Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +49 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
from matplotlib import pyplot as plt
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
|
6 |
+
def my_app(img):
|
7 |
+
# Opening image
|
8 |
+
# img = cv2.imread("image.jpg")
|
9 |
+
|
10 |
+
# OpenCV opens images as BRG
|
11 |
+
# but we want it as RGB We'll
|
12 |
+
# also need a grayscale version
|
13 |
+
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
14 |
+
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
15 |
+
|
16 |
+
|
17 |
+
# Use minSize because for not
|
18 |
+
# bothering with extra-small
|
19 |
+
# dots that would look like STOP signs
|
20 |
+
stop_data = cv2.CascadeClassifier('stop_data.xml')
|
21 |
+
|
22 |
+
found = stop_data.detectMultiScale(img_gray,
|
23 |
+
minSize=(20, 20))
|
24 |
+
|
25 |
+
# Don't do anything if there's
|
26 |
+
# no sign
|
27 |
+
amount_found = len(found)
|
28 |
+
|
29 |
+
if amount_found != 0:
|
30 |
+
|
31 |
+
# There may be more than one
|
32 |
+
# sign in the image
|
33 |
+
for (x, y, width, height) in found:
|
34 |
+
|
35 |
+
# We draw a green rectangle around
|
36 |
+
# every recognized sign
|
37 |
+
cv2.rectangle(img_rgb, (x, y),
|
38 |
+
(x + height, y + width),
|
39 |
+
(0, 255, 0), 5)
|
40 |
+
|
41 |
+
# Creates the environment of
|
42 |
+
# the picture and shows it
|
43 |
+
plt.subplot(1, 1, 1)
|
44 |
+
plt.imshow(img_rgb)
|
45 |
+
plt.show()
|
46 |
+
|
47 |
+
|
48 |
+
gr.interface.Interface(fn=my_app, live=True, inputs=gr.Image(
|
49 |
+
source='webcam', streaming=True), outputs="text").launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
matplotlib
|
3 |
+
gradio
|