nakas commited on
Commit
5bdee70
·
1 Parent(s): f274105

gp3 with stocky

Browse files
Files changed (9) hide show
  1. .DS_Store +0 -0
  2. Main.py +37 -0
  3. README.md +1 -1
  4. app.StockfishGradiopy.py +32 -0
  5. app.py +6 -0
  6. model.py +52 -0
  7. packages.txt +1 -0
  8. requirements 2.txt +2 -0
  9. requirements.txt +4 -0
.DS_Store ADDED
Binary file (6.15 kB). View file
 
Main.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from model import GeneralModel
3
+
4
+
5
+ def app():
6
+
7
+ # Creating an object of prediction service
8
+ pred = GeneralModel()
9
+
10
+ api_key = st.sidebar.text_input("APIkey", type="password")
11
+ # Using the streamlit cache
12
+ @st.cache
13
+ def process_prompt(input):
14
+
15
+ return pred.model_prediction(input=input.strip() , api_key=api_key)
16
+
17
+ if api_key:
18
+
19
+ # Setting up the Title
20
+ st.title("Escritor GPT-3")
21
+
22
+ # st.write("---")
23
+
24
+ s_example = "Escriba un ensayo argumentativo a favor de los vouchers escolares"
25
+ input = st.text_area(
26
+ "Use el ejemplo de abajo o escriba su propio texto en español",
27
+ value=s_example,
28
+ max_chars=1250,
29
+ height=50,
30
+ )
31
+
32
+ if st.button("Submit"):
33
+ with st.spinner(text="In progress"):
34
+ report_text = process_prompt(input)
35
+ st.markdown(report_text)
36
+ else:
37
+ st.error("🔑 Please enter API Key")
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🐟
4
  colorFrom: blue
5
  colorTo: red
6
  sdk: streamlit
7
- sdk_version: 1.15.2
8
  app_file: app.py
9
  pinned: false
10
  license: gpl-3.0
 
4
  colorFrom: blue
5
  colorTo: red
6
  sdk: streamlit
7
+ sdk_version: 1.11.0
8
  app_file: app.py
9
  pinned: false
10
  license: gpl-3.0
app.StockfishGradiopy.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ###from stockfish import Stockfish
2
+
3
+ ###stockfish = Stockfish(path="/stockfish/stockfish-9-64")
4
+ import gradio as gr
5
+ import os
6
+ import chess
7
+ import chess.engine
8
+ import stat
9
+
10
+
11
+
12
+ def eval(fenstring):
13
+ output = ""
14
+ os.chmod("./stockfish_14_x64_popcnt",0o0777)
15
+ engine = chess.engine.SimpleEngine.popen_uci("./stockfish_14_x64_popcnt")
16
+
17
+
18
+ # Score: PovScore(Cp(+20), WHITE)
19
+
20
+ board = chess.Board(fenstring)
21
+
22
+ info = engine.analyse(board, chess.engine.Limit(depth=20),multipv=3)
23
+
24
+
25
+ # Score: PovScore(Mate(+1), WHITE)
26
+
27
+ engine.quit()
28
+ return info
29
+ iface = gr.Interface(fn=eval, title="Stockfish chessboard eval",
30
+ description="Stockfish 14 chess evaluation using pychess engine component. Enter in fen string to get the board eval and the 3 best moves with continuations\
31
+ Stockfish 15 would not execute in huggingface due to glibc", inputs="text", outputs="text")
32
+ iface.launch()
app.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import Main
2
+ import streamlit as st
3
+
4
+ st.set_page_config(page_title="Escritor GPT-3", page_icon=":shark:", layout="wide")
5
+
6
+ Main.app()
model.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import openai
2
+
3
+ poem = """Escriba lo que se le pide:
4
+ ---
5
+ {input}
6
+ ---
7
+ Este es el resultado: """
8
+
9
+ def set_openai_key(key):
10
+ """Sets OpenAI key."""
11
+ openai.api_key = key
12
+
13
+ class GeneralModel:
14
+ def __init__(self):
15
+ print("Model Intilization--->")
16
+ # set_openai_key(API_KEY)
17
+
18
+ def query(self, prompt, myKwargs={}):
19
+ """
20
+ wrapper for the API to save the prompt and the result
21
+ """
22
+
23
+ # arguments to send the API
24
+ kwargs = {
25
+ "engine": "text-davinci-002",
26
+ "temperature": 0.85,
27
+ "max_tokens": 2400,
28
+ "best_of": 1,
29
+ "top_p": 1,
30
+ "frequency_penalty": 0.5,
31
+ "presence_penalty": 0.5,
32
+ "stop": ["###"],
33
+ }
34
+
35
+
36
+ for kwarg in myKwargs:
37
+ kwargs[kwarg] = myKwargs[kwarg]
38
+
39
+
40
+ r = openai.Completion.create(prompt=prompt, **kwargs)["choices"][0][
41
+ "text"
42
+ ].strip()
43
+ return r
44
+
45
+ def model_prediction(self, input, api_key):
46
+ """
47
+ wrapper for the API to save the prompt and the result
48
+ """
49
+ # Setting the OpenAI API key got from the OpenAI dashboard
50
+ set_openai_key(api_key)
51
+ output = self.query(poem.format(input = input))
52
+ return output
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ libtk8.6
requirements 2.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ openai==0.22.0
2
+ streamlit==1.11.0
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ stockfish
2
+ chess
3
+ openai==0.22.0
4
+ streamlit==1.11.0