File size: 7,572 Bytes
dbbf602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4df60b
dbbf602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4df60b
dbbf602
 
 
 
 
 
 
b4df60b
dbbf602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2219995
b4df60b
dbbf602
 
b4df60b
dbbf602
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import gradio as gr
from PIL import Image
from io import BytesIO
import base64
import requests
from io import BytesIO


from collections import Counter

from PIL import Image

import numpy as np

import matplotlib.pyplot as plt


def compute_fft_cross_correlation(img1, img2):

    fft1 = np.fft.fft2(img1)

    fft2 = np.fft.fft2(np.rot90(img2, 2), s=img1.shape)

    result = np.fft.ifft2(fft1 * fft2).real

    return result



def compute_offsets(reference, images, window_size):

    reference_gray = np.array(reference.convert('L'))

    offsets = []

    for img in images:

        img_gray = np.array(img.convert('L'))

        correlation = compute_fft_cross_correlation(reference_gray, img_gray)

        # Roll the correlation by half the width and height
        height, width = correlation.shape
        correlation = np.roll(correlation, height // 2, axis=0)
        correlation = np.roll(correlation, width // 2, axis=1)


        # Find the peak in the central region of the correlation
        center_x, center_y = height // 2, width // 2
        start_x, start_y = center_x - window_size // 2, center_y - window_size // 2
        end_x, end_y = start_x + window_size, start_y + window_size

        #make sure starts and ends are in the range(0,height) and (0,width)
        start_x = max(start_x,0)
        start_y = max(start_y,0)
        end_x = min(end_x,height-1)
        end_y = min(end_y,width-1)


        window_size_x = end_x - start_x
        window_size_y = end_y - start_y


        peak_x, peak_y = np.unravel_index(np.argmax(correlation[start_x:end_x, start_y:end_y]), (window_size_x, window_size_y))

        
        
        
        '''
        #plot the correlation
        fig, axs = plt.subplots(1, 5, figsize=(10, 5))
        axs[0].imshow(reference_gray, cmap='gray')
        axs[0].set_title('Reference')
        axs[1].imshow(img_gray, cmap='gray')
        axs[1].set_title('Image')
        axs[2].imshow(correlation, cmap='hot', interpolation='nearest', extent=[-window_size, window_size, -window_size, window_size])
        axs[2].set_title('Correlation')
        axs[3].imshow(correlation, cmap='hot', interpolation='nearest')
        axs[3].set_title('Correlation full')
        axs[4].imshow(correlation[start_x:end_x, start_y:end_y], cmap='hot', interpolation='nearest')
        axs[4].set_title('Correlation cropped')
        plt.show()


        print("what?",np.argmax(correlation[start_x:end_x, start_y:end_y]))

        print(peak_x, peak_y,start_x,end_x,start_y,end_y,center_x,center_y)    
        '''

        
        # Compute the offset in the range [-window_size, window_size]
        peak_x += start_x - center_x + 1
        peak_y += start_y - center_y + 1

        #signs are wrong
        #peak_x = -peak_x
        #peak_y = -peak_y

        #print(peak_x, peak_y)

        # Compute the offset in the range [-window_size, window_size]
        if peak_x > correlation.shape[0] // 2:
            peak_x -= correlation.shape[0]
        if peak_y > correlation.shape[1] // 2:
            peak_y -= correlation.shape[1]

        if peak_x >= 0:
            peak_x = min(peak_x, window_size)
        else:
            peak_x = max(peak_x, -window_size)

        if peak_y >= 0:
            peak_y = min(peak_y, window_size)
        else:
            peak_y = max(peak_y, -window_size)

        offsets.append((peak_x, peak_y))

    return offsets


def find_most_common_color(image):

    pixels = list(image.getdata())

    color_counter = Counter(pixels)

    return color_counter.most_common(1)[0][0]



def slice_frames_final(original, centers, frame_width, frame_height, background_color=(255, 255, 0, 255)):

    sliced_frames = []

    original_width, original_height = original.size

    for center_x, center_y in centers:

        left = center_x - frame_width // 2

        upper = center_y - frame_height // 2

        right = left + frame_width

        lower = upper + frame_height

        new_frame = Image.new("RGBA", (frame_width, frame_height), background_color)

        paste_x = max(0, -left)

        paste_y = max(0, -upper)

        cropped_frame = original.crop((max(0, left), max(0, upper), min(original_width, right), min(original_height, lower)))

        new_frame.paste(cropped_frame, (paste_x, paste_y))

        sliced_frames.append(new_frame)

    return sliced_frames



def create_aligned_gif(original_image, columns_per_row, window_size=200, duration=100,output_gif_path = 'output.gif'):

    
    original_width, original_height = original_image.size

    rows = len(columns_per_row)

    total_frames = sum(columns_per_row)

    background_color = find_most_common_color(original_image)

    frame_height = original_height // rows

    min_frame_width = min([original_width // cols for cols in columns_per_row])

    frames = []

    for i in range(rows):

        frame_width = original_width // columns_per_row[i]

        for j in range(columns_per_row[i]):

            left = j * frame_width + (frame_width - min_frame_width) // 2

            upper = i * frame_height

            right = left + min_frame_width

            lower = upper + frame_height

            frame = original_image.crop((left, upper, right, lower))

            frames.append(frame)

    fft_offsets = compute_offsets(frames[0], frames, window_size=window_size)

    center_coordinates = []

    frame_idx = 0

    for i in range(rows):

        frame_width = original_width // columns_per_row[i]

        for j in range(columns_per_row[i]):

            offset_y,offset_x = fft_offsets[frame_idx]

            center_x = j * frame_width + (frame_width) // 2 - offset_x

            center_y = frame_height * i + frame_height//2 - offset_y

            center_coordinates.append((center_x, center_y))

            frame_idx += 1

    sliced_frames = slice_frames_final(original_image, center_coordinates, min_frame_width, frame_height, background_color=background_color)

    

    sliced_frames[0].save(output_gif_path, save_all=True, append_images=sliced_frames[1:], loop=0, duration=duration)

    '''
    #display frames
    for frame in sliced_frames:
        plt.figure()
        plt.imshow(frame)
    '''
    
    
    return output_gif_path

def wrapper_func(img, columns_per_row_str,duration):
    #img = Image.open(BytesIO(file))

    #img = Image.fromarray(img_arr)

    columns_per_row = [int(x.strip()) for x in columns_per_row_str.split(',')]
    output_gif_path = 'output.gif'

    create_aligned_gif(img, columns_per_row,duration=duration)
    #with open(output_gif_path, "rb") as f:
        #return base64.b64encode(f.read()).decode()
    #    Image.open(output_gif_path)

    return output_gif_path


# Example image in the form of a NumPy array
#example_image = Image.open("https://raw.githubusercontent.com/nagolinc/notebooks/main/ss5.png")

url = "https://raw.githubusercontent.com/nagolinc/notebooks/main/ss5.png"
response = requests.get(url)
example_image = Image.open(BytesIO(response.content))

# Example for "Columns per Row" as a string
example_columns_per_row = "5,5,5"



iface = gr.Interface(
    fn=wrapper_func,
    inputs=[
        gr.components.Image(label="Upload Spritesheet",type='pil'),
        gr.components.Textbox(label="Columns per Row", value="3,4,3"),
        gr.components.Slider(minimum=10, maximum=1000, step=10, value=100, label="Duration of each frame (ms)"),
    ],
    outputs=gr.components.Image(type="filepath", label="Generated GIF"),
    examples=[[example_image, example_columns_per_row,100]],  # Adding examples here
)

iface.launch()