Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import pipeline | |
from huggingface_hub import model_info | |
import Levenshtein | |
MODEL_NAME = "openai/whisper-small" #this always needs to stay in line 8 :D sorry for the hackiness | |
lang = "en" | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") | |
def transcribe(microphone, file_upload): | |
warn_output = "" | |
if (microphone is not None) and (file_upload is not None): | |
warn_output = ( | |
"WARNING: You've uploaded an audio file and used the microphone. " | |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
) | |
elif (microphone is None) and (file_upload is None): | |
return "ERROR: You have to either use the microphone or upload an audio file" | |
file = microphone if microphone is not None else file_upload | |
text = pipe(file)["text"] | |
def find_similar_words(target_word, word_list, threshold=3): | |
similar_words = [] | |
for word in word_list: | |
distance = Levenshtein.distance(target_word, word) | |
if distance <= threshold: | |
similar_words.append((word, distance)) | |
return similar_words | |
word_list = ["OMRON digital thermomenter", "Warmax ginger drink with honey and lemon", "Panadol advance 500mg Tablet 96", "Panadol advance 500mg Table 24", "Panadol Actifast Tablet 20", | |
"Adol 250mg suppository 10", "Adol 250mg Suspension 100ml", "Advil cold & sinus Tablet 20", "Advil 200mg Tablet 24", "Advil 200mg Capsule 32"] | |
target_word = text | |
# Threshold for similarity (optional) | |
threshold = 9 | |
similar_words = find_similar_words(target_word, word_list, threshold) | |
if not similar_words: | |
text = "No similar words found." | |
print(text) | |
return warn_output + text | |
else: | |
print("Similar words:") | |
text = [f"{word}" for word, distance in similar_words][0] | |
print(text[0]) | |
return warn_output + text | |
# for word, distance in similar_words: | |
# print(f"{word} (Similarity score: {distance})") | |
print('===========================================') | |
print(text) | |
demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True), | |
gr.inputs.Audio(source="upload", type="filepath", optional=True), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="Aumet: Naeem Project.", | |
description=( | |
"This Poject created for Naeem using Hugging face, transformers, torch and gradio" | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe], ["Transcribe Audio"]) | |
demo.launch(enable_queue=True) | |