nakamura196's picture
feat: initial commit
4aed34b
import gradio as gr
import json
from ultralytics import YOLO
# Model Heading and Description
model_heading = "YOLOv11x くずし字認識サービス(一文字)"
description = """YOLOv11x くずし字認識サービス(一文字) Gradio demo for classification. Upload an image or click an example image to use."""
article = "<p style='text-align: center'>YOLOv11x くずし字認識サービス(一文字) is a classification model trained on the <a href=\"http://codh.rois.ac.jp/char-shape/\">日本古典籍くずし字データセット</a>.</p>"
image_path= [
['U+4F4E_200004148_00022_1_X1018_Y0469.jpg'],
['U+5F3E_200015779_00112_1_X0978_Y2642.jpg'],
['U+7CBE_100249537_00088_1_X1463_Y0823.jpg']
]
# Load YOLO model
model = YOLO('yolo11x-cls.pt')
def YOLOv11x_img_inference(
image: gr.Image = None,
):
"""
YOLOv11x inference function
Args:
image: Input image
Returns:
top5_json: JSON format of top 5 class names and confidence
"""
results = model.predict(image)
result = results[0]
class_names = result.names # クラスIDとクラス名のマッピング
# 上位5件のクラスIDと信頼度を取得して、nameとconfのペアでリストに変換
top5_list = [
{
"name": chr(int(class_names[class_id][2:], 16)), # Unicodeコードポイントを文字に変換
"conf": float(conf)
}
for class_id, conf in zip(result.probs.top5, result.probs.top5conf)
]
# JSON形式に変換
top5_json = json.dumps(top5_list, ensure_ascii=False, indent=2)
return top5_json
inputs_image = [
gr.Image(type="filepath", label="Input Image"),
]
outputs_image =[
gr.JSON(label="Output JSON")
]
demo = gr.Interface(
fn=YOLOv11x_img_inference,
inputs=inputs_image,
outputs=outputs_image,
title=model_heading,
description=description,
examples=image_path,
article=article,
cache_examples=False
# allow_flagging=False
)
demo.launch(share=False)