width, height) in found:
# # We draw a green rectangle around
# # every recognized sign
# cv2.rectangle(img_rgb, (x, y),
# (x + height, y + width),
# (0, 255, 0), 5)
# Creates the environment of
# the picture and shows it
plt.subplot(1, 1, 1)
plt.imshow(img_rgb)
plt.show()
return ("S T O P!")
gr.interface.Interface(fn=my_app, live=True, inputs=gr.Image(
source='webcam', streaming=True), outputs="text").launch()