n0no123 commited on
Commit
f23f3de
1 Parent(s): c0a749a

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -40
app.py CHANGED
@@ -4,46 +4,14 @@ import gradio as gr
4
 
5
 
6
  def my_app(img):
7
- # Opening image
8
- # img = cv2.imread("image.jpg")
9
-
10
- # OpenCV opens images as BRG
11
- # but we want it as RGB We'll
12
- # also need a grayscale version
13
- img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
14
- img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
15
-
16
-
17
- # Use minSize because for not
18
- # bothering with extra-small
19
- # dots that would look like STOP signs
20
- stop_data = cv2.CascadeClassifier('stop_data.xml')
21
-
22
- found = stop_data.detectMultiScale(img_gray,
23
- minSize=(20, 20))
24
-
25
- # Don't do anything if there's
26
- # no sign
27
- amount_found = len(found)
28
-
29
- if amount_found != 0:
30
- return ("S T O P!")
31
- # There may be more than one
32
- # sign in the image
33
- # for (x, y, width, height) in found:
34
-
35
- # # We draw a green rectangle around
36
- # # every recognized sign
37
- # cv2.rectangle(img_rgb, (x, y),
38
- # (x + height, y + width),
39
- # (0, 255, 0), 5)
40
-
41
- # Creates the environment of
42
- # the picture and shows it
43
- plt.subplot(1, 1, 1)
44
- plt.imshow(img_rgb)
45
- plt.show()
46
- return ("S T O P!")
47
 
48
 
49
  gr.interface.Interface(fn=my_app, live=True, inputs=gr.Image(
 
4
 
5
 
6
  def my_app(img):
7
+ grayscale_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
8
+ classifier = cv2.CascadeClassifier('classifier.xml')
9
+ analysedData = classifier.detectMultiScale(grayscale_image,
10
+ minSize=(20, 20))
11
+ if len(analysedData) != 0:
12
+ return ("S T O P!")
13
+ else:
14
+ return ("You're good to go :)")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
 
17
  gr.interface.Interface(fn=my_app, live=True, inputs=gr.Image(